Warning, /office/kbibtex-testset/isi/vespignani.isi is written in an unsupported language. File is not indexed.

0001 FN ISI Export Format
0002 VR 1.0
0003 PT J
0004 AU Colizza, V
0005    Barrat, A
0006    Barthelemy, M
0007    Vespignani, A
0008 TI The role of the airline transportation network in the prediction and
0009    predictability of global epidemics
0010 SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
0011    AMERICA
0012 LA English
0013 DT Article
0014 DE complex systems; epidemiology; networks
0015 ID INFECTIOUS-DISEASE; MATHEMATICAL-MODEL; GEOGRAPHIC SPREAD; INFLUENZA;
0016    OUTBREAKS; TRAVEL
0017 AB The systematic study of large-scale networks has unveiled the
0018    ubiquitous presence of connectivity patterns characterized by
0019    large-scale heterogeneities and unbounded statistical fluctuations.
0020    These features affect dramatically the behavior of the diffusion
0021    processes occurring on networks, determining the ensuing statistical
0022    properties of their evolution pattern and dynamics. In this article, we
0023    present a stochastic computational framework for the forecast of global
0024    epidemics that considers the complete worldwide air travel
0025    infrastructure complemented with census population data. We address two
0026    basic issues in global epidemic modeling: (i) we study the role of the
0027    large scale properties of the airline transportation network in
0028    determining the global diffusion pattern of emerging diseases; and (ii)
0029    we evaluate the reliability of forecasts and outbreak scenarios with
0030    respect to the intrinsic stochasticity of disease transmission and
0031    traffic flows. To address these issues we define a set of quantitative
0032    measures able to characterize the level of heterogeneity and
0033    predictability of the epidemic pattern. These measures may be used for
0034    the analysis of containment policies and epidemic risk assessment.
0035 C1 Indiana Univ, Sch Informat, Bloomington, IN 47401 USA.
0036    Indiana Univ, Ctr Biocomplex, Bloomington, IN 47401 USA.
0037    Univ Paris 11, CNRS, Unite Mixte Rech 8627, F-91405 Orsay, France.
0038 RP Vespignani, A, Indiana Univ, Sch Informat, Bloomington, IN 47401 USA.
0039 EM alexv@indiana.edu
0040 CR ALBERT R, 2002, REV MOD PHYS, V74, P47
0041    ANDERSON RM, 1992, INFECT DIS HUMANS
0042    BAROYAN OV, 1969, B INT EPIDEMIOL ASS, V18, P22
0043    BARRAT A, 2004, P NATL ACAD SCI USA, V101, P3747
0044    CHOWELL G, 2003, PHYS REV E 2, V68
0045    CLIFF A, 2004, BRIT MED BULL, V69, P87
0046    COHEN ML, 2000, NATURE, V406, P762
0047    CRAIS RF, 2004, HLTH CARE MANAGE SCI, V7, P127
0048    DICKMAN R, 1994, PHYS REV E, V50, P4404
0049    DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
0050    EUBANK S, 2004, NATURE, V429, P180
0051    FERGUSON NM, 2003, NATURE, V425, P681
0052    FLAHAULT A, 1991, MATH POPUL STUD, V3, P1
0053    GARDINER WC, 2004, HDB STOCHASTIC METHO
0054    GASTNER MT, 2004, P NATL ACAD SCI USA, V101, P7499
0055    GILLESPIE DT, 2000, J CHEM PHYS, V113, P297
0056    GRAIS RF, 2003, EUR J EPIDEMIOL, V18, P1065
0057    GUIMERA R, 2005, P NATL ACAD SCI USA, V102, P7794
0058    HETHCOTE HW, 1984, LECT NOTES BIOMATHS, V56, P1
0059    HUFNAGEL L, 2004, P NATL ACAD SCI USA, V101, P15124
0060    KEELING MJ, 1999, P ROY SOC LOND B BIO, V266, P859
0061    KRETZSCHMAR M, 1996, MATH BIOSCI, V133, P165
0062    LLOYD AL, 2001, SCIENCE, V292, P1316
0063    LONGINI IM, 1988, MATH BIOSCI, V90, P367
0064    MARRO J, 1998, NONEQUILIBRIUM PHASE
0065    MEYERS LA, 2005, J THEOR BIOL, V232, P71
0066    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
0067    PASTORSATORRAS R, 2003, EVOLUTION STRUCTURE
0068    RVACHEV LA, 1985, MATH BIOSCI, V75, P3
0069    ZIPF GK, 1949, HUMAN BEHAV PRINCIPL
0070 NR 30
0071 TC 24
0072 PU NATL ACAD SCIENCES
0073 PI WASHINGTON
0074 PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
0075 SN 0027-8424
0076 J9 PROC NAT ACAD SCI USA
0077 JI Proc. Natl. Acad. Sci. U. S. A.
0078 PD FEB 14
0079 PY 2006
0080 VL 103
0081 IS 7
0082 BP 2015
0083 EP 2020
0084 PG 6
0085 SC Multidisciplinary Sciences
0086 GA 013LU
0087 UT ISI:000235411600005
0088 ER
0089 
0090 PT J
0091 AU Colizza, V
0092    Flammini, A
0093    Serrano, MA
0094    Vespignani, A
0095 TI Detecting rich-club ordering in complex networks
0096 SO NATURE PHYSICS
0097 LA English
0098 DT Article
0099 ID INTERNET TOPOLOGY
0100 AB Uncovering the hidden regularities and organizational principles of
0101    networks arising in physical systems ranging from the molecular level
0102    to the scale of large communication infrastructures is the key issue in
0103    understanding their fabric and dynamical properties(1-5). The
0104    'rich-club' phenomenon refers to the tendency of nodes with high
0105    centrality, the dominant elements of the system, to form tightly
0106    interconnected communities, and it is one of the crucial properties
0107    accounting for the formation of dominant communities in both computer
0108    and social sciences(4-8). Here, we provide the analytical expression
0109    and the correct null models that allow for a quantitative discussion of
0110    the rich-club phenomenon. The presented analysis enables the
0111    measurement of the rich-club ordering and its relation with the
0112    function and dynamics of networks in examples drawn from the
0113    biological, social and technological domains.
0114 C1 Indiana Univ, Sch Informat, Bloomington, IN 47406 USA.
0115    Indiana Univ, Dept Phys, Bloomington, IN 47406 USA.
0116 RP Vespignani, A, Indiana Univ, Sch Informat, Bloomington, IN 47406 USA.
0117 EM alexv@indiana.edu
0118 CR ALBERT R, 2002, REV MOD PHYS, V74, P47
0119    AMARAL LAN, 2004, EUR PHYS J B, V38, P147
0120    BARABASI AL, 1999, SCIENCE, V286, P509
0121    BARRAT A, 2004, P NATL ACAD SCI USA, V101, P3747
0122    BIANCONI G, EMERGENCE LARGE CLIN
0123    BOGUNA M, 2003, PHYS REV E 2, V68
0124    BOGUNA M, 2004, EUR PHYS J B, V38, P205
0125    COLIZZA V, 2005, PHYSICA A, V352, P1
0126    DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
0127    ERDOS P, 1959, PUBL MATH-DEBRECEN, V6, P290
0128    FALOUTSOS M, 1999, COMP COMM R, V29, P251
0129    GUIMERA R, 2005, NATURE, V433, P895
0130    GUIMERA R, 2005, P NATL ACAD SCI USA, V102, P7794
0131    GUIMERA R, 2005, SCIENCE, V308, P697
0132    MASLOV S, 2002, SCIENCE, V296, P910
0133    MOLLOY M, 1995, RANDOM STRUCT ALGOR, V6, P161
0134    MOREIRA AA, 2002, PHYS REV LETT, V89
0135    NEWMAN MEJ, 2001, PHYS REV E 2, V64
0136    NEWMAN MEJ, 2002, PHYS REV LETT, V89
0137    NEWMAN MEJ, 2003, PHYS REV E 2, V67
0138    NEWMAN MEJ, 2003, SIAM REV, V45, P167
0139    PASTORSATORRAS R, 2001, PHYS REV LETT, V87
0140    PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
0141    PRICE DJ, 1986, LITTLE SCI BIG SCI
0142    QIAN C, 2002, P IEEE INFOCOM NEW Y, V2, P608
0143    VAZQUEZ A, 2002, PHYS REV E 2, V65
0144    WASSERMAN S, 1994, SOCIAL NETWORK ANAL
0145    ZHOU S, 2004, IEEE COMMUN LETT, V8, P180
0146 NR 28
0147 TC 16
0148 PU NATURE PUBLISHING GROUP
0149 PI LONDON
0150 PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
0151 SN 1745-2473
0152 J9 NAT PHYS
0153 JI Nat. Phys.
0154 PD FEB
0155 PY 2006
0156 VL 2
0157 IS 2
0158 BP 110
0159 EP 115
0160 PG 6
0161 SC Physics, Multidisciplinary
0162 GA 014FM
0163 UT ISI:000235464700021
0164 ER
0165 
0166 PT J
0167 AU Vespignani, A
0168 TI Behind enemy lines
0169 SO NATURE PHYSICS
0170 LA English
0171 DT News Item
0172 ID SPREAD; EPIDEMIOLOGY; COMPUTERS; NETWORKS; VIRUSES
0173 AB Computer viruses can spread through networks with alarming speed. But
0174    there is hope that those fighting the plague can keep up with the pace.
0175 C1 Indiana Univ, Sch Informat, Dept Phys, Bloomington, IN 47406 USA.
0176    Indiana Univ, Ctr Biocomplex, Bloomington, IN 47406 USA.
0177 RP Vespignani, A, Indiana Univ, Sch Informat, Dept Phys, Bloomington, IN
0178    47406 USA.
0179 EM alexv@indiana.edu
0180 CR BALTHROP J, 2004, SCIENCE, V304, P527
0181    GOLDENBERG J, 2005, NAT PHYS, V1, P184
0182    HOFMEYR S, 1999, EVOLUTIONARY COMPUTA, V7, P45
0183    KEPHART JO, 1993, IEEE SPECTRUM, V30, P20
0184    LLOYD AL, 2001, SCIENCE, V292, P1316
0185    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
0186    SHANNON C, 2004, IEEE SECUR PRIV, V2, P46
0187 NR 7
0188 TC 0
0189 PU NATURE PUBLISHING GROUP
0190 PI LONDON
0191 PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
0192 SN 1745-2473
0193 J9 NAT PHYS
0194 JI Nat. Phys.
0195 PD DEC
0196 PY 2005
0197 VL 1
0198 IS 3
0199 BP 135
0200 EP 136
0201 PG 2
0202 SC Physics, Multidisciplinary
0203 GA 006HK
0204 UT ISI:000234888400009
0205 ER
0206 
0207 PT S
0208 AU Dall'Asta, L
0209    Alvarez-Hamelin, I
0210    Barrat, A
0211    Vazquez, A
0212    Vespignani, A
0213 TI Traceroute-like exploration of unknown networks: A statistical analysis
0214 SO COMBINATORIAL AND ALGORITHMIC ASPECTS OF NETWORKING
0215 SE LECTURE NOTES IN COMPUTER SCIENCE
0216 LA English
0217 DT Article
0218 ID BETWEENNESS; CENTRALITY; INTERNET
0219 AB Mapping the Internet generally consists in sampling the network from a
0220    limited set of sources by using traceroute-like probes. This
0221    methodology has been argued to introduce uncontrolled sampling biases
0222    that might produce statistical properties of the sampled graph which
0223    sharply differ from the original ones. Here we explore these biases and
0224    provide a statistical analysis of their origin. We derive a mean-field
0225    analytical approximation for the probability of edge and vertex
0226    detection that allows us to relate the global topological properties of
0227    the underlying network with the statistical accuracy of the sampled
0228    graph. In particular we show that shortest path routed sampling allows
0229    a clear characterization of underlying graphs with scale-free topology.
0230    We complement the analytical discussion with a throughout numerical
0231    investigation of simulated mapping strategies in different network
0232    models.
0233 C1 Univ Paris 11, CNRS, UMR 8627, Phys Theor Lab, F-91405 Orsay, France.
0234    Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
0235 RP Dall'Asta, L, Univ Paris 11, CNRS, UMR 8627, Phys Theor Lab, Batiment
0236    210, F-91405 Orsay, France.
0237 CR BALDI P, 2003, PROBABILSISTIC METHO
0238    BARABASAI AL, 1998, SCIENCE, V286, P509
0239    BARTHELEMY M, 2004, EUR PHYS J B, V38, P163
0240    BRANDES U, 2001, J MATH SOCIOL, V25, P163
0241    BROIDO A, 2001, P SPIE INT S CONV IT
0242    BURCH H, 1999, IEEE COMPUT, V32, P97
0243    CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
0244    CHEN Q, 2002, P IEEE INFOCOM 2002
0245    CLAUSET A, 2003, ARXIVCONDMAT0312674
0246    DOROGOVTSEV SN, 2001, PHYS REV E 1, V63
0247    DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
0248    ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
0249    FALOUTSOS M, 1999, ACM SIGCOMM COMPUTER, V29, P251
0250    FREEMAN LC, 1977, SOCIOMETRY, V40, P35
0251    GOH KI, 2001, PHYS REV LETT, V87
0252    GOVINDAN R, 2000, P IEEE INFOCOM, V3, P1371
0253    JIN C, 2000, CSETR43300 EECS DEPT
0254    LAKHINA A, 2002, BUCSTR2002021 BOST U
0255    MEDINA A, 2000, BUCSTR2000005 BOST U
0256    PASTORSATORRAS R, 2001, PHYS REV LETT, V87
0257    PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
0258    PETERMANN T, 2004, EUR PHYS J B, V38, P201
0259    VAZQUEZ A, 2002, PHYS REV E 2, V65
0260    WATTS DJ, 1998, NATURE, V393, P440
0261    WILLINGER W, 2002, P NATL ACAD SCI U S1, V99, P2573
0262 NR 25
0263 TC 2
0264 PU SPRINGER-VERLAG BERLIN
0265 PI BERLIN
0266 PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
0267 SN 0302-9743
0268 J9 LECT NOTE COMPUT SCI
0269 PY 2005
0270 VL 3405
0271 BP 140
0272 EP 153
0273 PG 14
0274 SC Computer Science, Theory & Methods
0275 GA BCT65
0276 UT ISI:000231145300013
0277 ER
0278 
0279 PT J
0280 AU Vergassola, M
0281    Vespignani, A
0282    Dujon, B
0283 TI Cooperative evolution in protein complexes of yeast from comparative
0284    analyses of its interaction network
0285 SO PROTEOMICS
0286 LA English
0287 DT Article
0288 DE comparative analyses; evolution; protein-protein interaction networks;
0289    Saccharomyces cerevisiae
0290 ID SACCHAROMYCES-CEREVISIAE; SIMPLE DEPENDENCE; DATA SETS; NUMBER;
0291    GENERATION
0292 AB A comparative analysis among Saccharomyces cerevisiae and the other
0293    four yeasts Candida glabrata, Kluyveromyces lactis, Debaryomyces
0294    hansenii, and Yarrowia lipolytica is presented. The broad evolutionary
0295    range spanned by the organisms allows to quantitatively demonstrate
0296    novel evolutionary effects in protein complexes. The evolution rates
0297    within cliques of interlinked proteins are found to bear strong
0298    multipoint correlations, witnessing a cooperative coevolution of
0299    complex subunits. The coevolution is found to be largely independent of
0300    the tendency of the subunits to have similar abundances.
0301 C1 Inst Pasteur, Dept Struct & Dynam Genomes, Unite Genom Microorganismes Pathogenes, CNRS URA 2171, F-757724 Paris, France.
0302    Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, Orsay, France.
0303    Univ Paris 06, Inst Pasteur, Unite Genet Mol Levures, UFR 927, Paris, France.
0304    Univ Paris 06, Inst Pasteur, Unite Genet Mol Levures, CNRS URA 2171, Paris, France.
0305 RP Vergassola, M, Inst Pasteur, Dept Struct & Dynam Genomes, Unite Genom
0306    Microorganismes Pathogenes, CNRS URA 2171, 28 Rue Dr Roux, F-757724
0307    Paris, France.
0308 EM massimo@pasteur.fr
0309 CR ALBERTS B, 1998, CELL, V92, P291
0310    ALTSCHUL SF, 1997, NUCLEIC ACIDS RES, V25, P3389
0311    BLOOM JD, 2003, BMC EVOL BIOL, V3
0312    DUJON B, 2004, NATURE, V430, P35
0313    FRASER HB, 2002, SCIENCE, V296, P750
0314    FRASER HB, 2003, BMC EVOL BIOL, V3
0315    GAVIN AC, 2002, NATURE, V415, P141
0316    GHAEMMAGHAMI S, 2003, NATURE, V425, P737
0317    GOH CS, 2000, J MOL BIOL, V299, P283
0318    HARTWELL LH, 1999, NATURE, V402, P47
0319    HO Y, 2002, NATURE, V415, P180
0320    ITO T, 2001, P NATL ACAD SCI USA, V98, P4569
0321    JEONG H, 2001, NATURE, V411, P41
0322    JORDAN IK, 2003, BMC EVOL BIOL, V3
0323    MILO R, 2002, SCIENCE, V298, P824
0324    PAL C, 2001, GENETICS, V158, P927
0325    PAZOS F, 2002, PROTEINS, V47, P219
0326    PELLEGRINI M, 1999, P NATL ACAD SCI USA, V96, P4285
0327    UETZ P, 2000, NATURE, V403, P623
0328    VALENCIA A, 2002, CURR OPIN STRUC BIOL, V12, P368
0329    VONMERING C, 2002, NATURE, V417, P399
0330    WILCOXON F, 1945, BIOMETRICS, V1, P80
0331    WUCHTY S, 2003, NAT GENET, V35, P176
0332 NR 23
0333 TC 2
0334 PU WILEY-V C H VERLAG GMBH
0335 PI WEINHEIM
0336 PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
0337 SN 1615-9853
0338 J9 PROTEOMICS
0339 JI Proteomics
0340 PD AUG
0341 PY 2005
0342 VL 5
0343 IS 12
0344 BP 3116
0345 EP 3119
0346 PG 4
0347 SC Biochemical Research Methods; Biochemistry & Molecular Biology
0348 GA 956QW
0349 UT ISI:000231315900015
0350 ER
0351 
0352 PT J
0353 AU Barrat, A
0354    Barthelemy, M
0355    Vespignani, A
0356 TI The effects of spatial constraints on the evolution of weighted complex
0357    networks
0358 SO JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT
0359 LA English
0360 DT Article
0361 DE network dynamics; random graphs; networks
0362 ID SMALL-WORLD NETWORKS; SCALE-FREE; RANDOM GRAPHS; TOPOLOGY
0363 AB Motivated by the empirical analysis of the air transportation system,
0364    we de. ne a network model that includes geographical attributes along
0365    with topological and weight (traffic) properties. The introduction of
0366    geographical attributes is made by constraining the network in real
0367    space. Interestingly, the inclusion of geometrical features induces
0368    non-trivial correlations between the weights, the connectivity pattern
0369    and the actual spatial distances of vertices. The model also recovers
0370    the emergence of anomalous fluctuations in the betweenness-degree
0371    correlation function as first observed by Guimera a and Amaral (2004
0372    Eur. Phys. J. B 38 381). The presented results suggest that the
0373    interplay between weight dynamics and spatial constraints is a key
0374    ingredient in order to understand the formation of real-world weighted
0375    networks.
