File indexing completed on 2025-03-09 03:55:08

0001 /*
0002  * transupp.c
0003  *
0004  * SPDX-FileCopyrightText: 1997-2011, Thomas G. Lane, Guido Vollbeding.
0005  * This file is part of the Independent JPEG Group's software.
0006  * For conditions of distribution and use, see the accompanying README file.
0007  *
0008  * This file contains image transformation routines and other utility code
0009  * used by the jpegtran sample application.  These are NOT part of the core
0010  * JPEG library.  But we keep these routines separate from jpegtran.c to
0011  * ease the task of maintaining jpegtran-like programs that have other user
0012  * interfaces.
0013  */
0014 
0015 /* Although this file really shouldn't have access to the library internals,
0016  * it's helpful to let it call jround_up() and jcopy_block_row().
0017  */
0018 #define JPEG_INTERNALS
0019 
0020 #include "jinclude.h"
0021 #include "jpeglib.h"
0022 #include "transupp.h"       /* My own external interface */
0023 #include <ctype.h>      /* to declare isdigit() */
0024 
0025 
0026 #if TRANSFORMS_SUPPORTED
0027 
0028 /*
0029  * Lossless image transformation routines.  These routines work on DCT
0030  * coefficient arrays and thus do not require any lossy decompression
0031  * or recompression of the image.
0032  * Thanks to Guido Vollbeding for the initial design and code of this feature,
0033  * and to Ben Jackson for introducing the cropping feature.
0034  *
0035  * Horizontal flipping is done in-place, using a single top-to-bottom
0036  * pass through the virtual source array.  It will thus be much the
0037  * fastest option for images larger than main memory.
0038  *
0039  * The other routines require a set of destination virtual arrays, so they
0040  * need twice as much memory as jpegtran normally does.  The destination
0041  * arrays are always written in normal scan order (top to bottom) because
0042  * the virtual array manager expects this.  The source arrays will be scanned
0043  * in the corresponding order, which means multiple passes through the source
0044  * arrays for most of the transforms.  That could result in much thrashing
0045  * if the image is larger than main memory.
0046  *
0047  * If cropping or trimming is involved, the destination arrays may be smaller
0048  * than the source arrays.  Note it is not possible to do horizontal flip
0049  * in-place when a nonzero Y crop offset is specified, since we'd have to move
0050  * data from one block row to another but the virtual array manager doesn't
0051  * guarantee we can touch more than one row at a time.  So in that case,
0052  * we have to use a separate destination array.
0053  *
0054  * Some notes about the operating environment of the individual transform
0055  * routines:
0056  * 1. Both the source and destination virtual arrays are allocated from the
0057  *    source JPEG object, and therefore should be manipulated by calling the
0058  *    source's memory manager.
0059  * 2. The destination's component count should be used.  It may be smaller
0060  *    than the source's when forcing to grayscale.
0061  * 3. Likewise the destination's sampling factors should be used.  When
0062  *    forcing to grayscale the destination's sampling factors will be all 1,
0063  *    and we may as well take that as the effective iMCU size.
0064  * 4. When "trim" is in effect, the destination's dimensions will be the
0065  *    trimmed values but the source's will be untrimmed.
0066  * 5. When "crop" is in effect, the destination's dimensions will be the
0067  *    cropped values but the source's will be uncropped.  Each transform
0068  *    routine is responsible for picking up source data starting at the
0069  *    correct X and Y offset for the crop region.  (The X and Y offsets
0070  *    passed to the transform routines are measured in iMCU blocks of the
0071  *    destination.)
0072  * 6. All the routines assume that the source and destination buffers are
0073  *    padded out to a full iMCU boundary.  This is true, although for the
0074  *    source buffer it is an undocumented property of jdcoefct.c.
0075  */
0076 
0077 
0078 LOCAL(void)
0079 do_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0080      JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
0081      jvirt_barray_ptr *src_coef_arrays,
0082      jvirt_barray_ptr *dst_coef_arrays)
0083 /* Crop.  This is only used when no rotate/flip is requested with the crop. */
0084 {
0085   JDIMENSION dst_blk_y, x_crop_blocks, y_crop_blocks;
0086   int ci, offset_y;
0087   JBLOCKARRAY src_buffer, dst_buffer;
0088   jpeg_component_info *compptr;
0089 
0090   /* We simply have to copy the right amount of data (the destination's
0091    * image size) starting at the given X and Y offsets in the source.
0092    */
0093   for (ci = 0; ci < dstinfo->num_components; ci++) {
0094     compptr = dstinfo->comp_info + ci;
0095     x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
0096     y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
0097     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0098      dst_blk_y += compptr->v_samp_factor) {
0099       dst_buffer = (*srcinfo->mem->access_virt_barray)
0100     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0101      (JDIMENSION) compptr->v_samp_factor, TRUE);
0102       src_buffer = (*srcinfo->mem->access_virt_barray)
0103     ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0104      dst_blk_y + y_crop_blocks,
0105      (JDIMENSION) compptr->v_samp_factor, FALSE);
0106       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0107     jcopy_block_row(src_buffer[offset_y] + x_crop_blocks,
0108             dst_buffer[offset_y],
0109             compptr->width_in_blocks);
0110       }
0111     }
0112   }
0113 }
0114 
0115 
0116 LOCAL(void)
0117 do_flip_h_no_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0118            JDIMENSION x_crop_offset,
0119            jvirt_barray_ptr *src_coef_arrays)
0120 /* Horizontal flip; done in-place, so no separate dest array is required.
0121  * NB: this only works when y_crop_offset is zero.
0122  */
0123 {
0124   JDIMENSION MCU_cols, comp_width, blk_x, blk_y, x_crop_blocks;
0125   int ci, k, offset_y;
0126   JBLOCKARRAY buffer;
0127   JCOEFPTR ptr1, ptr2;
0128   JCOEF temp1, temp2;
0129   jpeg_component_info *compptr;
0130 
0131   /* Horizontal mirroring of DCT blocks is accomplished by swapping
0132    * pairs of blocks in-place.  Within a DCT block, we perform horizontal
0133    * mirroring by changing the signs of odd-numbered columns.
0134    * Partial iMCUs at the right edge are left untouched.
0135    */
0136   MCU_cols = srcinfo->output_width /
0137     (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
0138 
0139   for (ci = 0; ci < dstinfo->num_components; ci++) {
0140     compptr = dstinfo->comp_info + ci;
0141     comp_width = MCU_cols * compptr->h_samp_factor;
0142     x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
0143     for (blk_y = 0; blk_y < compptr->height_in_blocks;
0144      blk_y += compptr->v_samp_factor) {
0145       buffer = (*srcinfo->mem->access_virt_barray)
0146     ((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y,
0147      (JDIMENSION) compptr->v_samp_factor, TRUE);
0148       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0149     /* Do the mirroring */
0150     for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) {
0151       ptr1 = buffer[offset_y][blk_x];
0152       ptr2 = buffer[offset_y][comp_width - blk_x - 1];
0153       /* this unrolled loop doesn't need to know which row it's on... */
0154       for (k = 0; k < DCTSIZE2; k += 2) {
0155         temp1 = *ptr1;  /* swap even column */
0156         temp2 = *ptr2;
0157         *ptr1++ = temp2;
0158         *ptr2++ = temp1;
0159         temp1 = *ptr1;  /* swap odd column with sign change */
0160         temp2 = *ptr2;
0161         *ptr1++ = -temp2;
0162         *ptr2++ = -temp1;
0163       }
0164     }
0165     if (x_crop_blocks > 0) {
0166       /* Now left-justify the portion of the data to be kept.
0167        * We can't use a single jcopy_block_row() call because that routine
0168        * depends on memcpy(), whose behavior is unspecified for overlapping
0169        * source and destination areas.  Sigh.
0170        */
0171       for (blk_x = 0; blk_x < compptr->width_in_blocks; blk_x++) {
0172         jcopy_block_row(buffer[offset_y] + blk_x + x_crop_blocks,
0173                 buffer[offset_y] + blk_x,
0174                 (JDIMENSION) 1);
0175       }
0176     }
0177       }
0178     }
0179   }
0180 }
0181 
0182 
0183 LOCAL(void)
0184 do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0185        JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
0186        jvirt_barray_ptr *src_coef_arrays,
0187        jvirt_barray_ptr *dst_coef_arrays)
0188 /* Horizontal flip in general cropping case */
0189 {
0190   JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y;
0191   JDIMENSION x_crop_blocks, y_crop_blocks;
0192   int ci, k, offset_y;
0193   JBLOCKARRAY src_buffer, dst_buffer;
0194   JBLOCKROW src_row_ptr, dst_row_ptr;
0195   JCOEFPTR src_ptr, dst_ptr;
0196   jpeg_component_info *compptr;
0197 
0198   /* Here we must output into a separate array because we can't touch
0199    * different rows of a single virtual array simultaneously.  Otherwise,
0200    * this is essentially the same as the routine above.
0201    */
0202   MCU_cols = srcinfo->output_width /
0203     (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
0204 
0205   for (ci = 0; ci < dstinfo->num_components; ci++) {
0206     compptr = dstinfo->comp_info + ci;
0207     comp_width = MCU_cols * compptr->h_samp_factor;
0208     x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
0209     y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
0210     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0211      dst_blk_y += compptr->v_samp_factor) {
0212       dst_buffer = (*srcinfo->mem->access_virt_barray)
0213     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0214      (JDIMENSION) compptr->v_samp_factor, TRUE);
0215       src_buffer = (*srcinfo->mem->access_virt_barray)
0216     ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0217      dst_blk_y + y_crop_blocks,
0218      (JDIMENSION) compptr->v_samp_factor, FALSE);
0219       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0220     dst_row_ptr = dst_buffer[offset_y];
0221     src_row_ptr = src_buffer[offset_y];
0222     for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
0223       if (x_crop_blocks + dst_blk_x < comp_width) {
0224         /* Do the mirrorable blocks */
0225         dst_ptr = dst_row_ptr[dst_blk_x];
0226         src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1];
0227         /* this unrolled loop doesn't need to know which row it's on... */
0228         for (k = 0; k < DCTSIZE2; k += 2) {
0229           *dst_ptr++ = *src_ptr++;   /* copy even column */
0230           *dst_ptr++ = - *src_ptr++; /* copy odd column with sign change */
0231         }
0232       } else {
0233         /* Copy last partial block(s) verbatim */
0234         jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks,
0235                 dst_row_ptr + dst_blk_x,
0236                 (JDIMENSION) 1);
0237       }
0238     }
0239       }
0240     }
0241   }
0242 }
0243 
0244 
0245 LOCAL(void)
0246 do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0247        JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
0248        jvirt_barray_ptr *src_coef_arrays,
0249        jvirt_barray_ptr *dst_coef_arrays)
0250 /* Vertical flip */
0251 {
0252   JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
0253   JDIMENSION x_crop_blocks, y_crop_blocks;
0254   int ci, i, j, offset_y;
0255   JBLOCKARRAY src_buffer, dst_buffer;
0256   JBLOCKROW src_row_ptr, dst_row_ptr;
0257   JCOEFPTR src_ptr, dst_ptr;
0258   jpeg_component_info *compptr;
0259 
0260   /* We output into a separate array because we can't touch different
0261    * rows of the source virtual array simultaneously.  Otherwise, this
0262    * is a pretty straightforward analog of horizontal flip.
0263    * Within a DCT block, vertical mirroring is done by changing the signs
0264    * of odd-numbered rows.
0265    * Partial iMCUs at the bottom edge are copied verbatim.
0266    */
0267   MCU_rows = srcinfo->output_height /
0268     (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size);
0269 
0270   for (ci = 0; ci < dstinfo->num_components; ci++) {
0271     compptr = dstinfo->comp_info + ci;
0272     comp_height = MCU_rows * compptr->v_samp_factor;
0273     x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
0274     y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
0275     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0276      dst_blk_y += compptr->v_samp_factor) {
0277       dst_buffer = (*srcinfo->mem->access_virt_barray)
0278     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0279      (JDIMENSION) compptr->v_samp_factor, TRUE);
0280       if (y_crop_blocks + dst_blk_y < comp_height) {
0281     /* Row is within the mirrorable area. */
0282     src_buffer = (*srcinfo->mem->access_virt_barray)
0283       ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0284        comp_height - y_crop_blocks - dst_blk_y -
0285        (JDIMENSION) compptr->v_samp_factor,
0286        (JDIMENSION) compptr->v_samp_factor, FALSE);
0287       } else {
0288     /* Bottom-edge blocks will be copied verbatim. */
0289     src_buffer = (*srcinfo->mem->access_virt_barray)
0290       ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0291        dst_blk_y + y_crop_blocks,
0292        (JDIMENSION) compptr->v_samp_factor, FALSE);
0293       }
0294       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0295     if (y_crop_blocks + dst_blk_y < comp_height) {
0296       /* Row is within the mirrorable area. */
0297       dst_row_ptr = dst_buffer[offset_y];
0298       src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
0299       src_row_ptr += x_crop_blocks;
0300       for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
0301            dst_blk_x++) {
0302         dst_ptr = dst_row_ptr[dst_blk_x];
0303         src_ptr = src_row_ptr[dst_blk_x];
0304         for (i = 0; i < DCTSIZE; i += 2) {
0305           /* copy even row */
0306           for (j = 0; j < DCTSIZE; j++)
0307         *dst_ptr++ = *src_ptr++;
0308           /* copy odd row with sign change */
0309           for (j = 0; j < DCTSIZE; j++)
0310         *dst_ptr++ = - *src_ptr++;
0311         }
0312       }
0313     } else {
0314       /* Just copy row verbatim. */
0315       jcopy_block_row(src_buffer[offset_y] + x_crop_blocks,
0316               dst_buffer[offset_y],
0317               compptr->width_in_blocks);
0318     }
0319       }
0320     }
0321   }
0322 }
0323 
0324 
0325 LOCAL(void)
0326 do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0327           JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
0328           jvirt_barray_ptr *src_coef_arrays,
0329           jvirt_barray_ptr *dst_coef_arrays)
0330 /* Transpose source into destination */
0331 {
0332   JDIMENSION dst_blk_x, dst_blk_y, x_crop_blocks, y_crop_blocks;
0333   int ci, i, j, offset_x, offset_y;
0334   JBLOCKARRAY src_buffer, dst_buffer;
0335   JCOEFPTR src_ptr, dst_ptr;
0336   jpeg_component_info *compptr;
0337 
0338   /* Transposing pixels within a block just requires transposing the
0339    * DCT coefficients.
0340    * Partial iMCUs at the edges require no special treatment; we simply
0341    * process all the available DCT blocks for every component.
0342    */
0343   for (ci = 0; ci < dstinfo->num_components; ci++) {
0344     compptr = dstinfo->comp_info + ci;
0345     x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
0346     y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
0347     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0348      dst_blk_y += compptr->v_samp_factor) {
0349       dst_buffer = (*srcinfo->mem->access_virt_barray)
0350     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0351      (JDIMENSION) compptr->v_samp_factor, TRUE);
0352       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0353     for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
0354          dst_blk_x += compptr->h_samp_factor) {
0355       src_buffer = (*srcinfo->mem->access_virt_barray)
0356         ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0357          dst_blk_x + x_crop_blocks,
0358          (JDIMENSION) compptr->h_samp_factor, FALSE);
0359       for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
0360         dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
0361         src_ptr = src_buffer[offset_x][dst_blk_y + offset_y + y_crop_blocks];
0362         for (i = 0; i < DCTSIZE; i++)
0363           for (j = 0; j < DCTSIZE; j++)
0364         dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0365       }
0366     }
0367       }
0368     }
0369   }
0370 }
0371 
0372 
0373 LOCAL(void)
0374 do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0375        JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
0376        jvirt_barray_ptr *src_coef_arrays,
0377        jvirt_barray_ptr *dst_coef_arrays)
0378 /* 90 degree rotation is equivalent to
0379  *   1. Transposing the image;
0380  *   2. Horizontal mirroring.
0381  * These two steps are merged into a single processing routine.
0382  */
0383 {
0384   JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y;
0385   JDIMENSION x_crop_blocks, y_crop_blocks;
0386   int ci, i, j, offset_x, offset_y;
0387   JBLOCKARRAY src_buffer, dst_buffer;
0388   JCOEFPTR src_ptr, dst_ptr;
0389   jpeg_component_info *compptr;
0390 
0391   /* Because of the horizontal mirror step, we can't process partial iMCUs
0392    * at the (output) right edge properly.  They just get transposed and
0393    * not mirrored.