0376 C1 Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, F-91405 Orsay, France.
0377    Indiana Univ, Sch Informat, Bloomington, IN 47406 USA.
0378    Indiana Univ, Biocomplex Ctr, Bloomington, IN 47406 USA.
0379 RP Barrat, A, Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, Batiment 210,
0380    F-91405 Orsay, France.
0381 EM Alain.Barrat@th.u-psud.fr
0382    mbarthel@indiana.edu
0383    alexv@indiana.edu
0384 CR ALBERT R, 2000, NATURE, V406, P378
0385    ALBERT R, 2002, REV MOD PHYS, V74, P47
0386    ALMAAS E, 2004, NATURE, V427, P839
0387    AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
0388    ANTAL T, 2004, CONDMAT0408285
0389    BARABASI AL, 1999, SCIENCE, V286, P509
0390    BARRAT A, 2004, LECT NOTES COMPUT SC, V3243, P56
0391    BARRAT A, 2004, P NATL ACAD SCI USA, V101, P3747
0392    BARRAT A, 2004, PHYS REV E 2, V70
0393    BARRAT A, 2004, PHYS REV LETT, V92
0394    BARRAT A, 2005, PHYS REV E 2, V71
0395    BARTHELEMY M, 2003, EUR PHYS J B, V38, P163
0396    BARTHELEMY M, 2003, EUROPHYS LETT, V63, P915
0397    BIANCONI G, CONDMAT0412399
0398    CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
0399    COHEN R, 2000, PHYS REV LETT, V85, P4626
0400    DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
0401    DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
0402    DOROGOVTSEV SN, 2004, CONDMAT0408343
0403    FREEMAN LC, 1977, SOCIOMETRY, V40, P35
0404    GARLASCHELLI D, 2005, PHYSICA A, V350, P491
0405    GASTNER MT, 2004, CONDMAT0407680
0406    GASTNER MT, 2004, CONDMAT0409702
0407    GOH KI, 2001, PHYS REV LETT, V87
0408    GORMAN SP, 2003, UNPUB ENV PLANNING B
0409    GRANOVET.MS, 1973, AM J SOCIOL, V78, P1360
0410    GUIMERA R, 2003, CONDMAT0312535
0411    GUIMERA R, 2004, EUR PHYS J B, V38, P381
0412    HELMY A, 2002, CSNI0207069
0413    KRAUSE AE, 2003, NATURE, V426, P282
0414    LAKHINA A, TECHNICAL REPORT
0415    LI C, 2003, CONDMAT0311333
0416    LI W, 2004, PHYS REV E 2, V69
0417    MANNA SS, 2002, PHYS REV E 2, V66
0418    MASUDA N, 2005, PHYS REV E 2, V71
0419    MOLLOY M, 1995, RANDOM STRUCT ALGOR, V6, P161
0420    MUKHERJEE G, 2005, CONDMAT0503697
0421    NEMETH G, 2003, PHYS REV E 2, V67
0422    NEWMAN MEJ, 2001, PHYS REV E 2, V64
0423    NEWMAN MEJ, 2001, PHYS REV E 2, V64
0424    NEWMAN MEJ, 2002, PHYS REV LETT, V89
0425    ONNELA JP, 2004, CONDMAT0408629
0426    PANDYA RVR, 2004, CONDMAT0406644
0427    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
0428    PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
0429    VAZQUEZ A, 2002, PHYS REV E 2, V65
0430    WANG WX, 2005, CONDMAT0501215
0431    WATTS DJ, 1998, NATURE, V393, P440
0432    WAXMAN BM, 1988, IEEE J SEL AREA COMM, V6, P1617
0433    XULVIBRUNET R, 2002, PHYS REV E 2, V66
0434    YOOK SH, 2001, PHYS REV LETT, V86, P5835
0435    YOOK SH, 2002, P NATL ACAD SCI USA, V99, P13382
0436 NR 52
0437 TC 3
0438 PU IOP PUBLISHING LTD
0439 PI BRISTOL
0440 PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
0441 SN 1742-5468
0442 J9 J STAT MECH-THEORY EXP
0443 JI J. Stat. Mech.-Theory Exp.
0444 PD MAY
0445 PY 2005
0446 AR P05003
0447 DI ARTN P05003
0448 PG 20
0449 SC Mechanics; Physics, Mathematical
0450 GA 932WW
0451 UT ISI:000229586200013
0452 ER
0453 
0454 PT J
0455 AU Dall'Asta, L
0456    Alvarez-Hamelin, I
0457    Barrat, A
0458    Vazquez, A
0459    Vespignani, A
0460 TI Statistical theory of Internet exploration
0461 SO PHYSICAL REVIEW E
0462 LA English
0463 DT Article
0464 ID COMPLEX NETWORKS; BETWEENNESS; CENTRALITY
0465 AB The general methodology used to construct Internet maps consists in
0466    merging all the discovered paths obtained by sending data packets from
0467    a set of active computers to a set of destination hosts, obtaining a
0468    graphlike representation of the network. This technique, sometimes
0469    referred to as Internet tomography, spurs the issue concerning the
0470    statistical reliability of such empirical maps. We tackle this problem
0471    by modeling the network sampling process on synthetic graphs and by
0472    using a mean-field approximation to obtain expressions for the
0473    probability of edge and vertex detection in the sampled graph. This
0474    allows a general understanding of the origin of possible sampling
0475    biases. In particular, we find a direct dependence of the map
0476    statistical accuracy upon the topological properties (in particular,
0477    the betweenness centrality property) of the underlying network. In this
0478    framework, it appears that statistically heterogeneous network
0479    topologies are captured better than the homogeneous ones during the
0480    mapping process. Finally, the analytical discussion is complemented
0481    with a thorough numerical investigation of simulated mapping strategies
0482    in network models with varying topological properties.
0483 C1 Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France.
0484    Univ Buenos Aires, Fac Ingn, RA-1063 Buenos Aires, DF, Argentina.
0485    Univ Notre Dame, Notre Dame, IN 46556 USA.
0486    Indiana Univ, Sch Informat, Bloomington, IN 47408 USA.
0487    Indiana Univ, Dept Phys, Bloomington, IN 47408 USA.
0488 RP Dall'Asta, L, Univ Paris 11, Phys Theor Lab, Batiment 210, F-91405
0489    Orsay, France.
0490 CR ALBERT R, 2002, REV MOD PHYS, V74, P47
0491    BALDI P, 2003, MODELING INTERNET WE
0492    BARABASI AL, 1999, SCIENCE, V286, P509
0493    BARTHELEMY M, 2004, EUR PHYS J B, V38, P163
0494    BRANDES U, 2001, J MATH SOCIOL, V25, P163
0495    BROIDO A, 2001, SAN DIEG P SPIE INT
0496    BURCH H, 1999, IEEE COMPUT, V32, P97
0497    CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
0498    CHEN Q, 2002, P IEEE INFOCOM 2002
0499    CLAUSET A, 2005, PHYS REV LETT, V94
0500    DOROGOVTSEV SN, 2001, PHYS REV E 1, V63
0501    DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
0502    ERDOS P, 1959, PUBL MATH-DEBRECEN, V6, P290
0503    FALOUTSOS M, 1999, COMP COMM R, V29, P251
0504    FREEMAN LC, 1977, SOCIOMETRY, V40, P35
0505    GOH KI, 2001, PHYS REV LETT, V87
0506    GOVINDAN R, 2000, P IEEE INFOCOM TEL A, P1371
0507    GUILLAUME JL, 2005, IN PRESS P IEEE INFO
0508    JIN C, 2000, CSETR43300 EECS DEP
0509    LAKHINA A, 2002, BUCSTR2002021 DEP CO
0510    MEDINA A, 2000, BUCSTR2000005
0511    NEWMAN MEJ, 2002, PHYS REV LETT, V89
0512    NEWMAN MEJ, 2003, SIAM REV, V45, P167
0513    PASTORSATORRAS R, 2001, PHYS REV LETT, V87
0514    PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
0515    PETERMANN T, 2004, EUR PHYS J B, V38, P201
0516    VAZQUEZ A, 2002, PHYS REV E 2, V65
0517    WATTS DJ, 1998, NATURE, V393, P440
0518    WILLINGER W, 2002, P NATL ACAD SCI U S1, V99, P2573
0519 NR 29
0520 TC 6
0521 PU AMERICAN PHYSICAL SOC
0522 PI COLLEGE PK
0523 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
0524 SN 1063-651X
0525 J9 PHYS REV E
0526 JI Phys. Rev. E
0527 PD MAR
0528 PY 2005
0529 VL 71
0530 IS 3
0531 PN Part 2
0532 AR 036135
0533 DI ARTN 036135
0534 PG 9
0535 SC Physics, Fluids & Plasmas; Physics, Mathematical
0536 GA 922EC
0537 UT ISI:000228818200045
0538 ER
0539 
0540 PT J
0541 AU Colizza, V
0542    Flammini, A
0543    Maritan, A
0544    Vespignani, A
0545 TI Characterization and modeling of protein-protein interaction networks
0546 SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
0547 LA English
0548 DT Article
0549 DE protein interaction networks; complex networks; evolution modeling
0550 ID GROWING RANDOM NETWORKS; SACCHAROMYCES-CEREVISIAE; COMPLEX NETWORKS;
0551    YEAST GENOME; FUNCTIONAL-ORGANIZATION; STATISTICAL-MECHANICS; METABOLIC
0552    NETWORKS; EVOLVING NETWORKS; SIMPLE DEPENDENCE; EVOLUTIONARY RATE
0553 AB The recent availability of high-throughput gene expression and
0554    proteomics techniques has created an unprecedented opportunity for a
0555    comprehensive study of the structure and dynamics of many biological
0556    networks. Global proteomic interaction data, in particular, are
0557    synthetically represented as undirected networks exhibiting features
0558    far from the random paradigm which has dominated past effort in network
0559    theory. This evidence, along with the advances in the theory of complex
0560    networks, has triggered an intense research activity aimed at
0561    exploiting the evolutionary and biological significance of the
0562    resulting network's topology. Here we present a review of the results
0563    obtained in the characterization and modeling of the yeast
0564    Saccharomyces Cerevisiae protein interaction networks obtained with
0565    different experimental techniques. We provide a comparative assessment
0566    of the topological properties and discuss possible biases in
0567    interaction networks obtained with different techniques. We report on
0568    dynamical models based on duplication mechanisms that cast the protein
0569    interaction networks in the family of dynamically growing complex
0570    networks. Finally, we discuss various results and analysis correlating
0571    the networks' topology with the biological function of proteins. (c)
0572    2005 Published by Elsevier B.V.
0573 C1 Indiana Univ, Sch Informat & Biocomplex Ctr, Bloomington, IN 47408 USA.
0574    Univ Padua, INFM, I-35131 Padua, Italy.
0575    Univ Padua, Dept Phys, I-35131 Padua, Italy.
0576 RP Vespignani, A, Indiana Univ, Sch Informat & Biocomplex Ctr,
0577    Bloomington, IN 47408 USA.
0578 EM alessandro.vespignani@th.u-psud.fr
0579 CR ALBERT R, 2002, REV MOD PHYS, V74, P47
0580    ALON U, 2003, SCIENCE, V301, P1866
0581    BADER GD, 2002, NAT BIOTECHNOL, V20, P991
0582    BARABASI AL, 1999, PHYSICA A, V272, P173
0583    BARABASI AL, 1999, SCIENCE, V286, P509
0584    BARABASI AL, 2004, NAT REV GENET, V5, P101
0585    BHAN A, 2002, BIOINFORMATICS, V18, P1486
0586    BIANCONI G, 2001, EUROPHYS LETT, V54, P436
0587    BIANCONI G, 2001, PHYS REV LETT, V86, P5632
0588    BIANCONI G, 2003, PHYS REV LETT, V90
0589    BLOOM JD, 2003, BMC EVOL BIOL, V3
0590    BOLLOBAS B, 2001, RANDOM GRAPHS
0591    BRODER A, 2000, COMPUT NETW, V33, P309
0592    BRUN C, 2003, GENOME BIOL, V5, R6
0593    CHO RJ, 1998, MOL CELL, V2, P65
0594    COLIZZA V, UNPUB GENOME BIOL
0595    DANDEKAR T, 1998, TRENDS BIOCHEM SCI, V23, P324
0596    DE DJ, 1976, J AM SOC INFORM SCI, V27, P292
0597    DEANE CM, 2002, MOL CELL PROTEOMICS, V1, P349
0598    DOROGOVSTEV SN, 2002, PHYS REV E, V65
0599    DOROGOVTSEV SN, 2000, EUROPHYS LETT, V52, P33
0600    DOROGOVTSEV SN, 2000, PHYS REV LETT, V85, P4633
0601    DOROGOVTSEV SN, 2002, EUROPHYS LETT, V57, P334
0602    DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS
0603    DOROGOVTSEV SN, 2003, NUCL PHYS B, V666, P396
0604    EISENBERG D, 2000, NATURE, V405, P823
0605    ENRIGHT AJ, 1999, NATURE, V402, P86
0606    ERDOS P, 1959, PUBL MATH-DEBRECEN, V6, P290
0607    ERGUN G, 2002, PHYSICA A, V303, P261
0608    FIELDS S, 1989, NATURE, V340, P245
0609    FORCE A, 1999, GENETICS, V151, P1531
0610    FRASER HB, 2002, SCIENCE, V296, P750
0611    FRASER HB, 2003, BMC EVOL BIOL, V3
0612    GAASTERLAND T, 1998, MICROB COMP GENOMICS, V3, P199
0613    GAVIN AC, 2002, NATURE, V415, P141
0614    GE H, 2001, NAT GENET, V29, P482
0615    GIOT L, 2003, SCIENCE, V302, P1727
0616    GUARENTE L, 1993, TRENDS GENET, V9, P362
0617    HARRINGTON HC, 2000, CURR OPIN MICROBIOL, V3, P285
0618    HARTWELL LH, 1999, NATURE, V402, P47
0619    HISHIGAKI H, 2001, YEAST, V18, P523
0620    HO Y, 2002, NATURE, V415, P180
0621    HODGMAN TC, 2000, BIOINFORMATICS, V16, P10
0622    HUGHES TR, 2000, CELL, V102, P109
0623    HUYNEN MA, 1998, P NATL ACAD SCI USA, V95, P5849
0624    ITO T, 2001, P NATL ACAD SCI USA, V98, P4569
0625    JEONG H, 2001, NATURE, V411, P41
0626    JEONG H, 2003, EUROPHYS LETT, V61, P567
0627    JORDAN IK, 2003, BMC EVOL BIOL, V3
0628    KLEINBERG J, 2000, P 32 ACM S THEOR COM, P163
0629    KOONIN EV, 2002, NATURE, V420, P218
0630    KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
0631    KRAPIVSKY PL, 2001, PHYS REV E 2, V63
0632    KRAPIVSKY PL, 2002, COMPUT NETW, V39, P261
0633    KUMAR R, 2000, P 41 IEEE S FDN COMP, P57
0634    LYNCH M, 2000, GENETICS, V154, P459
0635    MA J, 1987, CELL, V51, P113
0636    MARCOTTE EM, 1999, SCIENCE, V285, P751
0637    MASLOV S, 2002, SCIENCE, V296, P210
0638    MEWES HW, 1997, NUCLEIC ACIDS RES, V25, P28
0639    MEWES HW, 2002, NUCLEIC ACIDS RES, V30, P31
0640    MINOZZI M, 2003, EUR PHYS J B, V36, P203
0641    NEWMAN MEJ, 2001, PHYS REV E 2, V64
0642    NEWMAN MEJ, 2002, PHYS REV LETT, V89
0643    NEWMAN MEJ, 2003, HDB GRAPHS NETWORKS, P35
0644    NEWMAN MEJ, 2003, SIAM REV, V45, P167
0645    NOVICK P, 1989, GENETICS, V121, P659
0646    OHONO S, 1970, EVOLUTION GENE DUPLI
0647    OVERBEEK R, 1999, P NATL ACAD SCI USA, V96, P2896
0648    PASTORSATORRAS R, 2001, PHYS REV LETT, V87
0649    PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
0650    PELLEGRINI M, 1999, P NATL ACAD SCI USA, V96, P4285
0651    RAVASZ E, 2002, SCIENCE, V297, P1551
0652    RAVASZ E, 2003, PHYS REV E 2, V67
0653    RIGAUT G, 1999, NAT BIOTECHNOL, V17, P1030
0654    SAMANTA MP, 2003, P NATL ACAD SCI USA, V100, P12579
0655    SCHWIKOWSKI B, 2000, NAT BIOTECHNOL, V18, P1257
0656    SIMON HA, 1955, BIOMETRIKA, V42, P425
0657    SOLE RV, 2002, ADV COMPLEX SYST, V5, P43
0658    TAMAMES J, 1997, J MOL EVOL, V44, P66
0659    TONG AHY, 2001, SCIENCE, V294, P2364
0660    UETZ P, 2000, NATURE, V403, P623
0661    VALENCIA A, 2002, CURR OPIN STRUC BIOL, V12, P368
0662    VAZQUEZ A, 2002, PHYS REV E 2, V65
0663    VAZQUEZ A, 2003, COMPLEXUS, V1, P38
0664    VAZQUEZ A, 2003, NAT BIOTECHNOL, V21, P697
0665    VAZQUEZ A, 2003, PHYS REV E 2, V67
0666    VONMERING C, 2002, NATURE, V417, P399
0667    WAGNER A, 2001, MOL BIOL EVOL, V18, P1283
0668    WAGNER A, 2001, P ROY SOC LOND B BIO, V268, P1803
0669    WAGNER A, 2003, P ROY SOC LOND B BIO, V270, P457
0670    WATTS DJ, 1998, NATURE, V393, P440
0671    WOLF YI, 2002, BIOESSAYS, V24, P105
0672    WOLFE KH, 1997, NATURE, V387, P708
0673    WUCHTY S, 2003, NAT GENET, V35, P176
0674    XENARIOS I, 2001, CURR OPIN BIOTECH, V12, P334
0675    YOOK SH, 2004, PROTEOMICS, V4, P928
0676    ZHANG MQ, 1999, COMPUT CHEM, V23, P233
0677 NR 98
0678 TC 7
0679 PU ELSEVIER SCIENCE BV
0680 PI AMSTERDAM
0681 PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
0682 SN 0378-4371
0683 J9 PHYSICA A
0684 JI Physica A
0685 PD JUL 1
0686 PY 2005
0687 VL 352
0688 IS 1
0689 BP 1
0690 EP 27
0691 PG 27
0692 SC Physics, Multidisciplinary
0693 GA 927KR
0694 UT ISI:000229193300002
0695 ER
0696 
0697 PT J
0698 AU Barthelemy, M
0699    Barrat, A
0700    Pastor-Satorras, R
0701    Vespignani, A
0702 TI Dynamical patterns of epidemic outbreaks in complex heterogeneous
0703    networks
0704 SO JOURNAL OF THEORETICAL BIOLOGY
0705 LA English
0706 DT Article
0707 DE complex networks; disease spreading; epidemic modeling
0708 ID SCALE-FREE NETWORKS; SEXUAL CONTACTS; TRANSMISSION
0709 AB We present a thorough inspection of the dynamical behavior of epidemic
0710    phenomena in populations with complex and heterogeneous connectivity
0711    patterns. We show that the growth of the epidemic prevalence is
0712    virtually instantaneous in all networks characterized by diverging
0713    degree fluctuations, independently of the structure of the connectivity
0714    correlation functions characterizing the population network. By means
0715    of analytical and numerical results, we show that the outbreak time
0716    evolution follows a precise hierarchical dynamics. Once reached the
0717    most highly connected hubs, the infection pervades the network in a
0718    progressive cascade across smaller degree classes. Finally, we show the
0719    influence of the initial conditions and the relevance of statistical
0720    results in single case studies concerning heterogeneous networks. The
0721    emerging theoretical framework appears of general interest in view of
0722    the recently observed abundance of natural networks with complex
0723    topological features and might provide useful insights for the
0724    development of adaptive strategies aimed at epidemic containment. (c)
0725    2005 Elsevier Ltd. All rights reserved.
0726 C1 Ctr Etud Bruyeres Le Chatel, CEA, Dept Phys Theor & Appl, F-91680 Bruyeres Le Chatel, France.
0727    Univ Paris 11, UMR 8627, CNRS, Phys Theor Lab, F-91405 Orsay, France.
0728    Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
0729    Indiana Univ, Sch Informat, Bloomington, IN 47408 USA.
0730    Indiana Univ, Biocomplex Ctr, Bloomington, IN 47408 USA.
0731 RP Barthelemy, M, Ctr Etud Bruyeres Le Chatel, CEA, Dept Phys Theor &
0732    Appl, BP 12, F-91680 Bruyeres Le Chatel, France.
0733 EM marc.barthelemy@th.u-psud.fr
0734 CR ALBERT R, 2002, REV MOD PHYS, V74, P47
0735    AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
0736    ANDERSON RM, 1992, INFECT DIS HUMANS
0737    BAILEY NTJ, 1975, MATH THEORY INFECT D
0738    BARABASI AL, 1999, SCIENCE, V286, P509
0739    BARRAT A, 2004, P NATL ACAD SCI USA, V101, P3747
0740    BARTHELEMY M, 2002, PHYSICA A, V319, P633
0741    BARTHELEMY M, 2004, PHYS REV LETT, V92
0742    BOGUNA M, 2002, PHYS REV E 2, V66
0743    BOGUNA M, 2003, LECT NOTES PHYS, V625
0744    BOGUNA M, 2003, PHYS REV LETT, V90
0745    BOLLOBAS B, 1985, RANDOM GRAPHS
0746    COHEN R, 2003, PHYS REV LETT, V90
0747    COLGATE SA, 1989, P NATL ACAD SCI USA, V86, P4793
0748    DAILEY DJ, 2001, EPIDEMIC MODELLING I
0749    DERRIDA B, 1987, J PHYS A-MATH GEN, V20, P5273
0750    DEZSO Z, 2002, PHYS REV E 2, V65
0751    DIEKMANN O, 2000, MATH EPIDEMIOLOGY IN
0752    DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
0753    ERDOS P, 1959, PUBL MATH-DEBRECEN, V6, P290
0754    EUBANK S, 2004, NATURE, V429, P180
0755    FERGUSON NM, 2003, NATURE, V425, P681
0756    GANTMACHER FR, 1974, THEORY MATRICES, V2
0757    GUIMERA R, 2003, CONDMAT0312535
0758    HETHCOTE HW, 1984, LECT NOTES BIOMATHS, V56, P1
0759    LILJEROS F, 2001, NATURE, V411, P907
0760    LLOYD AL, 2001, SCIENCE, V292, P1316
0761    MAY RM, 1984, MATH BIOSCI, V72, P83
0762    MAY RM, 1988, PHIL T R SOC LOND B, V321, P565
0763    MAY RM, 2001, PHYS REV E 2, V64
0764    MORENO Y, 2002, EUR PHYS J B, V26, P521
0765    MORENO Y, 2003, EUR PHYS J B, V31, P265
0766    MURRAY JD, 1993, MATH BIOL
0767    NEWMAN MEJ, 2002, PHYS REV E 2, V66
0768    NEWMAN MEJ, 2002, PHYS REV LETT, V89
0769    PASTORSATORRAS R, 2001, PHYS REV E 2, V63
0770    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
0771    SCHNEEBERGER A, 2004, SEX TRANSM DIS, V31, P380
0772    YORKE JA, 1978, SEX TRANSM DIS, V5, P51
0773 NR 39
0774 TC 33
0775 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD
0776 PI LONDON
0777 PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
0778 SN 0022-5193
0779 J9 J THEOR BIOL
0780 JI J. Theor. Biol.
0781 PD JUL 21
0782 PY 2005
0783 VL 235
0784 IS 2
0785 BP 275
0786 EP 288
0787 PG 14
0788 SC Biology; Mathematical & Computational Biology
0789 GA 928BQ
0790 UT ISI:000229246500011
0791 ER
0792 
0793 PT J
0794 AU Borner, K
0795    Dall'Asta, L
0796    Ke, WM
0797    Vespignani, A
0798 TI Studying the emerging global brain: Analyzing and visualizing the
0799    impact of co-authorship teams
0800 SO COMPLEXITY
0801 LA English
0802 DT Article
0803 DE weighted network analysis; co-author networks; citation analysis;
0804    information visualization
0805 ID NETWORKS
0806 AB This article introduces a suite of approaches and measures to study the
0807    impact of co-authorship teams based on the number of publications and
0808    their citations on a local and global scale. In particular, we present
0809    a novel weighted graph representation that encodes coupled author-paper
0810    networks as a weighted co-authorship graph. This weighted graph
0811    representation is applied to a dataset that captures the emergence of a
0812    new field of science and comprises 614 articles published by 1036
0813    unique authors between 1974 and 2004. To characterize the properties
0814    and evolution of this field, we first use four different measures of
0815    centrality to identify the impact of authors. A global statistical
0816    analysis is performed to characterize the distribution of paper
0817    production and paper citations and its correlation with the
0818    co-authorship team size. The size of co-authorship clusters over time
0819    is examined. Finally, a novel local, author-centered measure based on
0820    entropy is applied to determine the global evolution of the field and
0821    the identification of the contribution of a single author's impact
0822    across all of its co-authorship relations. A visualization of the
0823    growth of the weighted co-author network, and the results obtained from
0824    the statistical analysis indicate a drift toward a more cooperative,
0825    global collaboration process as the main drive in the production of
0826    scientific knowledge. (c) 2005 Wiley Periodicals, Inc.
0827 C1 Indiana Univ, SLIS, Bloomington, IN 47405 USA.
0828    Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France.
0829    Indiana Univ, Sch Informat, Bloomington, IN 47406 USA.
0830    Indiana Univ, Biocomplex Ctr, Bloomington, IN 47406 USA.
0831 RP Borner, K, Indiana Univ, SLIS, Bloomington, IN 47405 USA.
0832 EM katy@indiana.edu
0833 CR ALMAAS E, 2004, NATURE, P427
0834    AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
0835    BARABASI AL, 1999, SCIENCE, V286, P509
0836    BARABASI AL, 2002, LINKED
0837    BARRAT A, 2004, P NATL ACAD SCI USA, V101, P3747
0838    BATAGELJ V, 1998, CONNECTIONS, V21, P47
0839    BEAVER DD, 1978, SCIENTOMETRICS, V1, P65
0840    BLOOM H, 2000, GLOBAL BRAIN EVOLUTI
0841    BORNER K, 2003, VISUALIZING KNOWLEDG, P179
0842    BORNER K, 2004, P NATL ACAD SCI U S1, V101, P5266
0843    CRANE D, 1972, INVISIBLE COLL DIFFU
0844    CRONIN B, 1994, J AM SOC INFORM SCI, V45, P61
0845    DOROGOVSTEV SN, 2003, EVOLUTION NETWORKS
0846    FREEMAN LC, 1977, SOCIOMETRY, V40, P35
0847    GUIMERA R, 2004, TEAM ASSEMBLY MECH D
0848    KAMADA T, 1989, INFORM PROCESS LETT, V31, P7
0849    NEWMAN MEJ, 2001, PHYS REV E 2, V64
0850    NEWMAN MEJ, 2001, PHYS REV E 2, V64
0851    NEWMAN MEJ, 2004, P NATL ACAD SCI U S1, V101, P5200
0852    NEWMAN MEJ, 2004, PHYS REV E 2, V70
0853    PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
0854    RAMASCO JJ, 2004, PHYS REV E 2, V70
0855    WASSERMAN S, 1994, METHODS APPL STRUCTU, V8
0856    WHITE HD, 2001, SCIENTOMETRICS, V51, P607
0857 NR 24
0858 TC 2
0859 PU JOHN WILEY & SONS INC
0860 PI HOBOKEN
0861 PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
0862 SN 1076-2787
0863 J9 COMPLEXITY
0864 JI Complexity
0865 PD MAR-APR
0866 PY 2005
0867 VL 10
0868 IS 4
0869 BP 57
0870 EP 67
0871 PG 11
0872 SC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences
0873 GA 917NJ
0874 UT ISI:000228469000006
0875 ER
0876 
0877 PT J
0878 AU Barrat, A
0879    Barthelemy, M
0880    Vespignani, A
0881 TI Modeling the evolution of weighted networks
0882 SO PHYSICAL REVIEW E
0883 LA English
0884 DT Article
0885 ID SMALL-WORLD NETWORKS; SCALE-FREE NETWORKS; EVOLVING NETWORKS; COMPLEX
0886    NETWORKS
0887 AB We present a general model for the growth of weighted networks in which
0888    the structural growth is coupled with the edges' weight dynamical
0889    evolution. The model is based on a simple weight-driven dynamics and a
0890    weights' reinforcement mechanism coupled to the local network growth.
0891    That coupling can be generalized in order to include the effect of
0892    additional randomness and nonlinearities which can be present in
0893    real-world networks. The model generates weighted graphs exhibiting the
0894    statistical properties observed in several real-world systems. In
0895    particular, the model yields a nontrivial time evolution of vertices'
0896    properties and scale-free behavior with exponents depending on the
0897    microscopic parameters characterizing the coupling rules. Very
0898    interestingly, the generated graphs spontaneously achieve a complex
0899    hierarchical architecture characterized by clustering and connectivity
0900    correlations varying as a function of the vertices' degree.
0901 C1 Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, F-91405 Orsay, France.
0902    Ctr Etud Bruyeres Le Chatel, CEA, Dept Phys Theor & Appl, F-91680 Bruyeres Le Chatel, France.
0903    Indiana Univ, Sch Informat, Bloomington, IN 47408 USA.
0904 RP Barrat, A, Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, Batiment 210,
0905    F-91405 Orsay, France.
0906 CR ALBERT R, 2000, NATURE, V406, P378
0907    ALBERT R, 2002, REV MOD PHYS, V74, P47
0908    ALMAAS E, 2004, NATURE, V427, P839
0909    AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
0910    BARABASI AL, 1999, SCIENCE, V286, P509
0911    BARABASI AL, 2002, PHYSICA A, V311, P590
0912    BARRAT A, UNPUB
0913    BARRAT A, 2004, LECT NOTES COMPUT SC, V3243, P56
0914    BARRAT A, 2004, P NATL ACAD SCI USA, V101, P3747
0915    BARRAT A, 2004, PHYS REV LETT, V92
0916    BARTHELEMY M, UNPUB
0917    BIANCONI G, 2001, EUROPHYS LETT, V54, P436
0918    CALDARELLI G, 2002, PHYS REV LETT, V89
0919    CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
0920    COHEN R, 2000, PHYS REV LETT, V85, P4626
0921    DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
0922    DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
0923    GARLASCHELLI D, CONDMAT0310503
0924    GRANOVET.MS, 1973, AM J SOCIOL, V78, P1360
0925    GUIMERA R, CONDMAT0312535
0926    KRAUSE AE, 2003, NATURE, V426, P282
0927    LI C, CONDMAT0311333
0928    LI W, 2004, PHYS REV E 2, V69
0929    MASLOV S, 2002, SCIENCE, V296, P910
0930    NEWMAN MEJ, 2001, PHYS REV E 2, V64
0931    NEWMAN MEJ, 2001, PHYS REV E 2, V64
0932    NEWMAN MEJ, 2002, PHYS REV LETT, V89
0933    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
0934    PASTORSATORRAS R, 2001, PHYS REV LETT, V87
0935    PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
0936    PIMM SL, 2002, FOOD WEBS
0937    RAVASZ E, 2003, PHYS REV E 2, V67
0938    VAZQUEZ A, 2002, PHYS REV E 2, V65
0939    WATTS DJ, 1998, NATURE, V393, P440
0940    YOOK SH, 2001, PHYS REV LETT, V86, P5835
0941    ZHENG DF, 2003, PHYS REV E 1, V67
0942 NR 36
0943 TC 42
0944 PU AMERICAN PHYSICAL SOC
0945 PI COLLEGE PK
0946 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
0947 SN 1063-651X
0948 J9 PHYS REV E
0949 JI Phys. Rev. E
0950 PD DEC
0951 PY 2004
0952 VL 70
0953 IS 6
0954 PN Part 2
0955 AR 066149
0956 DI ARTN 066149
0957 PG 12
0958 SC Physics, Fluids & Plasmas; Physics, Mathematical
0959 GA 887IM
0960 UT ISI:000226299200056
0961 ER
0962 
0963 PT J
0964 AU Barthelemy, M
0965    Barrat, A
0966    Pastor-Satorras, R
0967    Vespignani, A
0968 TI Characterization and modeling of weighted networks
0969 SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
0970 LA English
0971 DT Article
0972 DE disordered system; networks
0973 ID SMALL-WORLD NETWORKS
0974 AB We review the main tools which allow for the statistical
0975    characterization of weighted networks. We then present two case
0976    studies, the airline connection network and the scientific
0977    collaboration network which are representatives of critical
0978    infrastructure and social system, respectively. The main empirical
0979    results are (i) the broad distributions of various quantities and (ii)
0980    the existence of weight-topology correlations. These measurements show
0981    that weights are relevant and that in general the modeling of complex
0982    networks must go beyond topology. We review a model which provides an
0983    explanation for the features observed in several real-world networks.