0394    */
0395   MCU_cols = srcinfo->output_height /
0396     (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
0397 
0398   for (ci = 0; ci < dstinfo->num_components; ci++) {
0399     compptr = dstinfo->comp_info + ci;
0400     comp_width = MCU_cols * compptr->h_samp_factor;
0401     x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
0402     y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
0403     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0404      dst_blk_y += compptr->v_samp_factor) {
0405       dst_buffer = (*srcinfo->mem->access_virt_barray)
0406     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0407      (JDIMENSION) compptr->v_samp_factor, TRUE);
0408       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0409     for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
0410          dst_blk_x += compptr->h_samp_factor) {
0411       if (x_crop_blocks + dst_blk_x < comp_width) {
0412         /* Block is within the mirrorable area. */
0413         src_buffer = (*srcinfo->mem->access_virt_barray)
0414           ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0415            comp_width - x_crop_blocks - dst_blk_x -
0416            (JDIMENSION) compptr->h_samp_factor,
0417            (JDIMENSION) compptr->h_samp_factor, FALSE);
0418       } else {
0419         /* Edge blocks are transposed but not mirrored. */
0420         src_buffer = (*srcinfo->mem->access_virt_barray)
0421           ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0422            dst_blk_x + x_crop_blocks,
0423            (JDIMENSION) compptr->h_samp_factor, FALSE);
0424       }
0425       for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
0426         dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
0427         if (x_crop_blocks + dst_blk_x < comp_width) {
0428           /* Block is within the mirrorable area. */
0429           src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1]
0430         [dst_blk_y + offset_y + y_crop_blocks];
0431           for (i = 0; i < DCTSIZE; i++) {
0432         for (j = 0; j < DCTSIZE; j++)
0433           dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0434         i++;
0435         for (j = 0; j < DCTSIZE; j++)
0436           dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
0437           }
0438         } else {
0439           /* Edge blocks are transposed but not mirrored. */
0440           src_ptr = src_buffer[offset_x]
0441         [dst_blk_y + offset_y + y_crop_blocks];
0442           for (i = 0; i < DCTSIZE; i++)
0443         for (j = 0; j < DCTSIZE; j++)
0444           dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0445         }
0446       }
0447     }
0448       }
0449     }
0450   }
0451 }
0452 
0453 
0454 LOCAL(void)
0455 do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0456         JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
0457         jvirt_barray_ptr *src_coef_arrays,
0458         jvirt_barray_ptr *dst_coef_arrays)
0459 /* 270 degree rotation is equivalent to
0460  *   1. Horizontal mirroring;
0461  *   2. Transposing the image.
0462  * These two steps are merged into a single processing routine.
0463  */
0464 {
0465   JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
0466   JDIMENSION x_crop_blocks, y_crop_blocks;
0467   int ci, i, j, offset_x, offset_y;
0468   JBLOCKARRAY src_buffer, dst_buffer;
0469   JCOEFPTR src_ptr, dst_ptr;
0470   jpeg_component_info *compptr;
0471 
0472   /* Because of the horizontal mirror step, we can't process partial iMCUs
0473    * at the (output) bottom edge properly.  They just get transposed and
0474    * not mirrored.
0475    */
0476   MCU_rows = srcinfo->output_width /
0477     (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size);
0478 
0479   for (ci = 0; ci < dstinfo->num_components; ci++) {
0480     compptr = dstinfo->comp_info + ci;
0481     comp_height = MCU_rows * compptr->v_samp_factor;
0482     x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
0483     y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
0484     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0485      dst_blk_y += compptr->v_samp_factor) {
0486       dst_buffer = (*srcinfo->mem->access_virt_barray)
0487     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0488      (JDIMENSION) compptr->v_samp_factor, TRUE);
0489       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0490     for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
0491          dst_blk_x += compptr->h_samp_factor) {
0492       src_buffer = (*srcinfo->mem->access_virt_barray)
0493         ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0494          dst_blk_x + x_crop_blocks,
0495          (JDIMENSION) compptr->h_samp_factor, FALSE);
0496       for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
0497         dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
0498         if (y_crop_blocks + dst_blk_y < comp_height) {
0499           /* Block is within the mirrorable area. */
0500           src_ptr = src_buffer[offset_x]
0501         [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1];
0502           for (i = 0; i < DCTSIZE; i++) {
0503         for (j = 0; j < DCTSIZE; j++) {
0504           dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0505           j++;
0506           dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
0507         }
0508           }
0509         } else {
0510           /* Edge blocks are transposed but not mirrored. */
0511           src_ptr = src_buffer[offset_x]
0512         [dst_blk_y + offset_y + y_crop_blocks];
0513           for (i = 0; i < DCTSIZE; i++)
0514         for (j = 0; j < DCTSIZE; j++)
0515           dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0516         }
0517       }
0518     }
0519       }
0520     }
0521   }
0522 }
0523 
0524 
0525 LOCAL(void)
0526 do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0527         JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
0528         jvirt_barray_ptr *src_coef_arrays,
0529         jvirt_barray_ptr *dst_coef_arrays)
0530 /* 180 degree rotation is equivalent to
0531  *   1. Vertical mirroring;
0532  *   2. Horizontal mirroring.
0533  * These two steps are merged into a single processing routine.
0534  */
0535 {
0536   JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
0537   JDIMENSION x_crop_blocks, y_crop_blocks;
0538   int ci, i, j, offset_y;
0539   JBLOCKARRAY src_buffer, dst_buffer;
0540   JBLOCKROW src_row_ptr, dst_row_ptr;
0541   JCOEFPTR src_ptr, dst_ptr;
0542   jpeg_component_info *compptr;
0543 
0544   MCU_cols = srcinfo->output_width /
0545     (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
0546   MCU_rows = srcinfo->output_height /
0547     (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size);
0548 
0549   for (ci = 0; ci < dstinfo->num_components; ci++) {
0550     compptr = dstinfo->comp_info + ci;
0551     comp_width = MCU_cols * compptr->h_samp_factor;
0552     comp_height = MCU_rows * compptr->v_samp_factor;
0553     x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
0554     y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
0555     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0556      dst_blk_y += compptr->v_samp_factor) {
0557       dst_buffer = (*srcinfo->mem->access_virt_barray)
0558     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0559      (JDIMENSION) compptr->v_samp_factor, TRUE);
0560       if (y_crop_blocks + dst_blk_y < comp_height) {
0561     /* Row is within the vertically mirrorable area. */
0562     src_buffer = (*srcinfo->mem->access_virt_barray)
0563       ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0564        comp_height - y_crop_blocks - dst_blk_y -
0565        (JDIMENSION) compptr->v_samp_factor,
0566        (JDIMENSION) compptr->v_samp_factor, FALSE);
0567       } else {
0568     /* Bottom-edge rows are only mirrored horizontally. */
0569     src_buffer = (*srcinfo->mem->access_virt_barray)
0570       ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0571        dst_blk_y + y_crop_blocks,
0572        (JDIMENSION) compptr->v_samp_factor, FALSE);
0573       }
0574       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0575     dst_row_ptr = dst_buffer[offset_y];
0576     if (y_crop_blocks + dst_blk_y < comp_height) {
0577       /* Row is within the mirrorable area. */
0578       src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
0579       for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
0580         dst_ptr = dst_row_ptr[dst_blk_x];
0581         if (x_crop_blocks + dst_blk_x < comp_width) {
0582           /* Process the blocks that can be mirrored both ways. */
0583           src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1];
0584           for (i = 0; i < DCTSIZE; i += 2) {
0585         /* For even row, negate every odd column. */
0586         for (j = 0; j < DCTSIZE; j += 2) {
0587           *dst_ptr++ = *src_ptr++;
0588           *dst_ptr++ = - *src_ptr++;
0589         }
0590         /* For odd row, negate every even column. */
0591         for (j = 0; j < DCTSIZE; j += 2) {
0592           *dst_ptr++ = - *src_ptr++;
0593           *dst_ptr++ = *src_ptr++;
0594         }
0595           }
0596         } else {
0597           /* Any remaining right-edge blocks are only mirrored vertically. */
0598           src_ptr = src_row_ptr[x_crop_blocks + dst_blk_x];
0599           for (i = 0; i < DCTSIZE; i += 2) {
0600         for (j = 0; j < DCTSIZE; j++)
0601           *dst_ptr++ = *src_ptr++;
0602         for (j = 0; j < DCTSIZE; j++)
0603           *dst_ptr++ = - *src_ptr++;
0604           }
0605         }
0606       }
0607     } else {
0608       /* Remaining rows are just mirrored horizontally. */
0609       src_row_ptr = src_buffer[offset_y];
0610       for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
0611         if (x_crop_blocks + dst_blk_x < comp_width) {
0612           /* Process the blocks that can be mirrored. */
0613           dst_ptr = dst_row_ptr[dst_blk_x];
0614           src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1];
0615           for (i = 0; i < DCTSIZE2; i += 2) {
0616         *dst_ptr++ = *src_ptr++;
0617         *dst_ptr++ = - *src_ptr++;
0618           }
0619         } else {
0620           /* Any remaining right-edge blocks are only copied. */
0621           jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks,
0622                   dst_row_ptr + dst_blk_x,
0623                   (JDIMENSION) 1);
0624         }
0625       }
0626     }
0627       }
0628     }
0629   }
0630 }
0631 
0632 
0633 LOCAL(void)
0634 do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0635            JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
0636            jvirt_barray_ptr *src_coef_arrays,
0637            jvirt_barray_ptr *dst_coef_arrays)
0638 /* Transverse transpose is equivalent to
0639  *   1. 180 degree rotation;
0640  *   2. Transposition;
0641  * or
0642  *   1. Horizontal mirroring;
0643  *   2. Transposition;
0644  *   3. Horizontal mirroring.