0984    This model of weighted network formation relies on the dynamical
0985    coupling between topology and weights, considering the rearrangement of
0986    new links are introduced in the system. (C) 2004 Published by Elsevier
0987    B.V.
0988 C1 Ctr Etud Bruyeres Le Chatel, Dept Phys Theor & Appl, CEA, F-91680 Bruyeres Le Chatel, France.
0989    Univ Paris 11, CNRS, UMR 8627, Phys Theor Lab, F-91405 Orsay, France.
0990    Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
0991 RP Barthelemy, M, Ctr Etud Bruyeres Le Chatel, Dept Phys Theor & Appl,
0992    CEA, BP 12, F-91680 Bruyeres Le Chatel, France.
0993 EM Marc.Barthelemy@th.u-psud.fr
0994 CR ALBERT R, 2002, REV MOD PHYS, V74, P47
0995    ALMAAS E, 2004, NATURE, V427, P839
0996    AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
0997    ANTAL T, CONDMAT0408285
0998    BARABASI AL, 1999, SCIENCE, V286, P509
0999    BARABASI AL, 2002, PHYSICA A, V311, P590
1000    BARRAT A, 2004, CONDMAT0406238
1001    BARRAT A, 2004, CSNI0405070
1002    BARRAT A, 2004, P NATL ACAD SCI USA, V101, P3747
1003    BARRAT A, 2004, PHYS REV LETT, V92
1004    BARTHELEMY M, 2003, PHYSICA A, V319, P633
1005    BARTHELEMY M, 2004, UNPUB
1006    DERRIDA B, 1987, J PHYS A-MATH GEN, V20, P5273
1007    DOROGOVTSEV SN, CONDMAT0408343
1008    DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
1009    GARLASCHELLI D, 2003, CONDMAT0310503
1010    GRANOVET.MS, 1973, AM J SOCIOL, V78, P1360
1011    GUIMERA R, 2004, EUR PHYS J B, V38, P381
1012    HU B, 2004, CONDMAT0408125
1013    KRAUSE AE, 2003, NATURE, V426, P282
1014    LI C, 2003, CONDMAT0311333
1015    LI W, 2004, PHYS REV E 2, V69
1016    NEWMAN MEJ, 2001, PHYS REV E 2, V64
1017    NEWMAN MEJ, 2001, PHYS REV E 2, V64
1018    NEWMAN MEJ, 2002, PHYS REV LETT, V89
1019    ONNELA JP, 2003, PHYS REV E 2, V68
1020    PANDYA RVR, 2004, CONDMAT0406644
1021    PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
1022    WATTS DJ, 1998, NATURE, V393, P440
1023    YOOK SH, 2001, PHYS REV LETT, V86, P5835
1024    ZHENG DF, 2003, PHYS REV E 1, V67
1025    ZHOU S, 2003, CSNI0303028
1026 NR 32
1027 TC 15
1028 PU ELSEVIER SCIENCE BV
1029 PI AMSTERDAM
1030 PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
1031 SN 0378-4371
1032 J9 PHYSICA A
1033 JI Physica A
1034 PD FEB 1
1035 PY 2005
1036 VL 346
1037 IS 1-2
1038 BP 34
1039 EP 43
1040 PG 10
1041 SC Physics, Multidisciplinary
1042 GA 878YA
1043 UT ISI:000225682200006
1044 ER
1045 
1046 PT S
1047 AU Barrat, A
1048    Barthelemy, M
1049    Vespignani, A
1050 TI Traffic-driven model of the World Wide Web graph
1051 SO ALGORITHMS AND MODELS FOR THE WEB-GRAPHS, PROCEEDINGS
1052 SE LECTURE NOTES IN COMPUTER SCIENCE
1053 LA English
1054 DT Article
1055 ID EVOLVING NETWORKS; DYNAMICS
1056 AB We propose a model for the World Wide Web graph that couples the
1057    topological growth with the traffic's dynamical evolution. The model is
1058    based on a simple traffic-driven dynamics and generates weighted
1059    directed graphs exhibiting the statistical properties observed in the
1060    Web. In particular, the model yields a non-trivial time evolution of
1061    vertices and heavy-tail distributions for the topological and traffic
1062    properties. The generated graphs exhibit a complex architecture with a
1063    hierarchy of cohesiveness levels similar to those observed in the
1064    analysis of real data.
1065 C1 Univ Paris 11, CNRS, Phys Theor Lab, UMR 8627, F-91405 Orsay, France.
1066    CEA, Ctr Etud Bruyeres Le Chatel, Dept Phys Theor & Appl, F-91680 Bruyeres Le Chatel, France.
1067    Indiana Univ, Sch Informat, Bloomington, IN 47408 USA.
1068 RP Barrat, A, Univ Paris 11, CNRS, Phys Theor Lab, UMR 8627, Batiment 210,
1069    F-91405 Orsay, France.
1070 CR ADAMIC IA, 2001, COMMUN ACM, V44, P55
1071    ALBERT R, 2002, REV MOD PHYS, V74, P47
1072    AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
1073    BARABASI AL, 1999, SCIENCE, V286, P509
1074    BARABASI AL, 2000, PHYSICA A, V281, P69
1075    BARABASI AL, 2002, PHYSICA A, V311, P590
1076    BARRAT A, CONDMAT0406238
1077    BARRAT A, 2004, P NATL ACAD SCI USA, V101, P3747
1078    BARRAT A, 2004, PHSY REV LETT, V92
1079    BIANCONI G, 2001, EUROPHYS LETT, V54, P436
1080    BRODER A, 2000, P 9 WWW C
1081    COOPER C, 2001, LECT NOTES COMPUTER, V2161, P500
1082    DOROGOVTSEV SN, 2000, EUROPHYS LETT, V52, P33
1083    DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
1084    ECKMANN JP, 2002, P NATL ACAD SCI USA, V99, P5825
1085    GARLASCHELLI D, 2003, CONDMAT0310503
1086    GRANOVET.MS, 1973, AM J SOCIOL, V78, P1360
1087    GUIMERA R, 2003, UNPUB
1088    HUBERMAN BA, 1997, SCIENCE, V277, P535
1089    HUBERMAN BA, 1998, SCIENCE, V280, P95
1090    KRAPIVSKY PL, 2001, PHYS REV LETT, V86, P5401
1091    KUMAR R, 2000, P 41 IEEE S FDN COMP, P57
1092    LAURA L, 2002, P 2 INT WORKSH WEB D
1093    LAURA L, 2003, EUR S ALG
1094    MENCZER F, 2002, P NATL ACAD SCI USA, V99, P14014
1095    MOSSA S, 2002, PHYS REV LETT, V88
1096    NEWMAN MEJ, 2001, PHYS REV E 2, V64
1097    NEWMAN MEJ, 2001, PHYS REV E 2, V64
1098    NEWMAN MEJ, 2002, PHYS REV LETT, V89
1099    PANDURANGAN G, 2002, LECT NOTES COMPUTER, V2387, P330
1100    PASTORSATORRAS R, 2001, PHYS REV LETT, V87
1101    PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
1102    QUINCE C, 2004, ARXIVQBIOPE0402014
1103    RAVASZ E, 2003, PHYS REV E 2, V67
1104    TADIC B, 2001, PHYSICA A, V293, P273
1105    VAZQUEZ A, 2002, PHYS REV E 2, V65
1106    WATTS DJ, 1998, NATURE, V393, P440
1107    YOOK SH, 2001, PHYS REV LETT, V86, P5835
1108 NR 38
1109 TC 4
1110 PU SPRINGER-VERLAG BERLIN
1111 PI BERLIN
1112 PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
1113 SN 0302-9743
1114 J9 LECT NOTE COMPUT SCI
1115 PY 2004
1116 VL 3243
1117 BP 56
1118 EP 67
1119 PG 12
1120 SC Computer Science, Theory & Methods
1121 GA BBB69
1122 UT ISI:000224583300005
1123 ER
1124 
1125 PT J
1126 AU Barrat, A
1127    Barthelemy, M
1128    Vespignani, A
1129 TI Weighted evolving networks: Coupling topology and weight dynamics
1130 SO PHYSICAL REVIEW LETTERS
1131 LA English
1132 DT Article
1133 ID SMALL-WORLD NETWORKS
1134 AB We propose a model for the growth of weighted networks that couples the
1135    establishment of new edges and vertices and the weights' dynamical
1136    evolution. The model is based on a simple weight-driven dynamics and
1137    generates networks exhibiting the statistical properties observed in
1138    several real-world systems. In particular, the model yields a
1139    nontrivial time evolution of vertices' properties and scale-free
1140    behavior for the weight, strength, and degree distributions.
1141 C1 Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, F-91405 Orsay, France.
1142    Ctr Etud Bruyeres le Chatel, CEA, Dept Phys Theor & Appl, F-91680 Bruyeres Le Chatel, France.
1143 RP Barrat, A, Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, Batiment 210,
1144    F-91405 Orsay, France.
1145 CR ALBERT R, 2002, REV MOD PHYS, V74, P47
1146    ALMAAS E, 2004, NATURE, V427, P839
1147    AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
1148    BARABASI AL, 1999, SCIENCE, V286, P509
1149    BARABASI AL, 2002, PHYSICA A, V311, P590
1150    BARRAT A, IN PRESS
1151    BARRAT A, 2004, P NATL ACAD SCI USA, V101, P3747
1152    DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
1153    GARLASCHELLI D, CONDMAT0310503
1154    GRANOVET.MS, 1973, AM J SOCIOL, V78, P1360
1155    GUIMERA R, CONDMAT0312535
1156    KRAUSE AE, 2003, NATURE, V426, P282
1157    LI C, CONDMAT0309236
1158    LI C, CONDMAT0311333
1159    NEWMAN MEJ, 2001, PHYS REV E 2, V64
1160    PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
1161    PIMM SL, 2002, FOOD WEBS
1162    WATTS DJ, 1998, NATURE, V393, P440
1163    YOOK SH, 2001, PHYS REV LETT, V86, P5835
1164    ZHENG DF, 2003, PHYS REV E 1, V67
1165 NR 20
1166 TC 91
1167 PU AMERICAN PHYSICAL SOC
1168 PI COLLEGE PK
1169 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
1170 SN 0031-9007
1171 J9 PHYS REV LETT
1172 JI Phys. Rev. Lett.
1173 PD JUN 4
1174 PY 2004
1175 VL 92
1176 IS 22
1177 AR 228701
1178 DI ARTN 228701
1179 PG 4
1180 SC Physics, Multidisciplinary
1181 GA 826QU
1182 UT ISI:000221844400064
1183 ER
1184 
1185 PT J
1186 AU Moreno, Y
1187    Nekovee, M
1188    Vespignani, A
1189 TI Efficiency and reliability of epidemic data dissemination in complex
1190    networks
1191 SO PHYSICAL REVIEW E
1192 LA English
1193 DT Article
1194 AB We study the dynamics of epidemic spreading processes aimed at
1195    spontaneous dissemination of information updates in populations with
1196    complex connectivity patterns. The influence of the topological
1197    structure of the network in these processes is studied by analyzing the
1198    behavior of several global parameters, such as reliability, efficiency,
1199    and load. Large-scale numerical simulations of update-spreading
1200    processes show that while networks with homogeneous connectivity
1201    patterns permit a higher reliability, scale-free topologies allow for a
1202    better efficiency.
1203 C1 Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain.
1204    Univ Zaragoza, Inst Biocomputac & Fis Sistemas Complejos, E-50009 Zaragoza, Spain.
1205    BT Exact, Complex Res Grp, Martlesham IP5 3RE, Suffolk, England.
1206    Univ Paris 11, CNRS, UMR 8627, Phys Theor Lab, F-91405 Orsay, France.
1207 RP Moreno, Y, Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain.
1208 CR ALBERT R, 2000, NATURE, V406, P378
1209    BARABASI AL, 1999, PHYSICA A, V272, P173
1210    BARABASI AL, 1999, SCIENCE, V286, P509
1211    CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
1212    COHEN R, 2000, PHYS REV LETT, V85, P4626
1213    DALEY DJ, 2000, EPIDEMIC MODELING
1214    DEERING SE, 1990, ACM T COMPUT SYST, V8, P85
1215    DEMERS AJ, 1987, UNPUB P 6 ANN ACM S
1216    FOSTER I, 1999, GRID BLUEPRINT FUTUR
1217    KERMARREC AM, 2003, IEEE T PARALL DISTR, V14, P248
1218    KOSIUR D, 1998, IP MULTICASTING COMP
1219    LIU ZH, 2003, PHYS REV E 1, V67
1220    ORAM A, 2001, PEER TO PEER HARNESS
1221    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
1222    VOGELS W, 2002, UNPUB P HOTNETS I PR
1223    WATTS DJ, 1998, NATURE, V393, P440
1224    ZANETTE DH, 2001, PHYS REV E, V64
1225 NR 17
1226 TC 9
1227 PU AMERICAN PHYSICAL SOC
1228 PI COLLEGE PK
1229 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
1230 SN 1063-651X
1231 J9 PHYS REV E
1232 JI Phys. Rev. E
1233 PD MAY
1234 PY 2004
1235 VL 69
1236 IS 5
1237 PN Part 2
1238 AR 055101
1239 DI ARTN 055101
1240 PG 4
1241 SC Physics, Fluids & Plasmas; Physics, Mathematical
1242 GA 826EZ
1243 UT ISI:000221813400001
1244 ER
1245 
1246 PT J
1247 AU Caldarelli, G
1248    Erzan, A
1249    Vespignani, A
1250 TI Preface on "Applications of Networks"
1251 SO EUROPEAN PHYSICAL JOURNAL B
1252 LA English
1253 DT Editorial Material
1254 NR 0
1255 TC 0
1256 PU SPRINGER-VERLAG
1257 PI NEW YORK
1258 PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
1259 SN 1434-6028
1260 J9 EUR PHYS J B
1261 JI Eur. Phys. J. B
1262 PD MAR
1263 PY 2004
1264 VL 38
1265 IS 2
1266 BP 141
1267 EP 141
1268 PG 1
1269 SC Physics, Condensed Matter
1270 GA 821GB
1271 UT ISI:000221447300001
1272 ER
1273 
1274 PT J
1275 AU Amaral, LAN
1276    Barrat, A
1277    Barabasi, AL
1278    Caldarelli, G
1279    De los Rios, P
1280    Erzan, A
1281    Kahng, B
1282    Mantegna, R
1283    Mendes, JFF
1284    Pastor-Satorras, R
1285    Vespignani, A
1286 TI Virtual Round Table on ten leading questions for network research
1287 SO EUROPEAN PHYSICAL JOURNAL B
1288 LA English
1289 DT Editorial Material
1290 AB The following discussion is an edited summary of the public debate
1291    started during the conference "Growing Networks and Graphs in
1292    Statistical Physics, Finance, Biology and Social Systems" held in Rome
1293    in September 2003. Drafts documents were circulated electronically
1294    among experts in the field and additions and follow-up to the original
1295    discussion have been included. Among the scientists participating to
1296    the discussion L. A. N. Amaral, A. Barrat, A. L. Barabasi, G.
1297    Caldarelli, P. De Los Rios, A. Erzan, B. Kahng, R. Mantegna, J. F. F.
1298    Mendes, R. Pastor-Satorras, A. Vespignani are acknowledged for their
1299    contributions and editing.
1300 NR 0
1301 TC 12
1302 PU SPRINGER-VERLAG
1303 PI NEW YORK
1304 PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
1305 SN 1434-6028
1306 J9 EUR PHYS J B
1307 JI Eur. Phys. J. B
1308 PD MAR
1309 PY 2004
1310 VL 38
1311 IS 2
1312 BP 143
1313 EP 145
1314 PG 3
1315 SC Physics, Condensed Matter
1316 GA 821GB
1317 UT ISI:000221447300002
1318 ER
1319 
1320 PT J
1321 AU Caldarelli, G
1322    Pastor-Satorras, R
1323    Vespignani, A
1324 TI Structure of cycles and local ordering in complex networks
1325 SO EUROPEAN PHYSICAL JOURNAL B
1326 LA English
1327 DT Article
1328 ID WORLD-WIDE-WEB; INTERNET; EVOLUTION; DYNAMICS; TOPOLOGY
1329 AB We study the properties of quantities aimed at the characterization of
1330    grid-like ordering in complex networks. These quantities are based on
1331    the global and local behavior of cycles of order four, which are the
1332    minimal structures able to identify rectangular clustering. The
1333    analysis of data from real networks reveals the ubiquitous presence of
1334    a statistically high level of grid-like ordering that is non-trivially
1335    correlated with the local degree properties. These observations provide
1336    new insights on the hierarchical structure of complex networks.
1337 C1 Univ Roma La Sapienza, Dipartimento Fis, INFM, UdR Roma 1, I-00185 Rome, Italy.
1338    Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
1339    Univ Paris 11, CNRS, UMR 8627, Phys Theor Lab, F-91405 Orsay, France.
1340 RP Caldarelli, G, Univ Roma La Sapienza, Dipartimento Fis, INFM, UdR Roma
1341    1, Ple A Moro 2, I-00185 Rome, Italy.
1342 EM romualdo.pastor@upc.es
1343 CR ALBERT R, 1999, NATURE, V401, P130
1344    ALBERT R, 2002, REV MOD PHYS, V74, P47
1345    BARABASI AL, 1999, SCIENCE, V286, P509
1346    BARABASI AL, 2000, PHYSICA A, V281, P69
1347    BARABASI AL, 2002, PHYSICA A, V311, P590
1348    BIANCONI G, 2003, PHYS REV LETT, V90
1349    BOLLOBAS B, 1998, MODERN GRAPH THEORY
1350    DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
1351    ERDOS P, 1959, PUBL MATH-DEBRECEN, V6, P290
1352    FALOUTSOS M, 1999, COMP COMM R, V29, P251
1353    HOLME P, CONDMAT0210514
1354    HUBERMAN BA, 1999, NATURE, V401, P131
1355    JEONG H, 2001, NATURE, V411, P41
1356    MOLLOY M, 1995, RANDOM STRUCT ALGOR, V6, P161
1357    NEWMAN MEJ, 2001, PHYS REV E 2, V64
1358    NEWMAN MEJ, 2002, PHYS REV LETT, V89
1359    NEWMAN MEJ, 2003, HDB GRAPHS NETWORKS, P35
1360    NEWMAN MEJ, 2003, PHYS REV E 2, V68
1361    PASTORSATORRAS R, 2001, PHYS REV LETT, V87
1362    RAVASZ E, 2003, PHYS REV E 2, V67
1363    VAZQUEZ A, 2002, CONDMAT0206084
1364    VAZQUEZ A, 2002, PHYS REV E 2, V65
1365    VAZQUEZ A, 2003, COMPLEXUS, V1, P38
1366    WAGNER A, 2001, MOL BIOL EVOL, V18, P1283
1367    WATTS DJ, 1998, NATURE, V393, P440
1368 NR 25
1369 TC 17
1370 PU SPRINGER-VERLAG
1371 PI NEW YORK
1372 PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
1373 SN 1434-6028
1374 J9 EUR PHYS J B
1375 JI Eur. Phys. J. B
1376 PD MAR
1377 PY 2004
1378 VL 38
1379 IS 2
1380 BP 183
1381 EP 186
1382 PG 4
1383 SC Physics, Condensed Matter
1384 GA 821GB
1385 UT ISI:000221447300007
1386 ER
1387 
1388 PT J
1389 AU Boguna, M
1390    Pastor-Satorras, R
1391    Vespignani, A
1392 TI Cut-offs and finite size effects in scale-free networks
1393 SO EUROPEAN PHYSICAL JOURNAL B
1394 LA English
1395 DT Article
1396 ID COMPLEX NETWORKS; DEGREE SEQUENCE; RANDOM GRAPHS; INTERNET
1397 AB We analyze the degree distribution's cut-off in finite size scale-free
1398    networks. We show that the cut-off behavior with the number of vertices
1399    N is ruled by the topological constraints induced by the connectivity
1400    structure of the network. Even in the simple case of uncorrelated
1401    networks, we obtain an expression of the structural cut-off that is
1402    smaller than the natural cut-off obtained by means of extremal theory
1403    arguments. The obtained results are explicitly applied in the case of
1404    the configuration model to recover the size scaling of tadpoles and
1405    multiple edges.
1406 C1 Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain.
1407    Univ Politecn Cataluna, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
1408    Univ Paris 11, CNRS, UMR 8627, Phys Theor Lab, F-91405 Orsay, France.
1409 RP Boguna, M, Univ Barcelona, Dept Fis Fonamental, Diagonal 647, E-08028
1410    Barcelona, Spain.
1411 EM mbogunya@ffn.ub.es
1412 CR AIELLO W, 2001, EXP MATH, V10, P53
1413    ALBERT R, 2000, PHYS REV LETT, V85, P5234
1414    ALBERT R, 2002, REV MOD PHYS, V74, P47
1415    AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
1416    BARABASI AL, 1999, SCIENCE, V286, P509
1417    BOGUNA M, 2003, LECT NOTES PHYS, V625
1418    BOGUNA M, 2003, PHYS REV E 2, V68
1419    BOGUNA M, 2003, PHYS REV LETT, V90
1420    BURDA Z, 2003, PHYS REV E 2, V67
1421    CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
1422    CHUNG F, 2002, ANN COMB, V6, P125
1423    COHEN R, 2000, PHYS REV LETT, V85, P4626
1424    DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
1425    DOROGOVTSEV SN, 2002, PHYS REV E 2, V66
1426    DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
1427    KRAPIVSKY PL, 2002, J PHYS A-MATH GEN, V35, P9517
1428    LEONE M, 2002, EUR PHYS J B, V28, P191
1429    MASLOV S, 2004, PHYSICA A, V333, P529
1430    MAY RM, 2001, PHYS REV E, V64
1431    MOLLOY M, 1995, RANDOM STRUCT ALGOR, V6, P161
1432    MOLLOY M, 1998, COMB PROBAB COMPUT, V7, P295
1433    MOREIRA AA, 2002, PHYS REV LETT, V89
1434    MORENO Y, 2002, EUR PHYS J B, V26, P521
1435    MOSSA S, 2002, PHYS REV LETT, V88
1436    NEWMAN MEJ, 2002, PHYS REV E, V64
1437    NEWMAN MEJ, 2002, PHYS REV LETT, V89
1438    NEWMAN MEJ, 2003, PHYS REV E 2, V67
1439    PARK J, 2003, PHYS REV E, V66
1440    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
1441    PASTORSATORRAS R, 2001, PHYS REV LETT, V87
1442    PASTORSATORRAS R, 2002, PHYS REV E 2A, V65
1443    VAZQUEZ A, 2003, PHYS REV E, V67
1444 NR 32
1445 TC 42
1446 PU SPRINGER-VERLAG
1447 PI NEW YORK
1448 PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
1449 SN 1434-6028
1450 J9 EUR PHYS J B
1451 JI Eur. Phys. J. B
1452 PD MAR
1453 PY 2004
1454 VL 38
1455 IS 2
1456 BP 205
1457 EP 209
1458 PG 5
1459 SC Physics, Condensed Matter
1460 GA 821GB
1461 UT ISI:000221447300011
1462 ER
1463 
1464 PT J
1465 AU Barthelemy, M
1466    Barrat, A
1467    Pastor-Satorras, R
1468    Vespignani, A
1469 TI Velocity and hierarchical spread of epidemic outbreaks in scale-free
1470    networks
1471 SO PHYSICAL REVIEW LETTERS
1472 LA English
1473 DT Article
1474 ID SMALL-WORLD NETWORKS; COMPLEX NETWORKS
1475 AB We study the effect of the connectivity pattern of complex networks on
1476    the propagation dynamics of epidemics. The growth time scale of
1477    outbreaks is inversely proportional to the network degree fluctuations,
1478    signaling that epidemics spread almost instantaneously in networks with
1479    scale-free degree distributions. This feature is associated with an
1480    epidemic propagation that follows a precise hierarchical dynamics. Once
1481    the highly connected hubs are reached, the infection pervades the
1482    network in a progressive cascade across smaller degree classes. The
1483    present results are relevant for the development of adaptive
1484    containment strategies.
1485 C1 CEA, Ctr Etud Bruyeres le Chatel, Dept Phys Theor & Appl, F-91680 Bruyeres Le Chatel, France.
1486    Univ Paris 11, CNRS, UMR 8627, Phys Theor Lab, F-91405 Orsay, France.
1487    Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
1488 RP Barthelemy, M, CEA, Ctr Etud Bruyeres le Chatel, Dept Phys Theor &
1489    Appl, BP12, F-91680 Bruyeres Le Chatel, France.
1490 CR ALBERT R, 2002, REV MOD PHYS, V74, P47
1491    AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
1492    ANDERSON RM, 1992, INFECT DIS HUMANS
1493    BARABASI AL, 1999, SCIENCE, V286, P509
1494    BOGUNA M, 2003, LECT NOTES PHYS, V625, P127
1495    COHEN R, 2003, PHYS REV LETT, V91
1496    DERRIDA B, 1987, J PHYS A-MATH GEN, V20, P5273
1497    DEZSO Z, 2002, PHYS REV E 2, V65
1498    DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
1499    HETHCOTE HW, 1984, LECT NOTES BIOMATHS, V56, P1
1500    KUPERMAN M, 2001, PHYS REV LETT, V86, P2909
1501    LILJEROS F, 2001, NATURE, V411, P907
1502    LLOYD AL, 2001, SCIENCE, V292, P1316
1503    MAY RM, 2001, PHYS REV E 2, V64
1504    MOORE C, 2000, PHYS REV E B, V61, P5678
1505    MORENO Y, 2002, EUR PHYS J B, V26, P521
1506    MURRAY JD, 1993, MATH BIOL
1507    NEWMAN MEJ, 2002, PHYS REV E, V64
1508    PASTORSATORRAS R, 2001, PHYS REV E 2, V63
1509    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
1510    PASTORSATORRAS R, 2002, PHYS REV E 2A, V65
1511    PASTORSATORRAS R, 2003, EVOLUTION STRUCTURE
1512 NR 22
1513 TC 52
1514 PU AMERICAN PHYSICAL SOC
1515 PI COLLEGE PK
1516 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
1517 SN 0031-9007
1518 J9 PHYS REV LETT
1519 JI Phys. Rev. Lett.
1520 PD APR 30
1521 PY 2004
1522 VL 92
1523 IS 17
1524 AR 178701
1525 DI ARTN 178701
1526 PG 4
1527 SC Physics, Multidisciplinary
1528 GA 817LO
1529 UT ISI:000221179200069
1530 ER
1531 
1532 PT J
1533 AU Barrat, A
1534    Barthelemy, M
1535    Pastor-Satorras, R
1536    Vespignani, A
1537 TI The architecture of complex weighted networks
1538 SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
1539    AMERICA
1540 LA English
1541 DT Article
1542 ID SMALL-WORLD NETWORKS; BETWEENNESS
1543 AB Networked structures arise in a wide array of different contexts such
1544    as technological and transportation infrastructures, social phenomena,
1545    and biological systems. These highly interconnected systems have
1546    recently been the focus of a great deal of attention that has uncovered
1547    and characterized their topological complexity. Along with a complex
1548    topological structure, real networks display a large heterogeneity in
1549    the capacity and intensity of the connections. These features, however,
1550    have mainly not been considered in past studies where links are usually
1551    represented as binary states, i.e., either present or absent. Here, we
1552    study the scientific collaboration network and the world-wide
1553    air-transportation network, which are representative examples of social
1554    and large infrastructure systems, respectively. In both cases it is
1555    possible to assign to each edge of the graph a weight proportional to
1556    the intensity or capacity of the connections among the various elements
1557    of the network. We define appropriate metrics combining weighted and
1558    topological observables that enable us to characterize the complex
1559    statistical properties and heterogeneity of the actual strength of
1560    edges and vertices. This information allows us to investigate the
1561    correlations among weighted quantities and the underlying topological
1562    structure of the network. These results provide a better description of
1563    the hierarchies and organizational principles at the basis of the
1564    architecture of weighted networks.
1565 C1 Univ Paris 11, UMR CNRS 8627, Phys Theor Lab, F-91405 Orsay, France.
1566    CEA, Dept Phys Theor & Appl, F-91191 Gif Sur Yvette, France.
1567    Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
1568 RP Vespignani, A, Univ Paris 11, UMR CNRS 8627, Phys Theor Lab, Batiment
1569    210, F-91405 Orsay, France.
1570 EM alexv@th.u-psud.fr
1571 CR ALBERT R, 2000, NATURE, V406, P378
1572    ALBERT R, 2002, REV MOD PHYS, V74, P47
1573    AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
1574    BARABASI AL, 1999, SCIENCE, V286, P509
1575    BARABASI AL, 2002, PHYSICA A, V311, P590
1576    BRANDES U, 2001, J MATH SOCIOL, V25, P163
1577    CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
1578    CLARK J, 1998, 1 LOOK GRAPH THEORY
1579    COHEN R, 2000, PHYS REV LETT, V85, P4626
1580    DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
1581    FREEMAN LC, 1977, SOCIOMETRY, V40, P35
1582    GOH KI, 2001, PHYS REV LETT, V87
1583    GUIMERA R, 2003, E PRINT ARCH
1584    LI W, 2003, E PRINT ARCH
1585    MASLOV S, 2002, SCIENCE, V296, P910
1586    NEWMAN MEJ, 2001, PHYS REV E 2, V64
1587    NEWMAN MEJ, 2001, PHYS REV E 2, V64
1588    NEWMAN MEJ, 2002, PHYS REV LETT, V89
1589    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
1590    PASTORSATORRAS R, 2001, PHYS REV LETT, V87
1591    RAVASZ E, 2003, PHYS REV E 2, V67
1592    VAZQUEZ A, 2002, PHYS REV E 2, V65
1593    WATTS DJ, 1998, NATURE, V393, P440
1594    YOOK SH, 2001, PHYS REV LETT, V86, P5835
1595    ZHOU S, 2003, E PRINT ARCH
1596 NR 25
1597 TC 190
1598 PU NATL ACAD SCIENCES
1599 PI WASHINGTON
1600 PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
1601 SN 0027-8424
1602 J9 PROC NAT ACAD SCI USA
1603 JI Proc. Natl. Acad. Sci. U. S. A.
1604 PD MAR 16
1605 PY 2004
1606 VL 101
1607 IS 11
1608 BP 3747
1609 EP 3752
1610 PG 6
1611 SC Multidisciplinary Sciences
1612 GA 804QZ
1613 UT ISI:000220314500008
1614 ER
1615 
1616 PT J
1617 AU Vespignani, A
1618 TI Evolution thinks modular
1619 SO NATURE GENETICS
1620 LA English
1621 DT Editorial Material
1622 ID PROTEIN-INTERACTION NETWORKS; PREDICTION
1623 AB Groups of interacting proteins define functional modules that govern a
1624    cell's activity. A new study suggests that specific interaction motifs
1625    and their constituents are highly conserved across species, identifying
1626    potential functional modules used in the evolutionary process.
1627 C1 Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France.
1628 RP Vespignani, A, Univ Paris 11, Phys Theor Lab, Batiment 210, F-91405
1629    Orsay, France.
1630 CR BARABASI AL, 2002, LINKED
1631    DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS
1632    HARTWELL LH, 1999, NATURE, V402, P47
1633    HISHIGAKI H, 2001, YEAST, V18, P523
1634    HODGMAN TC, 2000, BIOINFORMATICS, V16, P10
1635    MILO R, 2002, SCIENCE, V298, P824
1636    OLTVAI ZN, 2002, SCIENCE, V298, P763
1637    PASTORSATORRAS R, 2003, J THEOR BIOL, V222, P199
1638    RAVASZ E, 2002, SCIENCE, V297, P1551
1639    VAZQUEZ A, 2003, COMPLEXUS, V1, P38
1640    VAZQUEZ A, 2003, NAT BIOTECHNOL, V21, P697
1641    WUCHTY S, 2003, NAT GENET, V35, P176
1642 NR 12
1643 TC 12
1644 PU NATURE PUBLISHING GROUP
1645 PI NEW YORK
1646 PA 345 PARK AVE SOUTH, NEW YORK, NY 10010-1707 USA
1647 SN 1061-4036
1648 J9 NAT GENET
1649 JI Nature Genet.
1650 PD OCT
1651 PY 2003
1652 VL 35
1653 IS 2
1654 BP 118
1655 EP 119
1656 PG 2
1657 SC Genetics & Heredity
1658 GA 726WV
1659 UT ISI:000185625300005
1660 ER
1661 
1662 PT J
1663 AU Bagnoli, F
1664    Cecconi, F
1665    Flammini, A
1666    Vespignani, A
1667 TI Short-period attractors and non-ergodic behavior in the deterministic
1668    fixed-energy sandpile model
1669 SO EUROPHYSICS LETTERS
1670 LA English
1671 DT Article
1672 ID SELF-ORGANIZED CRITICALITY; ABSORBING PHASE-TRANSITIONS; CHARGE-DENSITY
1673    WAVES; ABELIAN SANDPILE; CONSERVED FIELD; AVALANCHES; LOCKING; EVENTS
1674 AB We study the asymptotic behaviour of the Bak, Tang, Wiesenfeld sandpile
1675    automata as a closed system with fixed energy. We explore the full
1676    range of energies characterizing the active phase. The model exhibits
1677    strong non-ergodic features by settling into limit-cycles whose period
1678    depends on the energy and initial conditions. The asymptotic activity
1679    rho(a) (topplings density) shows, as a function of energy density zeta,
1680    a devil's staircase behaviour de. ning a symmetric energy interval-set
1681    over which also the period lengths remain constant. The properties of
1682    the zeta-rho(a) phase diagram can be traced back to the basic
1683    symmetries underlying the model's dynamics.
1684 C1 Dipartimento Energet S Stecco, I-50139 Florence, Italy.
1685    Univ Roma La Sapienza, INFM, I-00185 Rome, Italy.
1686    Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
1687    INFM, I-34014 Trieste, Italy.
1688    Int Sch Adv Studies SISSA ISAS, I-34014 Trieste, Italy.
1689    Univ Paris 11, Phys Theor Lab, UMR 8627, CNRS, F-91405 Orsay, France.
1690 RP Bagnoli, F, Dipartimento Energet S Stecco, Via S Marta 3, I-50139
1691    Florence, Italy.
1692 CR ALAVA M, 2002, J PHYS-CONDENS MAT, V14, P2353
1693    BAK P, 1986, PHYS TODAY, V39, P38
1694    BAK P, 1987, PHYS REV LETT, V59, P381
1695    CECCONI F, 1998, PHYS REV E A, V57, P2703
1696    CHESSA A, 1998, PHYS REV LETT, V80, P4217
1697    DEMENECH M, 1998, PHYS REV E A, V58, R2677
1698    DHAR D, CONDMAT990909
1699    DHAR D, 1999, PHYSICA A, V263, P4
1700    DICKMAN R, 1998, PHYS REV E A, V57, P5095
1701    ERZAN A, 1991, PHYS REV LETT, V66, P2750
1702    GRINSTEIN G, 1999, NATO ASI B, V344
1703    HIGGINS MJ, 1993, PHYS REV LETT, V70, P3784
1704    HWA T, 1992, PHYS REV A, V45, P7002
1705    JENSEN HJ, 1999, SELF ORG CRITICALITY
1706    KTITAREV DV, 2000, PHYS REV E, V61, P81
1707    LORETO V, 1996, PHYS REV E, V53, P2087
1708    LUBECK S, 2001, PHYS REV E 2, V64
1709    LUBECK S, 2002, PHYS REV E 2A, V65
1710    MANNA SS, 1991, J PHYS A, V24, L363
1711    MARRO J, 1999, NONEQUILIBRIUM PHASE
1712    MIDDLETON AA, 1992, PHYS REV LETT, V68, P1586
1713    MONTAKHAB A, 1998, PHYS REV E A, V58, P5608
1714    NARAYAN O, 1994, PHYS REV B, V49, P244
1715    PASTORSATORRAS R, 2000, PHYS REV E A, V62, R5875
1716    ROSSI M, 2000, PHYS REV LETT, V85, P1803
1717    SHUSTER HG, 1988, DETERMINISTIC CHAOS
1718    TANG C, 1988, PHYS REV LETT, V60, P2347
1719    VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
1720    VESPIGNANI A, 1998, PHYS REV E, V57, P6345
1721    VESPIGNANI A, 1998, PHYS REV LETT, V81, P5676
1722    VESPIGNANI A, 2000, PHYS REV E A, V62, P4564
1723 NR 31
1724 TC 7
1725 PU E D P SCIENCES
1726 PI LES ULIS CEDEXA
1727 PA 7, AVE DU HOGGAR, PARC D ACTIVITES COURTABOEUF, BP 112, F-91944 LES
1728    ULIS CEDEXA, FRANCE
1729 SN 0295-5075
1730 J9 EUROPHYS LETT
1731 JI Europhys. Lett.
1732 PD AUG
1733 PY 2003
1734 VL 63
1735 IS 4
1736 BP 512
1737 EP 518
1738 PG 7
1739 SC Physics, Multidisciplinary
1740 GA 709GU
1741 UT ISI:000184618100006
1742 ER
1743 
1744 PT J
1745 AU Castellano, C
1746    Vilone, D
1747    Vespignani, A
1748 TI Incomplete ordering of the voter model on small-world networks
1749 SO EUROPHYSICS LETTERS
1750 LA English
1751 DT Article
1752 ID COMPLEX NETWORKS
1753 AB We investigate how the topology of small-world networks affects the
1754    dynamics of the voter model for opinion formation. We show that,
1755    contrary to what occurs on regular topologies with local interactions,
1756    the voter model on small-world networks does not display the emergence
1757    of complete order in the thermodynamic limit. The system settles in a
1758    stationary state with coexisting opinions whose lifetime diverges with
1759    the system size. Hence the nontrivial connectivity pattern leads to the
1760    counterintuitive conclusion that long-range connections inhibit the
1761    ordering process. However, for networks of finite size, for which full
1762    uniformity is reached, the ordering process takes a time shorter than
1763    on a regular lattice of the same size.