0645  * These steps are merged into a single processing routine.
0646  */
0647 {
0648   JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
0649   JDIMENSION x_crop_blocks, y_crop_blocks;
0650   int ci, i, j, offset_x, offset_y;
0651   JBLOCKARRAY src_buffer, dst_buffer;
0652   JCOEFPTR src_ptr, dst_ptr;
0653   jpeg_component_info *compptr;
0654 
0655   MCU_cols = srcinfo->output_height /
0656     (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
0657   MCU_rows = srcinfo->output_width /
0658     (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size);
0659 
0660   for (ci = 0; ci < dstinfo->num_components; ci++) {
0661     compptr = dstinfo->comp_info + ci;
0662     comp_width = MCU_cols * compptr->h_samp_factor;
0663     comp_height = MCU_rows * compptr->v_samp_factor;
0664     x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
0665     y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
0666     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0667      dst_blk_y += compptr->v_samp_factor) {
0668       dst_buffer = (*srcinfo->mem->access_virt_barray)
0669     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0670      (JDIMENSION) compptr->v_samp_factor, TRUE);
0671       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0672     for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
0673          dst_blk_x += compptr->h_samp_factor) {
0674       if (x_crop_blocks + dst_blk_x < comp_width) {
0675         /* Block is within the mirrorable area. */
0676         src_buffer = (*srcinfo->mem->access_virt_barray)
0677           ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0678            comp_width - x_crop_blocks - dst_blk_x -
0679            (JDIMENSION) compptr->h_samp_factor,
0680            (JDIMENSION) compptr->h_samp_factor, FALSE);
0681       } else {
0682         src_buffer = (*srcinfo->mem->access_virt_barray)
0683           ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0684            dst_blk_x + x_crop_blocks,
0685            (JDIMENSION) compptr->h_samp_factor, FALSE);
0686       }
0687       for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
0688         dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
0689         if (y_crop_blocks + dst_blk_y < comp_height) {
0690           if (x_crop_blocks + dst_blk_x < comp_width) {
0691         /* Block is within the mirrorable area. */
0692         src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1]
0693           [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1];
0694         for (i = 0; i < DCTSIZE; i++) {
0695           for (j = 0; j < DCTSIZE; j++) {
0696             dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0697             j++;
0698             dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
0699           }
0700           i++;
0701           for (j = 0; j < DCTSIZE; j++) {
0702             dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
0703             j++;
0704             dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0705           }
0706         }
0707           } else {
0708         /* Right-edge blocks are mirrored in y only */
0709         src_ptr = src_buffer[offset_x]
0710           [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1];
0711         for (i = 0; i < DCTSIZE; i++) {
0712           for (j = 0; j < DCTSIZE; j++) {
0713             dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0714             j++;
0715             dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
0716           }
0717         }
0718           }
0719         } else {
0720           if (x_crop_blocks + dst_blk_x < comp_width) {
0721         /* Bottom-edge blocks are mirrored in x only */
0722         src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1]
0723           [dst_blk_y + offset_y + y_crop_blocks];
0724         for (i = 0; i < DCTSIZE; i++) {
0725           for (j = 0; j < DCTSIZE; j++)
0726             dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0727           i++;
0728           for (j = 0; j < DCTSIZE; j++)
0729             dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
0730         }
0731           } else {
0732         /* At lower right corner, just transpose, no mirroring */
0733         src_ptr = src_buffer[offset_x]
0734           [dst_blk_y + offset_y + y_crop_blocks];
0735         for (i = 0; i < DCTSIZE; i++)
0736           for (j = 0; j < DCTSIZE; j++)
0737             dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0738           }
0739         }
0740       }
0741     }
0742       }
0743     }
0744   }
0745 }
0746 
0747 
0748 /* Parse an unsigned integer: subroutine for jtransform_parse_crop_spec.
0749  * Returns TRUE if valid integer found, FALSE if not.
0750  * *strptr is advanced over the digit string, and *result is set to its value.
0751  */
0752 
0753 LOCAL(boolean)
0754 jt_read_integer (const char ** strptr, JDIMENSION * result)
0755 {
0756   const char * ptr = *strptr;
0757   JDIMENSION val = 0;
0758 
0759   for (; isdigit(*ptr); ptr++) {
0760     val = val * 10 + (JDIMENSION) (*ptr - '0');
0761   }
0762   *result = val;
0763   if (ptr == *strptr)
0764     return FALSE;       /* oops, no digits */
0765   *strptr = ptr;
0766   return TRUE;
0767 }
0768 
0769 
0770 /* Parse a crop specification (written in X11 geometry style).
0771  * The routine returns TRUE if the spec string is valid, FALSE if not.
0772  *
0773  * The crop spec string should have the format
0774  *  <width>[f]x<height>[f]{+-}<xoffset>{+-}<yoffset>
0775  * where width, height, xoffset, and yoffset are unsigned integers.
0776  * Each of the elements can be omitted to indicate a default value.
0777  * (A weakness of this style is that it is not possible to omit xoffset
0778  * while specifying yoffset, since they look alike.)
0779  *
0780  * This code is loosely based on XParseGeometry from the X11 distribution.