1764 C1 Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
1765    INFM, Unita Roma 1, I-00185 Rome, Italy.
1766    Univ Paris 11, Phys Theor Lab, UMR 8627, CNRS, F-91405 Orsay, France.
1767 RP Castellano, C, Univ Roma La Sapienza, Dipartimento Fis, P A Moro 2,
1768    I-00185 Rome, Italy.
1769 CR ALBERT R, 2002, REV MOD PHYS, V74, P47
1770    AXELROD R, 1997, COMPLEXITY COOPERATI
1771    AXELROD R, 1997, J CONFLICT RESOLUT, V41, P203
1772    AXTELL R, 1996, COMPUTATIONAL MATH O, V1, P123
1773    BARRAT A, 2000, EUR PHYS J B, V13, P547
1774    BARTHELEMY M, 1999, PHYS REV LETT, V82, P3180
1775    BOYER D, 2003, PHYS REV E 2, V67
1776    BRAY AJ, 1994, ADV PHYS, V43, P357
1777    CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
1778    CASTELLANO C, 2000, PHYS REV LETT, V85, P3536
1779    COHEN R, 2000, PHYS REV LETT, V85, P4626
1780    DORNIC I, 2001, PHYS REV LETT, V87
1781    FRACHEBOURG L, 1996, PHYS REV E, V53, P3009
1782    HOLYST JA, 2001, ANN REV COMPUTATIONA, V9
1783    LIGGETT TM, 1985, INTERACTING PARTICLE
1784    LILJEROS F, 2001, NATURE, V411, P907
1785    MARRO J, 1999, NONEQUILIBRIUM PHASE
1786    NEWMAN MEJ, 2000, J STAT PHYS, V101, P819
1787    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
1788    REDNER S, 1998, EUR PHYS J B, V4, P131
1789    REDNER S, 2001, GUIDE 1ST PASSAGE PR
1790    SANCHEZ AD, 2002, PHYS REV LETT, V88
1791    STAUFFER D, 2002, JASSS, V5, P1
1792    STROGATZ SH, 2001, NATURE, V410, P268
1793    VAZQUEZ F, 2002, CONDMAT0209445
1794    WATTS DJ, 1998, NATURE, V393, P440
1795    WATTS DJ, 1999, SMALL WORLDS DYNAMIC
1796 NR 27
1797 TC 22
1798 PU E D P SCIENCES
1799 PI LES ULIS CEDEXA
1800 PA 7, AVE DU HOGGAR, PARC D ACTIVITES COURTABOEUF, BP 112, F-91944 LES
1801    ULIS CEDEXA, FRANCE
1802 SN 0295-5075
1803 J9 EUROPHYS LETT
1804 JI Europhys. Lett.
1805 PD JUL
1806 PY 2003
1807 VL 63
1808 IS 1
1809 BP 153
1810 EP 158
1811 PG 6
1812 SC Physics, Multidisciplinary
1813 GA 696HC
1814 UT ISI:000183880700023
1815 ER
1816 
1817 PT J
1818 AU Vazquez, A
1819    Flammini, A
1820    Maritan, A
1821    Vespignani, A
1822 TI Global protein function prediction from protein-protein interaction
1823    networks
1824 SO NATURE BIOTECHNOLOGY
1825 LA English
1826 DT Article
1827 ID SACCHAROMYCES-CEREVISIAE; YEAST; COMPLEXES; GENOME
1828 AB Determining protein function is one of the most challenging problems of
1829    the post-genomic era. The availability of entire genome sequences and
1830    of high-throughput capabilities to determine gene coexpression patterns
1831    has shifted the research focus from the study of single proteins or
1832    small complexes to that of the entire proteome(1). In this context, the
1833    search for reliable methods for assigning protein function is of
1834    primary importance. There are various approaches available for deducing
1835    the function of proteins of unknown function using information derived
1836    from sequence similarity or clustering patterns of coregulated
1837    genes(2,3), phylogenetic profiles(4), protein-protein interactions
1838    (refs. 5-8 and Samanta, M. P. and Liang, S., unpublished data), and
1839    protein complexes(9,10). Here we propose the assignment of proteins to
1840    functional classes on the basis of their network of physical
1841    interactions as determined by minimizing the number of protein
1842    interactions among different functional categories. Function assignment
1843    is proteome-wide and is determined by the global connectivity pattern
1844    of the protein network. The approach results in multiple functional
1845    assignments, a consequence of the existence of multiple equivalent
1846    solutions. We apply the method to analyze the yeast Saccharomyces
1847    cerevisiae protein-protein interaction network(5). The robustness of
1848    the approach is tested in a system containing a high percentage of
1849    unclassified proteins and also in cases of deletion and insertion of
1850    specific protein interactions.
1851 C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
1852    SISSA, I-34014 Trieste, Italy.
1853    INFM, I-34014 Trieste, Italy.
1854    Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
1855    Univ Paris 11, Phys Theor Lab, UMR CNRS 8627, F-91405 Orsay, France.
1856 RP Vazquez, A, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
1857 CR *MIPS, MIPS COMPR YEAST GEN
1858    GAVIN AC, 2002, NATURE, V415, P141
1859    HARRINGTON CA, 2000, CURR OPIN MICROBIOL, V3, P285
1860    HISHIGAKI H, 2001, YEAST, V18, P523
1861    HO Y, 2002, NATURE, V415, P180
1862    HODGMAN TC, 2000, BIOINFORMATICS, V16, P10
1863    ITO T, 2001, P NATL ACAD SCI USA, V98, P4569
1864    JEONG H, 2001, NATURE, V411, P41
1865    KIRKPATRICK S, 1983, SCIENCE, V220, P621
1866    MEYER ML, 2000, NAT BIOTECHNOL, V18, P1242
1867    PELLEGRINI M, 1999, P NATL ACAD SCI USA, V96, P4285
1868    SCHWIKOWSKI B, 2000, NAT BIOTECHNOL, V18, P1257
1869    UETZ P, 2000, NATURE, V403, P623
1870    WAGNER A, 2000, NAT GENET, V24, P355
1871    WU FY, 1982, REV MOD PHYS, V54, P235
1872    ZHANG MQ, 1999, COMPUT CHEM, V23, P233
1873 NR 16
1874 TC 96
1875 PU NATURE PUBLISHING GROUP
1876 PI NEW YORK
1877 PA 345 PARK AVE SOUTH, NEW YORK, NY 10010-1707 USA
1878 SN 1087-0156
1879 J9 NAT BIOTECHNOL
1880 JI Nat. Biotechnol.
1881 PD JUN
1882 PY 2003
1883 VL 21
1884 IS 6
1885 BP 697
1886 EP 700
1887 PG 4
1888 SC Biotechnology & Applied Microbiology
1889 GA 684RR
1890 UT ISI:000183220800030
1891 ER
1892 
1893 PT J
1894 AU Percacci, R
1895    Vespignani, A
1896 TI Scale-free behavior of the Internet global performance
1897 SO EUROPEAN PHYSICAL JOURNAL B
1898 LA English
1899 DT Article
1900 AB Measurements and data analysis have proved very effective in the study
1901    of the Internet's physical fabric and have shown heterogeneities and
1902    statistical fluctuations extending over several orders of magnitude.
1903    Here we focus on the relationship between the, Round-Trip-Time (RTT)
1904    and the geographical distance. We define dimensionless variables that
1905    contain information on the quality of Internet connections finding that
1906    their probability distributions are characterized by a slow power-law
1907    decay signalling the presence of scale-free features. These results
1908    point out the extreme heterogeneity of Internet delay since the
1909    transmission speed between different points of the network exhibits
1910    very large fluctuations' The associated scaling exponents appear to
1911    have fairly stable values in different data sets and thus define an
1912    invariant characteristic of the Internet that might be used in the
1913    future as a benchmark of the overall state of "health" of the Internet.
1914 C1 SISSA, Int Sch Adv Studies, ISAS, I-34014 Trieste, Italy.
1915    Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France.
1916 RP Percacci, R, SISSA, Int Sch Adv Studies, ISAS, Via Beirut 4, I-34014
1917    Trieste, Italy.
1918 CR ALBERT R, 2002, REV MOD PHYS, V74, P47
1919    BARABASI AL, 2002, AREV MOD PHYS, V74, P47
1920    BOVY C, 2002, P PAM 2002 C FORT CO
1921    BROIDO A, 2001, SPIE INT S CONV IT C
1922    CROVELLA M, 2000, PERFORM EVALUATION, V42, P91
1923    FALOUTSOS M, 1999, COMP COMM R, V29, P251
1924    FLOYD S, 2001, IEEE ACM T NETWORK, V9, P392
1925    GOVINDAN R, 2000, P IEEE INFOCOM 2000
1926    HUFFAKER B, 2001, P PAM 2001 C AMST 23
1927    LEE C, 2001, 10 IEEE HET COMP WOR
1928    PASTORSATORRAS R, 2001, PHYS REV LETT, V87
1929    PAXSON V, 1997, IEEE ACM T NETWORK, V5, P601
1930    VESPIGNANI A, 2002, PHYS REV E, V65
1931    WILLINGER W, 1996, STOCHASTIC NETWORKS, P339
1932    WILLINGER W, 2002, P NATL ACAD SCI U S1, V99, P2573
1933    WILLINGER W, 2002, P NATL ACAD SCI U S1, V99, P2573
1934 NR 16
1935 TC 3
1936 PU SPRINGER-VERLAG
1937 PI NEW YORK
1938 PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
1939 SN 1434-6028
1940 J9 EUR PHYS J B
1941 JI Eur. Phys. J. B
1942 PD APR
1943 PY 2003
1944 VL 32
1945 IS 4
1946 BP 411
1947 EP 414
1948 PG 4
1949 SC Physics, Condensed Matter
1950 GA 686NF
1951 UT ISI:000183327300001
1952 ER
1953 
1954 PT J
1955 AU Vazquez, A
1956    Boguna, M
1957    Moreno, Y
1958    Pastor-Satorras, R
1959    Vespignani, A
1960 TI Topology and correlations in structured scale-free networks
1961 SO PHYSICAL REVIEW E
1962 LA English
1963 DT Article
1964 ID COMPLEX NETWORKS; INTERNET; DYNAMICS; ATTACK
1965 AB We study a recently introduced class of scale-free networks showing a
1966    high clustering coefficient and nontrivial connectivity correlations.
1967    We find that the connectivity probability distribution strongly depends
1968    on the fine details of the model. We solve exactly the case of low
1969    average connectivity, providing also exact expressions for the
1970    clustering and degree correlation functions. The model also exhibits a
1971    lack of small-world properties in the whole parameter range. We discuss
1972    the physical properties of these networks in the light of the present
1973    detailed analysis.
1974 C1 Scuola Int Super Studi Avanzati, I-34014 Trieste, Italy.
1975    INFM, I-34014 Trieste, Italy.
1976    Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain.
1977    Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy.
1978    Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
1979    Univ Paris 11, Phys Theor Lab, UMR CNRS 8627, F-91405 Orsay, France.
1980 RP Vazquez, A, Scuola Int Super Studi Avanzati, Via Beirut 4, I-34014
1981    Trieste, Italy.
1982 CR ABRAMOWITZ M, 1972, HDB MATH FUNCTIONS
1983    ALBERT R, 1999, NATURE, V401, P130
1984    ALBERT R, 2000, NATURE, V406, P378
1985    ALBERT R, 2002, REV MOD PHYS, V74, P47
1986    BARABASI AL, 1999, SCIENCE, V286, P509
1987    BOGUNA M, 2002, PHYS REV E 2, V66
1988    BOGUNA M, 2003, PHYS REV LETT, V90
1989    CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
1990    CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
1991    CHARTRAND G, 1986, GRAPHS DIGRAPHS
1992    COHEN R, 2001, PHYS REV LETT, V86, P3682
1993    CRUCITTI P, CONDMAT0205601
1994    DEZSO Z, 2002, PHYS REV E, V65
1995    DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
1996    EGUILUZ VM, 2002, PHYS REV LETT, V89
1997    ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
1998    FALOUTSOS M, 1999, COMP COMM R, V29, P251
1999    JEONG H, 2001, NATURE, V411, P41
2000    KLEMM K, 2002, PHYS REV E 2, V65
2001    KLEMM K, 2002, PHYS REV E 2A, V65
2002    LLOYD AL, 2001, SCIENCE, V292, P1316
2003    MARRO J, 1999, NONEQUILIBRIUM PHASE
2004    MAY RM, 2001, PHYS REV E 2, V64
2005    MONTOYA JM, 2002, J THEOR BIOL, V214, P405
2006    MORENO Y, 2002, EUR PHYS J B, V26, P521
2007    NEWMAN MEJ, 2002, PHYS REV LETT, V89
2008    PASTORSATORRAS R, 2001, PHYS REV E 2, V63
2009    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
2010    PASTORSATORRAS R, 2001, PHYS REV LETT, V87
2011    PASTORSATORRAS R, 2002, PHYS REV E 2A, V65
2012    RAVASZ E, CONDMAT0206130
2013    SOLE RV, 2002, ADV COMPLEX SYST, V5, P43
2014    STROGATZ SH, 2001, NATURE, V410, P268
2015    VAZQUEZ A, 2002, PHYS REV E 2, V65
2016    VAZQUEZ A, 2003, COMPLEXUS, V1, P38
2017    WAGNER A, 2001, MOL BIOL EVOL, V18, P1283
2018    WARREN CP, 2002, PHYS REV E, V66
2019    WATTS DJ, 1998, NATURE, V393, P440
2020 NR 38
2021 TC 30
2022 PU AMERICAN PHYSICAL SOC
2023 PI COLLEGE PK
2024 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
2025 SN 1063-651X
2026 J9 PHYS REV E
2027 JI Phys. Rev. E
2028 PD APR
2029 PY 2003
2030 VL 67
2031 IS 4
2032 PN Part 2
2033 AR 046111
2034 DI ARTN 046111
2035 PG 10
2036 SC Physics, Fluids & Plasmas; Physics, Mathematical
2037 GA 677UD
2038 UT ISI:000182825400024
2039 ER
2040 
2041 PT J
2042 AU Moreno, Y
2043    Pastor-Satorras, R
2044    Vazquez, A
2045    Vespignani, A
2046 TI Critical load and congestion instabilities in scale-free networks
2047 SO EUROPHYSICS LETTERS
2048 LA English
2049 DT Article
2050 ID COMPLEX NETWORKS; OVERLOAD BREAKDOWN; EVOLVING NETWORKS;
2051    PHASE-TRANSITION; INTERNET; MODEL; WEB
2052 AB We study the tolerance to congestion failures in communication networks
2053    with scale-free topology. The traffic load carried by each damaged
2054    element in the network must be partly or totally redistributed among
2055    the remaining elements. Overloaded elements might fail on their turn,
2056    triggering the occurrence of failure cascades able to isolate large
2057    parts of the network. We find a critical traffic load above which the
2058    probability of massive traffic congestions destroying the network
2059    communication capabilities is finite.
2060 C1 Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
2061    Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain.
2062    Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
2063    Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
2064    Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, F-91405 Orsay, France.
2065 RP Moreno, Y, Abdus Salam Int Ctr Theoret Phys, POB 586, I-34100 Trieste,
2066    Italy.
2067 CR ALBERT R, 2000, NATURE, V406, P378
2068    ALBERT R, 2002, REV MOD PHYS, V74, P47
2069    BARABASI AL, 1999, PHYSICA A, V272, P173
2070    BARABASI AL, 2000, PHYSICA A, V281, P69
2071    BRODER A, 2000, COMPUT NETW, V33, P309
2072    BROIDO A, 2001, SPIE INT S CONV IT C
2073    CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
2074    CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
2075    CHEN Q, 2002, P INFOCOM 2002 21 AN, V2
2076    COHEN R, 2000, PHYS REV LETT, V85, P4626
2077    DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
2078    FALOUTSOS M, 1999, COMP COMM R, V29, P251
2079    GOH KI, 2001, PHYS REV LETT, V87
2080    GOVINDAN R, 2000, P IEEE INFOCOM 2000
2081    HOLME P, 2002, PHYS REV E 2, V65
2082    HOLME P, 2002, PHYS REV E 2A, V66
2083    JENSEN HJ, 1998, SELF ORG CRITICALITY
2084    LABOVITZ C, 1999, 29 ANN INT S FAULT T, V278
2085    LABOVITZ C, 1999, P INFOCOM 99 18 ANN, V1
2086    MAGNASCO MO, 2000, NLINAO0010051
2087    MARRO J, 1999, NONEQUILIBRIUM PHASE
2088    MORENO Y, 2002, EUROPHYS LETT, V58, P630
2089    NEWMAN MEJ, 2001, PHYS REV E 2, V64
2090    OHIRA T, 1998, PHYS REV E, V58, P193
2091    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
2092    PASTORSATORRAS R, 2001, PHYS REV LETT, V87
2093    PASTORSATORRAS R, 2002, HDB GRAPHS NETWORKS
2094    STROGATZ SH, 2001, NATURE, V410, P268
2095    TADIC B, 2002, CONDMAT02072287
2096    TAKAYASU M, 1996, PHYSICA A, V233, P924
2097    TRETYAKOV AY, 1998, PHYSICA A, V253, P315
2098    VAZQUEZ A, 2002, PHYS REV E 2, V65
2099    WATTS DJ, 2002, P NATL ACAD SCI USA, V99, P5766
2100    WILLINGER W, 2002, P NATL ACAD SCI U S1, V99, P2573
2101 NR 34
2102 TC 37
2103 PU E D P SCIENCES
2104 PI LES ULIS CEDEXA
2105 PA 7, AVE DU HOGGAR, PARC D ACTIVITES COURTABOEUF, BP 112, F-91944 LES
2106    ULIS CEDEXA, FRANCE
2107 SN 0295-5075
2108 J9 EUROPHYS LETT
2109 JI Europhys. Lett.
2110 PD APR
2111 PY 2003
2112 VL 62
2113 IS 2
2114 BP 292
2115 EP 298
2116 PG 7
2117 SC Physics, Multidisciplinary
2118 GA 665NK
2119 UT ISI:000182127200022
2120 ER
2121 
2122 PT J
2123 AU Vilone, D
2124    Vespignani, A
2125    Castellano, C
2126 TI Ordering phase transition in the one-dimensional Axelrod model
2127 SO EUROPEAN PHYSICAL JOURNAL B
2128 LA English
2129 DT Article
2130 AB We study the one-dimensional behavior of a cellular automaton aimed at
2131    the description of the formation and evolution of cultural domains. The
2132    model exhibits a non-equilibrium transition between a phase with all
2133    the system sharing the same culture and a disordered phase of
2134    coexisting regions with different cultural features. Depending on the
2135    initial distribution of the disorder the transition occurs at different
2136    values of the model parameters. This phenomenology is qualitatively
2137    captured by a mean-field approach, which maps the dynamics into a
2138    multi-species reaction-diffusion problem.
2139 C1 Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
2140    Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
2141    INFM, Unita Roma 1, I-00185 Rome, Italy.
2142 RP Vilone, D, Univ Roma La Sapienza, Dipartimento Fis, P A Moro 2, I-00185
2143    Rome, Italy.
2144 CR AXELROD R, 1997, COMPLEXITY COOPERATI
2145    AXELROD R, 1997, J CONFLICT RESOLUT, V41, P207
2146    AXTELL R, 1996, COMPUTATIONAL MATH O, V1, P123
2147    CASTELLANO C, 2000, PHYS REV LETT, V85, P3536
2148    DORNIC I, 2001, PHYS REV LETT, V87
2149    JENSEN HJ, 1998, SELF ORG CRITICALITY
2150    KLEMM K, 2002, CONDMAT0205188
2151    LEE BP, 1995, J STAT PHYS, V80, P971
2152    LIGGETT TM, 1985, INTERACTING PARTICLE
2153    MARRO J, 1999, NONEQUILIBRIUM PHASE
2154    PELITI L, 1985, J PHYS-PARIS, V46, P1469
2155    REDNER S, 1997, NONEQUILIBRIUM STAT
2156    STROGATZ SH, 2001, NATURE, V410, P268
2157    WATTS DJ, 1999, SMALL WORLDS DYNAMIC
2158 NR 14
2159 TC 13
2160 PU SPRINGER-VERLAG
2161 PI NEW YORK
2162 PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
2163 SN 1434-6028
2164 J9 EUR PHYS J B
2165 JI Eur. Phys. J. B
2166 PD DEC
2167 PY 2002
2168 VL 30
2169 IS 3
2170 BP 399
2171 EP 406
2172 PG 8
2173 SC Physics, Condensed Matter
2174 GA 643EZ
2175 UT ISI:000180850100016
2176 ER
2177 
2178 PT J
2179 AU Boguna, M
2180    Pastor-Satorras, R
2181    Vespignani, A
2182 TI Absence of epidemic threshold in scale-free networks with degree
2183    correlations
2184 SO PHYSICAL REVIEW LETTERS
2185 LA English
2186 DT Article
2187 ID COMPLEX NETWORKS; DYNAMICS
2188 AB Random scale-free networks have the peculiar property of being prone to
2189    the spreading of infections. Here we provide for the
2190    susceptible-infected-susceptible model an exact result showing that a
2191    scale-free degree distribution with diverging second moment is a
2192    sufficient condition to have null epidemic threshold in unstructured
2193    networks with either assortative or disassortative mixing. Degree
2194    correlations result therefore irrelevant for the epidemic spreading
2195    picture in these scale-free networks. The present result is related to
2196    the divergence of the average nearest neighbor's degree, enforced by
2197    the degree detailed balance condition.
2198 C1 Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain.
2199    Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
2200    Univ Paris 11, CNRS, UMR 8627, Phys Theor Lab, F-91405 Orsay, France.
2201 RP Boguna, M, Univ Barcelona, Dept Fis Fonamental, Ave Diagonal 647,
2202    E-08028 Barcelona, Spain.
2203 CR ALBERT R, 2000, NATURE, V406, P378
2204    ALBERT R, 2002, REV MOD PHYS, V74, P47
2205    ANDERSON RM, 1992, INFECT DIS HUMANS
2206    BARABASI AL, 1999, SCIENCE, V286, P509
2207    BOGUNA M, 2002, PHYS REV E 2, V66
2208    CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
2209    COHEN R, 2000, PHYS REV LETT, V85, P4626
2210    DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
2211    EGUILUZ VM, 2002, PHYS REV LETT, V89
2212    GANTMACHER FR, 1974, THEORY MATRICES, V2
2213    KLEMM K, 2002, PHYS REV E 2A, V65
2214    MASLOV S, 2002, SCIENCE, V296, P910
2215    MAY RM, 2001, PHYS REV E 2, V64
2216    MORENO Y, CONDMAT0201362
2217    NEWMAN MEJ, 2002, PHYS REV LETT, V89
2218    PASTORSATORRAS R, 2001, PHYS REV E 2, V63
2219    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
2220    PASTORSATORRAS R, 2001, PHYS REV LETT, V87
2221    PASTORSATORRAS R, 2002, HDB GRAPHS NETWORKS, P113
2222    VAZQUEZ A, 2002, PHYS REV E 2, V65
2223    VAZQUEZ A, 2003, PHYS REV E, V65
2224    VOLCHENKOV D, 2002, PHYS REV E 2, V66
2225    WARREN CP, 2002, PHYS REV E, V66
2226    WATTS DJ, 1998, NATURE, V393, P440
2227 NR 24
2228 TC 52
2229 PU AMERICAN PHYSICAL SOC
2230 PI COLLEGE PK
2231 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
2232 SN 0031-9007
2233 J9 PHYS REV LETT
2234 JI Phys. Rev. Lett.
2235 PD JAN 17
2236 PY 2003
2237 VL 90
2238 IS 2
2239 AR 028701
2240 DI ARTN 028701
2241 PG 4
2242 SC Physics, Multidisciplinary
2243 GA 636FP
2244 UT ISI:000180444200058
2245 ER
2246 
2247 PT J
2248 AU Miguel, MC
2249    Vespignani, A
2250    Zaiser, M
2251    Zapperi, S
2252 TI Dislocation jamming and Andrade creep
2253 SO PHYSICAL REVIEW LETTERS
2254 LA English
2255 DT Article
2256 ID CRITICAL-DYNAMICS; SINGLE-CRYSTALS; DEFORMATION; SIMULATION; SLIP; FLOW
2257 AB We simulate the glide motion of an assembly of interacting dislocations
2258    under the action of an external shear stress and show that the
2259    associated plastic creep relaxation follows Andrade's law. Our results
2260    indicate that Andrade creep in plastically deforming crystals involves
2261    the correlated motion of dislocation structures near a dynamic
2262    transition separating a flowing from a jammed phase. Simulations in the
2263    presence of dislocation multiplication and noise confirm the robustness
2264    of this finding and highlight the importance of metastable structure
2265    formation for the relaxation process.
2266 C1 Univ Barcelona, Dipartimento Fis Fonamental, Fac Fis, E-08028 Barcelona, Spain.
2267    Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
2268    Univ Edinburgh, Ctr Mat Sci & Engn, Edinburgh EH9 3JL, Midlothian, Scotland.
2269    Univ Roma La Sapienza, INFM, Unita Rome 1, I-00185 Rome, Italy.
2270    Univ Roma La Sapienza, Ctr Stat Mech & Complex, Dipartimento Fis, I-00185 Rome, Italy.
2271 RP Miguel, MC, Univ Barcelona, Dipartimento Fis Fonamental, Fac Fis, Ave
2272    Diagonal 647, E-08028 Barcelona, Spain.
2273 CR AMODEO RJ, 1990, PHYS REV B B, V41, P6958
2274    AMODEO RJ, 1990, PHYS REV B, V41, P6968
2275    ANANTHAKRISHNA G, 1999, PHYS REV E A, V60, P5455
2276    ANDRADE END, 1910, P R SOC LOND A-CONTA, V84, P1
2277    ANDRADE END, 1914, P R SOC LOND A-CONTA, V90, P329
2278    BECKER R, 1932, Z PHYS, V79, P566
2279    BENGUS VZ, 1966, PHYS STATUS SOLIDI, V14, P215
2280    COTTRELL AH, 1996, PHIL MAG LETT, V73, P35
2281    COTTRELL AH, 1996, PHIL MAG LETT, V74, P375
2282    COTTRELL AH, 1997, PHIL MAG LETT, V75, P301
2283    DANNA G, 1997, J APPL PHYS, V82, P5983
2284    DANNA G, 2000, PHYS REV LETT, V85, P4096
2285    ESSMANN U, 1979, PHIL MAG           A, V40, P731
2286    FRIEDEL J, 1967, DISLOCATIONS
2287    GROMA I, 1993, PHILOS MAG A, V67, P1459
2288    GROMA I, 2000, PHYS REV LETT, V84, P1487
2289    HAHNER P, 1998, PHYS REV LETT, V81, P2470
2290    HIRTH JP, 1992, THEORY DISLOCATIONS
2291    KOCKS UF, 1975, PROGR MATERIALS SCIE, V19, P1
2292    LEPINOUX J, 1987, SCRIPTA METALL, V21, P833
2293    LIU AJ, 1998, NATURE, V396, P21
2294    MIGUEL MC, 2001, NATURE, V410, P667
2295    MOTT NF, 1953, PHILOS MAG, V44, P741
2296    NABARRO FRN, 1992, THEORY CRYSTAL DISLO
2297    NABARRO FRN, 1997, PHIL MAG LETT, V75, P227
2298    NEUHAUSER H, 1983, DISLOCATIONS SOLIDS, V6, P319
2299    SEVILLANO JG, 1991, SCRIPTA METALL MATER, V25, P355
2300    ZAPPERI S, 2001, MAT SCI ENG A-STRUCT, V309, P348
2301 NR 28
2302 TC 17
2303 PU AMERICAN PHYSICAL SOC
2304 PI COLLEGE PK
2305 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
2306 SN 0031-9007
2307 J9 PHYS REV LETT
2308 JI Phys. Rev. Lett.
2309 PD OCT 14
2310 PY 2002
2311 VL 89
2312 IS 16
2313 AR 165501
2314 DI ARTN 165501
2315 PG 4
2316 SC Physics, Multidisciplinary
2317 GA 600HJ
2318 UT ISI:000178384300025
2319 ER
2320 
2321 PT J
2322 AU Leone, M
2323    Vazquez, A
2324    Vespignani, A
2325    Zecchina, R
2326 TI Ferromagnetic ordering in graphs with arbitrary degree distribution
2327 SO EUROPEAN PHYSICAL JOURNAL B
2328 LA English
2329 DT Article
2330 ID REPLICA SYMMETRY-BREAKING; MEAN-FIELD THEORY; K-SATISFIABILITY PROBLEM;
2331    LATTICE SPIN-GLASS; FINITE CONNECTIVITY; BETHE LATTICE; COMPLEX
2332    NETWORKS; DEGREE SEQUENCE; SYSTEMS; SIZE
2333 AB We present a detailed study of the phase diagram of the Ising model in
2334    random graphs with arbitrary degree distribution. By using the replica
2335    method we compute exactly the value of the critical temperature and the
2336    associated critical exponents as a function of the moments of the
2337    degree distribution. Two regimes of the degree distribution are of
2338    particular interest. In the case of a divergent second moment, the
2339    system is ferromagnetic at all temperatures. In the case of a finite
2340    second moment and a divergent fourth moment, there is a ferromagnetic
2341    transition characterized by non-trivial critical exponents. Finally, if
2342    the fourth moment is finite we recover the mean field exponents. These
2343    results are analyzed in detail for power-law distributed random graphs.
2344 C1 Scuola Int Super Studi Avanzati, I-34014 Trieste, Italy.
2345    INFM, I-34014 Trieste, Italy.
2346    Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy.
2347 RP Leone, M, Scuola Int Super Studi Avanzati, Via Beirut 4, I-34014
2348    Trieste, Italy.
2349 CR AIELLO W, 2000, P 32 ANN ACM S THEOR, P171
2350    ALBERT R, 2002, REV MOD PHYS, V74, P47
2351    ALEKSIEJUK A, CONDMAT0112312
2352    AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
2353    BARABASI AL, 1999, PHYSICA A, V272, P173
2354    BARABASI AL, 1999, SCIENCE, V286, P509
2355    CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
2356    CARLSON JM, 1988, EUROPHYS LETT, V5, P355
2357    COHEN R, CONDMAT0202259
2358    COHEN R, 2001, PHYS REV LETT, V86, P3682
2359    DEDOMINICIS C, 1987, J PHYS A, V20, L1267
2360    DOROGOVTSEV SN, CONDMAT0106144
2361    FRANZ S, CONDMAT0103026
2362    FRANZ S, UNPUB
2363    GOLDSCHMIDT YY, 1990, J PHYS A, V23, L775
2364    KANTER I, 1987, PHYS REV LETT, V58, P164
2365    KOROGOVTSEV SN, 2002, PHYSICA A, V310, P260
2366    LEONE M, 2001, J PHYS A-MATH GEN, V34, P4615
2367    MEZARD M, 1987, EUROPHYS LETT, V3, P1067
2368    MEZARD M, 2001, EUR PHYS J B, V20, P217
2369    MOLLOY M, 1995, RANDOM STRUCT ALGOR, V6, P161
2370    MOLLOY M, 1998, COMB PROBAB COMPUT, V7, P295
2371    MONASSON R, 1996, PHYS REV LETT, V76, P3881
2372    MONASSON R, 1997, PHYS REV E, V56, P1357
2373    MONASSON R, 1998, J PHYS A-MATH GEN, V31, P513
2374    MORENO Y, 2002, EUROPHYS LETT, V57, P765
2375    NEWMAN MEJ, 2001, PHYS REV E 2, V64
2376    PASTORSATORRAS R, 2001, PHYS REV E 2, V63
2377    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
2378    RICCITERSENGHI F, 2001, PHYS REV E 2, V63
2379    RIEGER H, 1992, PHYS REV B, V45, P9772
2380    STROGATZ SH, 2001, NATURE, V410, P268
2381    THOULESS DJ, 1986, PHYS REV LETT, V56, P1082
2382    VIANA L, 1985, J PHYS C SOLID STATE, V18, P3037
2383 NR 34
2384 TC 53
2385 PU SPRINGER-VERLAG
2386 PI NEW YORK
2387 PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
2388 SN 1434-6028
2389 J9 EUR PHYS J B
2390 JI Eur. Phys. J. B
2391 PD JUL
2392 PY 2002
2393 VL 28
2394 IS 2
2395 BP 191
2396 EP 197
2397 PG 7
2398 SC Physics, Condensed Matter
2399 GA 588BB
2400 UT ISI:000177679600010
2401 ER
2402 
2403 PT J
2404 AU Vazquez, A
2405    Pastor-Satorras, R
2406    Vespignani, A
2407 TI Large-scale topological and dynamical properties of the Internet
2408 SO PHYSICAL REVIEW E
2409 LA English
2410 DT Article
2411 ID GROWING RANDOM NETWORKS; SMALL-WORLD NETWORKS; RANDOM GRAPHS; EVOLVING
2412    NETWORKS; COMPLEX NETWORKS; DEGREE SEQUENCE; WIDE-WEB; ATTACK; GROWTH
2413 AB We study the large-scale topological and dynamical properties of real
2414    Internet maps at the autonomous system level, collected in a 3-yr time
2415    interval. We find that the connectivity structure of the Internet
2416    presents statistical distributions settled in a well-defined stationary
2417    state. The large-scale properties are characterized by a scale-free
2418    topology consistent with previous observations. Correlation functions
2419    and clustering coefficients exhibit a remarkable structure due to the
2420    underlying hierarchical organization of the Internet. The study of the
2421    Internet time evolution shows a growth dynamics with aging features
2422    typical of recently proposed growing network models. We compare the
2423    properties of growing network models with the present real Internet
2424    data analysis.
2425 C1 SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy.
2426    Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
2427    Int Ctr Theoret Phys, I-34100 Trieste, Italy.
2428 RP Vazquez, A, SISSA, Int Sch Adv Studies, Via Beirut 4, I-34014 Trieste,
2429    Italy.
2430 CR ADAMIC LA, 2001, PHYS REV E 2, V64
2431    ALBERT R, 2000, NATURE, V406, P378
2432    ALBERT R, 2000, PHYS REV LETT, V85, P5234
2433    ALBERT R, 2002, REV MOD PHYS, V74, P47
2434    AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
2435    BARABASI AL, 1999, PHYSICA A, V272, P173
2436    BARABASI AL, 1999, SCIENCE, V286, P509
2437    BIANCONI G, 2001, EUROPHYS LETT, V54, P436
2438    BOLLOBAS B, 1985, RANDOM GRAPHS
2439    BORNHOLDT S, 2001, PHYS REV E 2, V64
2440    CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
2441    CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
2442    CHESWICK B, INTERNET MAPPING PRO
2443    COHEN R, 2001, PHYS REV LETT, V86, P3682
2444    DOAR M, 1993, P IEEE INFOCOM 93 LO, P83
2445    DOROGOVTSEV SN, CONDMAT0009090
2446    DOROGOVTSEV SN, 2000, EUROPHYS LETT, V52, P33
2447    DOROGOVTSEV SN, 2000, PHYS REV LETT, V85, P4633
2448    DOROGOVTSEV SN, 2001, PHYS REV E 2, V63
2449    DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
2450    ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
2451    FALOUTSOS M, 1999, COMP COMM R, V29, P251
2452    FLOYD S, 2001, IEEE ACM T NETWORK, V9, P392
2453    GOH KI, 2001, PHYS REV LETT, V87
2454    GOH KI, 2002, PHYS REV LETT, V88
2455    GOVINDAN R, 1997, P IEEE INFOCOM, P850
2456    GOVINDAN R, 2000, P IEEE INFOCOM, V3, P1371
2457    HUBERMAN BA, 1999, NATURE, V401, P131
2458    JEONG H, CONDMAT0104131
2459    KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
2460    KRAPIVSKY PL, 2001, PHYS REV E 2, V63
2461    MEDINA A, 2000, COMPUT COMMUN REV, V30, P18
2462    MOLLOY M, 1995, RANDOM STRUCT ALGOR, V6, P161
2463    MOLLOY M, 1998, COMB PROBAB COMPUT, V7, P295
2464    NEWMAN MEJ, 2001, PHYS REV E 2, V64
2465    NEWMAN MEJ, 2001, PHYS REV E 2, V64
2466    PANSIOT JJ, 1998, ACM COMPUTER COMMUNI, V28, P41
2467    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
2468    PASTORSATORRAS R, 2001, PHYS REV LETT, V87
2469    PUNIYANI AR, CONDMAT0107212
2470    SIMON HA, 1955, BIOMETRIKA, V42, P425
2471    STROGATZ SH, 2001, NATURE, V410, P268
2472    VUKADINOVIC D, 2002, LECT NOTES COMPUTER
2473    WATTS DJ, 1998, NATURE, V393, P440
2474    WATTS DJ, 1999, SMALL WORLDS DYNAMIC
2475    YOOK SH, CONDMAT0107417
2476    ZEGURA EW, 1997, IEEE ACM T NETWORK, V5, P770
2477 NR 47
2478 TC 123
2479 PU AMERICAN PHYSICAL SOC
2480 PI COLLEGE PK
2481 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
2482 SN 1063-651X
2483 J9 PHYS REV E
2484 JI Phys. Rev. E
2485 PD JUN
2486 PY 2002
2487 VL 65
2488 IS 6
2489 PN Part 2
2490 AR 066130
2491 DI ARTN 066130
2492 PG 12
2493 SC Physics, Fluids & Plasmas; Physics, Mathematical
2494 GA 572FM
2495 UT ISI:000176762900037
2496 ER
2497 
2498 PT J
2499 AU Moreno, Y
2500    Pastor-Satorras, R
2501    Vespignani, A
2502 TI Epidemic outbreaks in complex heterogeneous networks
2503 SO EUROPEAN PHYSICAL JOURNAL B
2504 LA English
2505 DT Article
2506 ID SMALL-WORLD NETWORKS; WIDE-WEB; TRANSMISSION DYNAMICS; INTERNET;
2507    PERCOLATION; TOPOLOGY; GRAPHS; MODEL; HIV
2508 AB We present a detailed analytical and numerical study for the spreading
2509    of infections with acquired immunity in complex population networks. We
2510    show that the large connectivity fluctuations usually found in these
2511    networks strengthen considerably the incidence of epidemic outbreaks.