0781  */
0782 
0783 GLOBAL(boolean)
0784 jtransform_parse_crop_spec (jpeg_transform_info *info, const char *spec)
0785 {
0786   info->crop = FALSE;
0787   info->crop_width_set = JCROP_UNSET;
0788   info->crop_height_set = JCROP_UNSET;
0789   info->crop_xoffset_set = JCROP_UNSET;
0790   info->crop_yoffset_set = JCROP_UNSET;
0791 
0792   if (isdigit(*spec)) {
0793     /* fetch width */
0794     if (! jt_read_integer(&spec, &info->crop_width))
0795       return FALSE;
0796     if (*spec == 'f' || *spec == 'F') {
0797       spec++;
0798       info->crop_width_set = JCROP_FORCE;
0799     } else
0800       info->crop_width_set = JCROP_POS;
0801   }
0802   if (*spec == 'x' || *spec == 'X') {
0803     /* fetch height */
0804     spec++;
0805     if (! jt_read_integer(&spec, &info->crop_height))
0806       return FALSE;
0807     if (*spec == 'f' || *spec == 'F') {
0808       spec++;
0809       info->crop_height_set = JCROP_FORCE;
0810     } else
0811       info->crop_height_set = JCROP_POS;
0812   }
0813   if (*spec == '+' || *spec == '-') {
0814     /* fetch xoffset */
0815     info->crop_xoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS;
0816     spec++;
0817     if (! jt_read_integer(&spec, &info->crop_xoffset))
0818       return FALSE;
0819   }
0820   if (*spec == '+' || *spec == '-') {
0821     /* fetch yoffset */
0822     info->crop_yoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS;
0823     spec++;
0824     if (! jt_read_integer(&spec, &info->crop_yoffset))
0825       return FALSE;
0826   }
0827   /* We had better have gotten to the end of the string. */
0828   if (*spec != '\0')
0829     return FALSE;
0830   info->crop = TRUE;
0831   return TRUE;
0832 }
0833 
0834 
0835 /* Trim off any partial iMCUs on the indicated destination edge */
0836 
0837 LOCAL(void)
0838 trim_right_edge (jpeg_transform_info *info, JDIMENSION full_width)
0839 {
0840   JDIMENSION MCU_cols;
0841 
0842   MCU_cols = info->output_width / info->iMCU_sample_width;
0843   if (MCU_cols > 0 && info->x_crop_offset + MCU_cols ==
0844       full_width / info->iMCU_sample_width)
0845     info->output_width = MCU_cols * info->iMCU_sample_width;
0846 }
0847 
0848 LOCAL(void)
0849 trim_bottom_edge (jpeg_transform_info *info, JDIMENSION full_height)
0850 {
0851   JDIMENSION MCU_rows;
0852 
0853   MCU_rows = info->output_height / info->iMCU_sample_height;
0854   if (MCU_rows > 0 && info->y_crop_offset + MCU_rows ==
0855       full_height / info->iMCU_sample_height)
0856     info->output_height = MCU_rows * info->iMCU_sample_height;
0857 }
0858 
0859 
0860 /* Request any required workspace.
0861  *
0862  * This routine figures out the size that the output image will be
0863  * (which implies that all the transform parameters must be set before
0864  * it is called).
0865  *
0866  * We allocate the workspace virtual arrays from the source decompression
0867  * object, so that all the arrays (both the original data and the workspace)
0868  * will be taken into account while making memory management decisions.
0869  * Hence, this routine must be called after jpeg_read_header (which reads
0870  * the image dimensions) and before jpeg_read_coefficients (which realizes
0871  * the source's virtual arrays).
0872  *
0873  * This function returns FALSE right away if -perfect is given
0874  * and transformation is not perfect.  Otherwise returns TRUE.
0875  */
0876 
0877 GLOBAL(boolean)
0878 jtransform_request_workspace (j_decompress_ptr srcinfo,
0879                   jpeg_transform_info *info)
0880 {
0881   jvirt_barray_ptr *coef_arrays;
0882   boolean need_workspace, transpose_it;
0883   jpeg_component_info *compptr;
0884   JDIMENSION xoffset, yoffset;
0885   JDIMENSION width_in_iMCUs, height_in_iMCUs;
0886   JDIMENSION width_in_blocks, height_in_blocks;
0887   int ci, h_samp_factor, v_samp_factor;
0888 
0889   /* Determine number of components in output image */
0890   if (info->force_grayscale &&
0891       srcinfo->jpeg_color_space == JCS_YCbCr &&
0892       srcinfo->num_components == 3)
0893     /* We'll only process the first component */
0894     info->num_components = 1;
0895   else
0896     /* Process all the components */
0897     info->num_components = srcinfo->num_components;
0898 
0899   /* Compute output image dimensions and related values. */
0900   jpeg_core_output_dimensions(srcinfo);
0901 
0902   /* Return right away if -perfect is given and transformation is not perfect.
0903    */
0904   if (info->perfect) {
0905     if (info->num_components == 1) {
0906       if (!jtransform_perfect_transform(srcinfo->output_width,
0907       srcinfo->output_height,
0908       srcinfo->min_DCT_h_scaled_size,
0909       srcinfo->min_DCT_v_scaled_size,
0910       info->transform))
0911     return FALSE;
0912     } else {
0913       if (!jtransform_perfect_transform(srcinfo->output_width,
0914       srcinfo->output_height,
0915       srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size,
0916       srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size,
0917       info->transform))
0918     return FALSE;
0919     }
0920   }
0921 
0922   /* If there is only one output component, force the iMCU size to be 1;
0923    * else use the source iMCU size.  (This allows us to do the right thing
0924    * when reducing color to grayscale, and also provides a handy way of
0925    * cleaning up "funny" grayscale images whose sampling factors are not 1x1.)
0926    */
0927   switch (info->transform) {
0928   case JXFORM_TRANSPOSE:
0929   case JXFORM_TRANSVERSE:
0930   case JXFORM_ROT_90:
0931   case JXFORM_ROT_270:
0932     info->output_width = srcinfo->output_height;
0933     info->output_height = srcinfo->output_width;
0934     if (info->num_components == 1) {
0935       info->iMCU_sample_width = srcinfo->min_DCT_v_scaled_size;
0936       info->iMCU_sample_height = srcinfo->min_DCT_h_scaled_size;
0937     } else {
0938       info->iMCU_sample_width =
0939     srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size;
0940       info->iMCU_sample_height =
0941     srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size;
0942     }
0943     break;
0944   default:
0945     info->output_width = srcinfo->output_width;
0946     info->output_height = srcinfo->output_height;
0947     if (info->num_components == 1) {
0948       info->iMCU_sample_width = srcinfo->min_DCT_h_scaled_size;
0949       info->iMCU_sample_height = srcinfo->min_DCT_v_scaled_size;
0950     } else {
0951       info->iMCU_sample_width =
0952     srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size;
0953       info->iMCU_sample_height =
0954     srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size;
0955     }
0956     break;
0957   }
0958 
0959   /* If cropping has been requested, compute the crop area's position and
0960    * dimensions, ensuring that its upper left corner falls at an iMCU boundary.
0961    */
0962   if (info->crop) {
0963     /* Insert default values for unset crop parameters */
0964     if (info->crop_xoffset_set == JCROP_UNSET)
0965       info->crop_xoffset = 0;   /* default to +0 */
0966     if (info->crop_yoffset_set == JCROP_UNSET)
0967       info->crop_yoffset = 0;   /* default to +0 */
0968     if (info->crop_xoffset >= info->output_width ||
0969     info->crop_yoffset >= info->output_height)
0970       ERREXIT(srcinfo, JERR_BAD_CROP_SPEC);
0971     if (info->crop_width_set == JCROP_UNSET)
0972       info->crop_width = info->output_width - info->crop_xoffset;
0973     if (info->crop_height_set == JCROP_UNSET)
0974       info->crop_height = info->output_height - info->crop_yoffset;
0975     /* Ensure parameters are valid */
0976     if (info->crop_width <= 0 || info->crop_width > info->output_width ||
0977     info->crop_height <= 0 || info->crop_height > info->output_height ||
0978     info->crop_xoffset > info->output_width - info->crop_width ||
0979     info->crop_yoffset > info->output_height - info->crop_height)
0980       ERREXIT(srcinfo, JERR_BAD_CROP_SPEC);
0981     /* Convert negative crop offsets into regular offsets */
0982     if (info->crop_xoffset_set == JCROP_NEG)
0983       xoffset = info->output_width - info->crop_width - info->crop_xoffset;
0984     else
0985       xoffset = info->crop_xoffset;
0986     if (info->crop_yoffset_set == JCROP_NEG)
0987       yoffset = info->output_height - info->crop_height - info->crop_yoffset;
0988     else
0989       yoffset = info->crop_yoffset;
0990     /* Now adjust so that upper left corner falls at an iMCU boundary */
0991     if (info->crop_width_set == JCROP_FORCE)
0992       info->output_width = info->crop_width;
0993     else
0994       info->output_width =
0995         info->crop_width + (xoffset % info->iMCU_sample_width);
0996     if (info->crop_height_set == JCROP_FORCE)
0997       info->output_height = info->crop_height;
0998     else
0999       info->output_height =
1000         info->crop_height + (yoffset % info->iMCU_sample_height);
1001     /* Save x/y offsets measured in iMCUs */
1002     info->x_crop_offset = xoffset / info->iMCU_sample_width;
1003     info->y_crop_offset = yoffset / info->iMCU_sample_height;
1004   } else {
1005     info->x_crop_offset = 0;
1006     info->y_crop_offset = 0;
1007   }
1008 
1009   /* Figure out whether we need workspace arrays,
1010    * and if so whether they are transposed relative to the source.
1011    */
1012   need_workspace = FALSE;
1013   transpose_it = FALSE;
1014   switch (info->transform) {
1015   case JXFORM_NONE:
1016     if (info->x_crop_offset != 0 || info->y_crop_offset != 0)
1017       need_workspace = TRUE;
1018     /* No workspace needed if neither cropping nor transforming */
1019     break;
1020   case JXFORM_FLIP_H:
1021     if (info->trim)
1022       trim_right_edge(info, srcinfo->output_width);
1023     if (info->y_crop_offset != 0)
1024       need_workspace = TRUE;
1025     /* do_flip_h_no_crop doesn't need a workspace array */
1026     break;
1027   case JXFORM_FLIP_V:
1028     if (info->trim)
1029       trim_bottom_edge(info, srcinfo->output_height);
1030     /* Need workspace arrays having same dimensions as source image. */
1031     need_workspace = TRUE;
1032     break;
1033   case JXFORM_TRANSPOSE:
1034     /* transpose does NOT have to trim anything */
1035     /* Need workspace arrays having transposed dimensions. */
1036     need_workspace = TRUE;
1037     transpose_it = TRUE;
1038     break;
1039   case JXFORM_TRANSVERSE:
1040     if (info->trim) {
1041       trim_right_edge(info, srcinfo->output_height);
1042       trim_bottom_edge(info, srcinfo->output_width);
1043     }
1044     /* Need workspace arrays having transposed dimensions. */
1045     need_workspace = TRUE;
1046     transpose_it = TRUE;
1047     break;
1048   case JXFORM_ROT_90:
1049     if (info->trim)
1050       trim_right_edge(info, srcinfo->output_height);
1051     /* Need workspace arrays having transposed dimensions. */
1052     need_workspace = TRUE;
1053     transpose_it = TRUE;
1054     break;
1055   case JXFORM_ROT_180:
1056     if (info->trim) {
1057       trim_right_edge(info, srcinfo->output_width);
1058       trim_bottom_edge(info, srcinfo->output_height);
1059     }
1060     /* Need workspace arrays having same dimensions as source image. */
1061     need_workspace = TRUE;
1062     break;
1063   case JXFORM_ROT_270:
1064     if (info->trim)
1065       trim_bottom_edge(info, srcinfo->output_width);
1066     /* Need workspace arrays having transposed dimensions. */
1067     need_workspace = TRUE;
1068     transpose_it = TRUE;
1069     break;
1070   }
1071 
1072   /* Allocate workspace if needed.
1073    * Note that we allocate arrays padded out to the next iMCU boundary,
1074    * so that transform routines need not worry about missing edge blocks.
1075    */
1076   if (need_workspace) {
1077     coef_arrays = (jvirt_barray_ptr *)
1078       (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE,
1079         SIZEOF(jvirt_barray_ptr) * info->num_components);
1080     width_in_iMCUs = (JDIMENSION)
1081       jdiv_round_up((long) info->output_width,
1082             (long) info->iMCU_sample_width);
1083     height_in_iMCUs = (JDIMENSION)
1084       jdiv_round_up((long) info->output_height,
1085             (long) info->iMCU_sample_height);
1086     for (ci = 0; ci < info->num_components; ci++) {
1087       compptr = srcinfo->comp_info + ci;
1088       if (info->num_components == 1) {
1089     /* we're going to force samp factors to 1x1 in this case */
1090     h_samp_factor = v_samp_factor = 1;
1091       } else if (transpose_it) {
1092     h_samp_factor = compptr->v_samp_factor;
1093     v_samp_factor = compptr->h_samp_factor;
1094       } else {
1095     h_samp_factor = compptr->h_samp_factor;
1096     v_samp_factor = compptr->v_samp_factor;
1097       }
1098       width_in_blocks = width_in_iMCUs * h_samp_factor;
1099       height_in_blocks = height_in_iMCUs * v_samp_factor;
1100       coef_arrays[ci] = (*srcinfo->mem->request_virt_barray)
1101     ((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE,
1102      width_in_blocks, height_in_blocks, (JDIMENSION) v_samp_factor);
1103     }
1104     info->workspace_coef_arrays = coef_arrays;
1105   } else
1106     info->workspace_coef_arrays = NULL;
1107 
1108   return TRUE;
1109 }
1110 
1111 
1112 /* Transpose destination image parameters */
1113 
1114 LOCAL(void)
1115 transpose_critical_parameters (j_compress_ptr dstinfo)
1116 {
1117   int tblno, i, j, ci, itemp;
1118   jpeg_component_info *compptr;
1119   JQUANT_TBL *qtblptr;
1120   JDIMENSION jtemp;
1121   UINT16 qtemp;
1122 
1123   /* Transpose image dimensions */
1124   jtemp = dstinfo->image_width;
1125   dstinfo->image_width = dstinfo->image_height;
1126   dstinfo->image_height = jtemp;
1127   itemp = dstinfo->min_DCT_h_scaled_size;
1128   dstinfo->min_DCT_h_scaled_size = dstinfo->min_DCT_v_scaled_size;
1129   dstinfo->min_DCT_v_scaled_size = itemp;
1130 
1131   /* Transpose sampling factors */
1132   for (ci = 0; ci < dstinfo->num_components; ci++) {
1133     compptr = dstinfo->comp_info + ci;
1134     itemp = compptr->h_samp_factor;
1135     compptr->h_samp_factor = compptr->v_samp_factor;
1136     compptr->v_samp_factor = itemp;
1137   }
1138 
1139   /* Transpose quantization tables */
1140   for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
1141     qtblptr = dstinfo->quant_tbl_ptrs[tblno];
1142     if (qtblptr != NULL) {
1143       for (i = 0; i < DCTSIZE; i++) {
1144     for (j = 0; j < i; j++) {
1145       qtemp = qtblptr->quantval[i*DCTSIZE+j];
1146       qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i];
1147       qtblptr->quantval[j*DCTSIZE+i] = qtemp;
1148     }
1149       }
1150     }
1151   }
1152 }
1153 
1154 
1155 /* Adjust Exif image parameters.
1156  *
1157  * We try to adjust the Tags ExifImageWidth and ExifImageHeight if possible.
1158  */
1159 
1160 LOCAL(void)
1161 adjust_exif_parameters (JOCTET FAR * data, unsigned int length,
1162             JDIMENSION new_width, JDIMENSION new_height)
1163 {
1164   boolean is_motorola; /* Flag for byte order */
1165   unsigned int number_of_tags, tagnum;
1166   unsigned int firstoffset, offset;
1167   JDIMENSION new_value;
1168 
1169   if (length < 12) return; /* Length of an IFD entry */
1170 
1171   /* Discover byte order */
1172   if (GETJOCTET(data[0]) == 0x49 && GETJOCTET(data[1]) == 0x49)
1173     is_motorola = FALSE;
1174   else if (GETJOCTET(data[0]) == 0x4D && GETJOCTET(data[1]) == 0x4D)
1175     is_motorola = TRUE;
1176   else
1177     return;
1178 
1179   /* Check Tag Mark */
1180   if (is_motorola) {
1181     if (GETJOCTET(data[2]) != 0) return;
1182     if (GETJOCTET(data[3]) != 0x2A) return;
1183   } else {
1184     if (GETJOCTET(data[3]) != 0) return;
1185     if (GETJOCTET(data[2]) != 0x2A) return;
1186   }
1187 
1188   /* Get first IFD offset (offset to IFD0) */
1189   if (is_motorola) {
1190     if (GETJOCTET(data[4]) != 0) return;
1191     if (GETJOCTET(data[5]) != 0) return;
1192     firstoffset = GETJOCTET(data[6]);
1193     firstoffset <<= 8;
1194     firstoffset += GETJOCTET(data[7]);
1195   } else {
1196     if (GETJOCTET(data[7]) != 0) return;
1197     if (GETJOCTET(data[6]) != 0) return;
1198     firstoffset = GETJOCTET(data[5]);
1199     firstoffset <<= 8;
1200     firstoffset += GETJOCTET(data[4]);
1201   }
1202   if (firstoffset > length - 2) return; /* check end of data segment */
1203 
1204   /* Get the number of directory entries contained in this IFD */
1205   if (is_motorola) {
1206     number_of_tags = GETJOCTET(data[firstoffset]);
1207     number_of_tags <<= 8;
1208     number_of_tags += GETJOCTET(data[firstoffset+1]);
1209   } else {
1210     number_of_tags = GETJOCTET(data[firstoffset+1]);
1211     number_of_tags <<= 8;
1212     number_of_tags += GETJOCTET(data[firstoffset]);
1213   }
1214   if (number_of_tags == 0) return;
1215   firstoffset += 2;
1216 
1217   /* Search for ExifSubIFD offset Tag in IFD0 */
1218   for (;;) {
1219     if (firstoffset > length - 12) return; /* check end of data segment */
1220     /* Get Tag number */
1221     if (is_motorola) {
1222       tagnum = GETJOCTET(data[firstoffset]);
1223       tagnum <<= 8;
1224       tagnum += GETJOCTET(data[firstoffset+1]);
1225     } else {
1226       tagnum = GETJOCTET(data[firstoffset+1]);
1227       tagnum <<= 8;
1228       tagnum += GETJOCTET(data[firstoffset]);
1229     }
1230     if (tagnum == 0x8769) break; /* found ExifSubIFD offset Tag */
1231     if (--number_of_tags == 0) return;
1232     firstoffset += 12;
1233   }
1234 
1235   /* Get the ExifSubIFD offset */
1236   if (is_motorola) {
1237     if (GETJOCTET(data[firstoffset+8]) != 0) return;
1238     if (GETJOCTET(data[firstoffset+9]) != 0) return;
1239     offset = GETJOCTET(data[firstoffset+10]);
1240     offset <<= 8;
1241     offset += GETJOCTET(data[firstoffset+11]);
1242   } else {
1243     if (GETJOCTET(data[firstoffset+11]) != 0) return;
1244     if (GETJOCTET(data[firstoffset+10]) != 0) return;
1245     offset = GETJOCTET(data[firstoffset+9]);
1246     offset <<= 8;
1247     offset += GETJOCTET(data[firstoffset+8]);
1248   }
1249   if (offset > length - 2) return; /* check end of data segment */
1250 
1251   /* Get the number of directory entries contained in this SubIFD */
1252   if (is_motorola) {
1253     number_of_tags = GETJOCTET(data[offset]);
1254     number_of_tags <<= 8;
1255     number_of_tags += GETJOCTET(data[offset+1]);
1256   } else {
1257     number_of_tags = GETJOCTET(data[offset+1]);
1258     number_of_tags <<= 8;
1259     number_of_tags += GETJOCTET(data[offset]);
1260   }
1261   if (number_of_tags < 2) return;
1262   offset += 2;
1263 
1264   /* Search for ExifImageWidth and ExifImageHeight Tags in this SubIFD */
1265   do {
1266     if (offset > length - 12) return; /* check end of data segment */
1267     /* Get Tag number */
1268     if (is_motorola) {
1269       tagnum = GETJOCTET(data[offset]);
1270       tagnum <<= 8;
1271       tagnum += GETJOCTET(data[offset+1]);
1272     } else {
1273       tagnum = GETJOCTET(data[offset+1]);
1274       tagnum <<= 8;
1275       tagnum += GETJOCTET(data[offset]);
1276     }
1277     if (tagnum == 0xA002 || tagnum == 0xA003) {
1278       if (tagnum == 0xA002)
1279     new_value = new_width; /* ExifImageWidth Tag */
1280       else
1281     new_value = new_height; /* ExifImageHeight Tag */
1282       if (is_motorola) {
1283     data[offset+2] = 0; /* Format = unsigned long (4 octets) */
1284     data[offset+3] = 4;
1285     data[offset+4] = 0; /* Number Of Components = 1 */
1286     data[offset+5] = 0;
1287     data[offset+6] = 0;
1288     data[offset+7] = 1;
1289     data[offset+8] = 0;
1290     data[offset+9] = 0;
1291     data[offset+10] = (JOCTET)((new_value >> 8) & 0xFF);
1292     data[offset+11] = (JOCTET)(new_value & 0xFF);
1293       } else {
1294     data[offset+2] = 4; /* Format = unsigned long (4 octets) */
1295     data[offset+3] = 0;
1296     data[offset+4] = 1; /* Number Of Components = 1 */
1297     data[offset+5] = 0;
1298     data[offset+6] = 0;
1299     data[offset+7] = 0;
1300     data[offset+8] = (JOCTET)(new_value & 0xFF);
1301     data[offset+9] = (JOCTET)((new_value >> 8) & 0xFF);
1302     data[offset+10] = 0;
1303     data[offset+11] = 0;
1304       }
1305     }
1306     offset += 12;
1307   } while (--number_of_tags);
1308 }
1309 
1310 
1311 /* Adjust output image parameters as needed.
1312  *
1313  * This must be called after jpeg_copy_critical_parameters()
1314  * and before jpeg_write_coefficients().
1315  *
1316  * The return value is the set of virtual coefficient arrays to be written
1317  * (either the ones allocated by jtransform_request_workspace, or the
1318  * original source data arrays).  The caller will need to pass this value
1319  * to jpeg_write_coefficients().
1320  */
1321 
1322 GLOBAL(jvirt_barray_ptr *)
1323 jtransform_adjust_parameters (j_decompress_ptr srcinfo,
1324                   j_compress_ptr dstinfo,
1325                   jvirt_barray_ptr *src_coef_arrays,
1326                   jpeg_transform_info *info)
1327 {
1328   /* If force-to-grayscale is requested, adjust destination parameters */
1329   if (info->force_grayscale) {
1330     /* First, ensure we have YCbCr or grayscale data, and that the source's
1331      * Y channel is full resolution.  (No reasonable person would make Y
1332      * be less than full resolution, so actually coping with that case
1333      * isn't worth extra code space.  But we check it to avoid crashing.)
1334      */
1335     if (((dstinfo->jpeg_color_space == JCS_YCbCr &&
1336       dstinfo->num_components == 3) ||
1337      (dstinfo->jpeg_color_space == JCS_GRAYSCALE &&
1338       dstinfo->num_components == 1)) &&
1339     srcinfo->comp_info[0].h_samp_factor == srcinfo->max_h_samp_factor &&
1340     srcinfo->comp_info[0].v_samp_factor == srcinfo->max_v_samp_factor) {
1341       /* We use jpeg_set_colorspace to make sure subsidiary settings get fixed
1342        * properly.  Among other things, it sets the target h_samp_factor &
1343        * v_samp_factor to 1, which typically won't match the source.
1344        * We have to preserve the source's quantization table number, however.
1345        */
1346       int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no;
1347       jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE);
1348       dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no;
1349     } else {
1350       /* Sorry, can't do it */
1351       ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL);
1352     }
1353   } else if (info->num_components == 1) {
1354     /* For a single-component source, we force the destination sampling factors
1355      * to 1x1, with or without force_grayscale.  This is useful because some
1356      * decoders choke on grayscale images with other sampling factors.
1357      */
1358     dstinfo->comp_info[0].h_samp_factor = 1;
1359     dstinfo->comp_info[0].v_samp_factor = 1;
1360   }
1361 
1362   /* Correct the destination's image dimensions as necessary
1363    * for rotate/flip, resize, and crop operations.
1364    */
1365   dstinfo->jpeg_width = info->output_width;
1366   dstinfo->jpeg_height = info->output_height;
1367 
1368   /* Transpose destination image parameters */
1369   switch (info->transform) {
1370   case JXFORM_TRANSPOSE:
1371   case JXFORM_TRANSVERSE:
1372   case JXFORM_ROT_90:
1373   case JXFORM_ROT_270:
1374     transpose_critical_parameters(dstinfo);
1375     break;
1376   default:
1377     break;
1378   }
1379 
1380   /* Adjust Exif properties */
1381   if (srcinfo->marker_list != NULL &&
1382       srcinfo->marker_list->marker == JPEG_APP0+1 &&
1383       srcinfo->marker_list->data_length >= 6 &&
1384       GETJOCTET(srcinfo->marker_list->data[0]) == 0x45 &&
1385       GETJOCTET(srcinfo->marker_list->data[1]) == 0x78 &&
1386       GETJOCTET(srcinfo->marker_list->data[2]) == 0x69 &&
1387       GETJOCTET(srcinfo->marker_list->data[3]) == 0x66 &&
1388       GETJOCTET(srcinfo->marker_list->data[4]) == 0 &&
1389       GETJOCTET(srcinfo->marker_list->data[5]) == 0) {
1390     /* Suppress output of JFIF marker */
1391     dstinfo->write_JFIF_header = FALSE;
1392     /* Adjust Exif image parameters */
1393     if (dstinfo->jpeg_width != srcinfo->image_width ||
1394     dstinfo->jpeg_height != srcinfo->image_height)
1395       /* Align data segment to start of TIFF structure for parsing */
1396       adjust_exif_parameters(srcinfo->marker_list->data + 6,
1397     srcinfo->marker_list->data_length - 6,
1398     dstinfo->jpeg_width, dstinfo->jpeg_height);
1399   }
1400 
1401   /* Return the appropriate output data set */
1402   if (info->workspace_coef_arrays != NULL)
1403     return info->workspace_coef_arrays;
1404   return src_coef_arrays;
1405 }
1406 
1407 
1408 /* Execute the actual transformation, if any.
1409  *
1410  * This must be called *after* jpeg_write_coefficients, because it depends
1411  * on jpeg_write_coefficients to have computed subsidiary values such as
1412  * the per-component width and height fields in the destination object.
1413  *
1414  * Note that some transformations will modify the source data arrays!
1415  */
1416 
1417 GLOBAL(void)
1418 jtransform_execute_transform (j_decompress_ptr srcinfo,
1419                   j_compress_ptr dstinfo,
1420                   jvirt_barray_ptr *src_coef_arrays,
1421                   jpeg_transform_info *info)
1422 {
1423   jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays;
1424 
1425   /* Note: conditions tested here should match those in switch statement
1426    * in jtransform_request_workspace()
1427    */
1428   switch (info->transform) {
1429   case JXFORM_NONE:
1430     if (info->x_crop_offset != 0 || info->y_crop_offset != 0)
1431       do_crop(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
1432           src_coef_arrays, dst_coef_arrays);
1433     break;
1434   case JXFORM_FLIP_H:
1435     if (info->y_crop_offset != 0)
1436       do_flip_h(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
1437         src_coef_arrays, dst_coef_arrays);
1438     else
1439       do_flip_h_no_crop(srcinfo, dstinfo, info->x_crop_offset,
1440             src_coef_arrays);
1441     break;
1442   case JXFORM_FLIP_V:
1443     do_flip_v(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
1444           src_coef_arrays, dst_coef_arrays);
1445     break;
1446   case JXFORM_TRANSPOSE:
1447     do_transpose(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
1448          src_coef_arrays, dst_coef_arrays);
1449     break;
1450   case JXFORM_TRANSVERSE:
1451     do_transverse(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
1452           src_coef_arrays, dst_coef_arrays);
1453     break;
1454   case JXFORM_ROT_90:
1455     do_rot_90(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
1456           src_coef_arrays, dst_coef_arrays);
1457     break;
1458   case JXFORM_ROT_180:
1459     do_rot_180(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
1460            src_coef_arrays, dst_coef_arrays);
1461     break;
1462   case JXFORM_ROT_270:
1463     do_rot_270(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
1464            src_coef_arrays, dst_coef_arrays);
1465     break;
1466   }
1467 }
1468 
1469 /* jtransform_perfect_transform
1470  *
1471  * Determine whether lossless transformation is perfectly
1472  * possible for a specified image and transformation.
1473  *
1474  * Inputs:
1475  *   image_width, image_height: source image dimensions.
1476  *   MCU_width, MCU_height: pixel dimensions of MCU.
1477  *   transform: transformation identifier.
1478  * Parameter sources from initialized jpeg_struct
1479  * (after reading source header):
1480  *   image_width = cinfo.image_width
1481  *   image_height = cinfo.image_height
1482  *   MCU_width = cinfo.max_h_samp_factor * cinfo.block_size
1483  *   MCU_height = cinfo.max_v_samp_factor * cinfo.block_size
1484  * Result:
1485  *   TRUE = perfect transformation possible
1486  *   FALSE = perfect transformation not possible
1487  *           (may use custom action then)
1488  */
1489 
1490 GLOBAL(boolean)
1491 jtransform_perfect_transform(JDIMENSION image_width, JDIMENSION image_height,
1492                  int MCU_width, int MCU_height,
1493                  JXFORM_CODE transform)
1494 {
1495   boolean result = TRUE; /* initialize TRUE */
1496 
1497   switch (transform) {
1498   case JXFORM_FLIP_H:
1499   case JXFORM_ROT_270:
1500     if (image_width % (JDIMENSION) MCU_width)
1501       result = FALSE;
1502     break;
1503   case JXFORM_FLIP_V:
1504   case JXFORM_ROT_90:
1505     if (image_height % (JDIMENSION) MCU_height)
1506       result = FALSE;
1507     break;
1508   case JXFORM_TRANSVERSE:
1509   case JXFORM_ROT_180:
1510     if (image_width % (JDIMENSION) MCU_width)
1511       result = FALSE;
1512     if (image_height % (JDIMENSION) MCU_height)
1513       result = FALSE;
1514     break;
1515   default:
1516     break;
1517   }
1518 
1519   return result;
1520 }
1521 
1522 #endif /* TRANSFORMS_SUPPORTED */
1523 
1524 
1525 /* Setup decompression object to save desired markers in memory.
1526  * This must be called before jpeg_read_header() to have the desired effect.
1527  */
1528 
1529 GLOBAL(void)
1530 jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option)
1531 {
1532 #ifdef SAVE_MARKERS_SUPPORTED
1533   int m;
1534 
1535   /* Save comments except under NONE option */
1536   if (option != JCOPYOPT_NONE) {
1537     jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF);
1538   }
1539   /* Save all types of APPn markers iff ALL option */
1540   if (option == JCOPYOPT_ALL) {
1541     for (m = 0; m < 16; m++)
1542       jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF);
1543   }
1544 #endif /* SAVE_MARKERS_SUPPORTED */
1545 }
1546 
1547 /* Copy markers saved in the given source object to the destination object.
1548  * This should be called just after jpeg_start_compress() or
1549  * jpeg_write_coefficients().
1550  * Note that those routines will have written the SOI, and also the
1551  * JFIF APP0 or Adobe APP14 markers if selected.
1552  */
1553 
1554 GLOBAL(void)
1555 jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
1556                JCOPY_OPTION option)
1557 {
1558   jpeg_saved_marker_ptr marker;
1559 
1560   /* In the current implementation, we don't actually need to examine the
1561    * option flag here; we just copy everything that got saved.
1562    * But to avoid confusion, we do not output JFIF and Adobe APP14 markers
1563    * if the encoder library already wrote one.
1564    */
1565   for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) {
1566     if (dstinfo->write_JFIF_header &&
1567     marker->marker == JPEG_APP0 &&
1568     marker->data_length >= 5 &&
1569     GETJOCTET(marker->data[0]) == 0x4A &&
1570     GETJOCTET(marker->data[1]) == 0x46 &&
1571     GETJOCTET(marker->data[2]) == 0x49 &&
1572     GETJOCTET(marker->data[3]) == 0x46 &&
1573     GETJOCTET(marker->data[4]) == 0)
1574       continue;         /* reject duplicate JFIF */
1575     if (dstinfo->write_Adobe_marker &&
1576     marker->marker == JPEG_APP0+14 &&
1577     marker->data_length >= 5 &&
1578     GETJOCTET(marker->data[0]) == 0x41 &&
1579     GETJOCTET(marker->data[1]) == 0x64 &&
1580     GETJOCTET(marker->data[2]) == 0x6F &&
1581     GETJOCTET(marker->data[3]) == 0x62 &&
1582     GETJOCTET(marker->data[4]) == 0x65)
1583       continue;         /* reject duplicate Adobe */
1584 #ifdef NEED_FAR_POINTERS
1585     /* We could use jpeg_write_marker if the data weren't FAR... */
1586     {
1587       unsigned int i;
1588       jpeg_write_m_header(dstinfo, marker->marker, marker->data_length);
1589       for (i = 0; i < marker->data_length; i++)
1590     jpeg_write_m_byte(dstinfo, marker->data[i]);
1591     }
1592 #else
1593     jpeg_write_marker(dstinfo, marker->marker,
1594               marker->data, marker->data_length);
1595 #endif
1596   }
1597 }