2512    Scale-free networks, which are characterized by diverging connectivity
2513    fluctuations in the limit of a very large number of nodes, exhibit the
2514    lack of an epidemic threshold and always show a finite fraction of
2515    infected individuals. This particular weakness, observed also in models
2516    without immunity, defines a new epidemiological framework characterized
2517    by a highly heterogeneous response of the system to the introduction of
2518    infected individuals with different connectivity. The understanding of
2519    epidemics in complex networks might deliver new insights in the spread
2520    of information and diseases in biological and technological networks
2521    that often appear to be characterized by complex heterogeneous
2522    architectures.
2523 C1 Abdus Salam Ctr Theoret Phys, I-34100 Trieste, Italy.
2524    Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
2525 RP Moreno, Y, Abdus Salam Ctr Theoret Phys, POB 586, I-34100 Trieste,
2526    Italy.
2527 CR ABRAMOWITZ M, 1972, HDB MATH FUNCTIONS
2528    ALBERT R, 1999, NATURE, V401, P130
2529    ALBERT R, 2000, NATURE, V409, P542
2530    ALBERT R, 2000, PHYS REV LETT, V85, P5234
2531    AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
2532    ANDERSON RM, 1992, INFECT DIS HUMANS
2533    BARABASI AL, 1999, SCIENCE, V286, P509
2534    BARRAT A, 2000, EUR PHYS J B, V13, P547
2535    BARTHELEMY M, 1999, PHYS REV LETT, V82, P3180
2536    BORNHOLDT S, 2001, PHYS REV E 2, V64
2537    CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
2538    CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
2539    COHEN R, 2001, PHYS REV LETT, V86, P3682
2540    DEMENEZES MA, 2000, EUROPHYS LETT, V50, P574
2541    DOROGOVTSEV SN, 2000, PHYS REV LETT, V85, P4633
2542    DOROGOVTSEV SN, 2001, CONDMAT0106144
2543    ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
2544    FALOUTSOS M, 1999, COMP COMM R, V29, P251
2545    HETHCOTE HW, 1978, THEORETICAL POPULATI, V14, P338
2546    HETHCOTE HW, 1984, LECT NOTES BIOMATHS, V56, P1
2547    KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
2548    KUPERMAN M, 2001, PHYS REV LETT, V86, P2909
2549    LILJEROS F, 2001, NATURE, V411, P907
2550    LLOYD AL, 2001, SCIENCE, V292, P1316
2551    MARRO J, 1999, NONEQUILIBRIUM PHASE
2552    MAY RM, 1984, MATH BIOSCI, V72, P83
2553    MAY RM, 1987, NATURE, V326, P137
2554    MAY RM, 1988, PHIL T R SOC LOND B, V321, P565
2555    MAY RM, 2001, PHYS REV E 2, V64
2556    MOORE C, 2000, PHYS REV E B, V61, P5678
2557    MURRAY JD, 1993, MATH BIOL
2558    NEWMAN MEJ, 1999, PHYS REV E, V60, P5678
2559    PASTORSATORRAS FR, 2001, PHYS REV LETT, V8725, P8701
2560    PASTORSATORRAS FR, 2002, PHYS REV E, V6503, P5108
2561    PASTORSATORRAS R, 2001, PHYS REV E 2, V63
2562    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
2563    PASTORSATORRAS R, 2002, PHYS REV E 2A, V65
2564    SIMON HA, 1955, BIOMETRIKA, V42, P425
2565    STROGATZ SH, 2001, NATURE, V410, P268
2566    TADIC B, 2001, PHYSICA A, V293, P273
2567    WATTS DJ, 1998, NATURE, V393, P440
2568    WATTS DJ, 1999, SMALL WORLDS DYNAMIC
2569 NR 42
2570 TC 69
2571 PU SPRINGER-VERLAG
2572 PI NEW YORK
2573 PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
2574 SN 1434-6028
2575 J9 EUR PHYS J B
2576 JI Eur. Phys. J. B
2577 PD APR
2578 PY 2002
2579 VL 26
2580 IS 4
2581 BP 521
2582 EP 529
2583 PG 9
2584 SC Physics, Condensed Matter
2585 GA 556QC
2586 UT ISI:000175859600017
2587 ER
2588 
2589 PT J
2590 AU Pastor-Satorras, R
2591    Vespignani, A
2592 TI Epidemic dynamics in finite size scale-free networks
2593 SO PHYSICAL REVIEW E
2594 LA English
2595 DT Article
2596 ID SMALL-WORLD NETWORKS; INTERNET
2597 AB Many real networks present a bounded scale-free behavior with a
2598    connectivity cutoff due to physical constraints or a finite network
2599    size. We study epidemic dynamics in bounded scale-free networks with
2600    soft and hard connectivity cutoffs. The finite size effects introduced
2601    by the cutoff induce an epidemic threshold that approaches zero at
2602    increasing sizes. The induced epidemic threshold is very small even at
2603    a relatively small cutoff, showing that the neglection of connectivity
2604    fluctuations in bounded scale-free networks leads to a strong
2605    overestimation of the epidemic threshold. We provide the expression for
2606    the infection prevalence and discuss its finite size corrections. The
2607    present paper shows that the highly heterogeneous nature of scale-free
2608    networks does not allow the use of homogeneous approximations even for
2609    systems of a relatively small number of nodes.
2610 C1 Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
2611 RP Pastor-Satorras, R, Univ Politecn Catalunya, Dept Fis & Engn Nucl,
2612    Campus Nord B4, ES-08034 Barcelona, Spain.
2613 CR ABRAMOWITZ M, 1972, HDB MATH FUNCTIONS
2614    ALBERT R, 1999, NATURE, V401, P130
2615    ALBERT R, 2002, REV MOD PHYS, V74, P47
2616    AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
2617    ANDERSON RM, 1992, INFECT DIS HUMANS
2618    BARABASI AL, 1999, SCIENCE, V286, P509
2619    CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
2620    DEZSO Z, CONDMAT0107420
2621    DIEKMANN O, 2000, MATH EPIDEMIOLOGY IN
2622    DOROGOVTSEV SN, CONDMAT0106144
2623    FALOUTSOS M, 1999, COMP COMM R, V29, P251
2624    HETHCOTE HW, 1984, LECT NOTES BIOMATHS, V56, P1
2625    LILJEROS F, 2001, NATURE, V411, P907
2626    MARRO J, 1999, NONEQULIBRIUM PHASE
2627    MAY RM, 2001, PHYS REV E 2, V64
2628    MORENO Y, CONDMAT0107267
2629    PASTORSATORRAS R, CONDMAT0107066
2630    PASTORSATORRAS R, 2001, PHYS REV E 2, V63
2631    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
2632    PASTORSATORRAS R, 2001, PHYS REV LETT, V87
2633    STROGATZ SH, 2001, NATURE, V410, P268
2634    WATTS DJ, 1998, NATURE, V393, P440
2635 NR 22
2636 TC 44
2637 PU AMERICAN PHYSICAL SOC
2638 PI COLLEGE PK
2639 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
2640 SN 1063-651X
2641 J9 PHYS REV E
2642 JI Phys. Rev. E
2643 PD MAR
2644 PY 2002
2645 VL 65
2646 IS 3
2647 PN Part 2A
2648 AR 035108
2649 DI ARTN 035108
2650 PG 4
2651 SC Physics, Fluids & Plasmas; Physics, Mathematical
2652 GA 533UN
2653 UT ISI:000174548900008
2654 ER
2655 
2656 PT J
2657 AU Pastor-Satorras, R
2658    Vespignani, A
2659 TI Immunization of complex networks
2660 SO PHYSICAL REVIEW E
2661 LA English
2662 DT Article
2663 ID SMALL-WORLD NETWORKS; INTERNET; DYNAMICS
2664 AB Complex networks such as the sexual partnership web or the Internet
2665    often show a high degree of redundancy and heterogeneity in their
2666    connectivity properties. This peculiar connectivity provides an ideal
2667    environment for the spreading of infective agents. Here we show that
2668    the random uniform immunization of individuals does not lead to the
2669    eradication of infections in all complex networks. Namely, networks
2670    with scale-free properties do not acquire global immunity from major
2671    epidemic outbreaks even in the presence of unrealistically high
2672    densities of randomly immunized individuals. The absence of any
2673    critical immunization threshold is due to the unbounded connectivity
2674    fluctuations of scale-free networks. Successful immunization strategies
2675    can be developed only by taking into account the inhomogeneous
2676    connectivity properties of scale-free networks. In particular, targeted
2677    immunization schemes, based on the nodes' connectivity hierarchy,
2678    sharply lower the network's vulnerability to epidemic attacks.
2679 C1 Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
2680    Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
2681 RP Pastor-Satorras, R, Univ Politecn Catalunya, Dept Fis & Engn Nucl,
2682    Campus Nord,Modul B4, ES-08034 Barcelona, Spain.
2683 CR ALBERT R, 1999, NATURE, V401, P130
2684    ALBERT R, 2000, NATURE, V406, P378
2685    AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
2686    ANDERSON RM, 1992, INFECT DIS HUMANS
2687    BARABASI AL, 1999, PHYSICA A, V272, P173
2688    BARABASI AL, 1999, SCIENCE, V286, P509
2689    BARRAT A, 2000, EUR PHYS J B, V13, P547
2690    BELLOVIN SM, 1993, COMPUT COMMUN, V23, P26
2691    CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
2692    CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
2693    COHEN R, 2001, PHYS REV LETT, V86, P3682
2694    DEZSO Z, CONDMAT0107420
2695    DIEKMANN O, 2000, MATH EPIDEMIOLOGY IN
2696    DOROGOVTSEV SN, CONDMAT0106144
2697    DOROGOVTSEV SN, 2000, PHYS REV LETT, V85, P4633
2698    ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
2699    FALOUTSOS M, 1999, COMP COMM R, V29, P251
2700    HETHCOTE HW, 1984, LECT NOTES BIOMATHS, V56, P1
2701    KEPHART JO, 1993, IEEE SPECTRUM, V30, P20
2702    LILJEROS F, 2001, NATURE, V411, P907
2703    LLOYD AL, 2001, SCIENCE, V292, P1316
2704    MARRO J, 1999, NONEQUILIBRIUM PHASE
2705    MAY RM, 1987, NATURE, V326, P137
2706    MAY RM, 2001, PHYS REV E 2, V64
2707    PASTORSATORRAS R, UNPUB
2708    PASTORSATORRAS R, 2001, PHYS REV E 2, V63
2709    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
2710    PASTORSATORRAS R, 2001, PHYS REV LETT, V87
2711    STROGATZ SH, 2001, NATURE, V410, P268
2712    WATTS DJ, 1998, NATURE, V393, P440
2713 NR 30
2714 TC 76
2715 PU AMERICAN PHYSICAL SOC
2716 PI COLLEGE PK
2717 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
2718 SN 1063-651X
2719 J9 PHYS REV E
2720 JI Phys. Rev. E
2721 PD MAR
2722 PY 2002
2723 VL 65
2724 IS 3
2725 PN Part 2A
2726 AR 036104
2727 DI ARTN 036104
2728 PG 8
2729 SC Physics, Fluids & Plasmas; Physics, Mathematical
2730 GA 533UN
2731 UT ISI:000174548900027
2732 ER
2733 
2734 PT J
2735 AU Pastor-Satorras, R
2736    Vazquez, A
2737    Vespignani, A
2738 TI Dynamical and correlation properties of the Internet
2739 SO PHYSICAL REVIEW LETTERS
2740 LA English
2741 DT Article
2742 ID SMALL-WORLD NETWORKS; TOPOLOGY
2743 AB The description of the Internet topology is an important open problem,
2744    recently tackled with the introduction of scale-free networks. We focus
2745    on the topological and dynamical properties of real Internet maps in a
2746    three-year time interval. We study higher order correlation functions
2747    as well as the dynamics of several quantities. We find that the
2748    Internet is characterized by nontrivial correlations among nodes and
2749    different dynamical regimes. We point out the importance of node
2750    hierarchy and aging in the Internet structure and growth. Our results
2751    provide hints towards the realistic modeling of the Internet evolution.
2752 C1 Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
2753    Scuola Int Super Studi Avanzati, SISSA, I-34014 Trieste, Italy.
2754    Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
2755 RP Pastor-Satorras, R, Univ Politecn Catalunya, Dept Fis & Engn Nucl,
2756    Campus Nord,Modul B4, ES-08034 Barcelona, Spain.
2757 CR ALBERT R, 2000, NATURE, V406, P378
2758    ALBERT R, 2000, PHYS REV LETT, V85, P5234
2759    AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
2760    BARABASI AL, 1999, PHYSICA A, V272, P173
2761    BARABASI AL, 1999, SCIENCE, V286, P509
2762    BIANCONI G, 2001, EUROPHYS LETT, V54, P436
2763    CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
2764    CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
2765    CHESWICK B, INTENET MAPPING PROJ
2766    COHEN R, 2001, PHYS REV LETT, V86, P3682
2767    DOROGOVTSEV SN, 2000, EUROPHYS LETT, V52, P33
2768    DOROGOVTSEV SN, 2000, PHYS REV LETT, V85, P4633
2769    DOROGOVTSEV SN, 2001, PHYS REV E, V63, P2510
2770    FALOUTSOS M, 1999, COMP COMM R, V29, P251
2771    JEONG H, CONDMAT0104131
2772    KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
2773    KRAPIVSKY PL, 2001, PHYS REV E, V63, P6612
2774    MEDINA A, 2000, COMPUT COMMUN REV, V30, P18
2775    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
2776    STROGATZ SH, 2001, NATURE, V410, P268
2777    WATTS DJ, 1998, NATURE, V393, P440
2778    ZEGURA EW, 1997, IEEE ACM T NETWORK, V5, P770
2779 NR 22
2780 TC 224
2781 PU AMERICAN PHYSICAL SOC
2782 PI COLLEGE PK
2783 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
2784 SN 0031-9007
2785 J9 PHYS REV LETT
2786 JI Phys. Rev. Lett.
2787 PD DEC 17
2788 PY 2001
2789 VL 87
2790 IS 25
2791 AR 258701
2792 DI ARTN 258701
2793 PG 4
2794 SC Physics, Multidisciplinary
2795 GA 504PZ
2796 UT ISI:000172866200061
2797 ER
2798 
2799 PT J
2800 AU Dickman, R
2801    Alava, M
2802    Munoz, MA
2803    Peltola, J
2804    Vespignani, A
2805    Zapperi, S
2806 TI Critical behavior of a one-dimensional fixed-energy stochastic sandpile
2807 SO PHYSICAL REVIEW E
2808 LA English
2809 DT Article
2810 ID SELF-ORGANIZED CRITICALITY; ABELIAN SANDPILE; CRITICAL EXPONENTS;
2811    PHASE-TRANSITIONS; ABSORBING STATES; FIELD-THEORY; MODEL; UNIVERSALITY;
2812    AVALANCHES; EVENTS
2813 AB We study a one-dimensional fixed-energy version (that is, with no input
2814    or loss of particles) of Manna's stochastic sandpile model, The system
2815    has a continuous transition to an absorbing state at a critical value
2816    of the particle density, and exhibits the hallmarks of an
2817    absorbing-state phase transition, including finite-size scaling.
2818    Critical exponents are obtained from extensive simulations, which treat
2819    stationary and transient properties, and an associated interface
2820    representation. These exponents characterize the universality class of
2821    an absorbing-state phase transition with a static conserved density in
2822    one dimension; they differ from those expected at a linear-interface
2823    depinning transition in a medium with point disorder, and from those of
2824    directed percolation.
2825 C1 Univ Fed Minas Gerais, ICEx, Dept Fis, BR-30161970 Belo Horizonte, MG, Brazil.
2826    Helsinki Univ Technol, Phys Lab, HUT-02105 Helsinki, Finland.
2827    Inst Carlos I Theoret & Computat Phys, Granada 18071, Spain.
2828    Dept Electromagnetismo & Fis Mat, Granada 18071, Spain.
2829    Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
2830    Univ Roma La Sapienza, Dipartimento Fis Enrico Fermi, INFM, I-00185 Rome, Italy.
2831 RP Dickman, R, Univ Fed Minas Gerais, ICEx, Dept Fis, Caixa Postal 702,
2832    BR-30161970 Belo Horizonte, MG, Brazil.
2833 CR ALAVA M, CONDMAT0002406
2834    ALAVA M, 2001, EUROPHYS LETT, V53, P569
2835    BAK P, 1987, PHYS REV LETT, V59, P381
2836    BAK P, 1988, PHYS REV A, V38, P364
2837    BARABASI AL, 1995, FRACTAL CONCEPTS SUR
2838    CHESSA A, 1998, PHYS REV LETT, V80, P4217
2839    DEMENECH M, 1998, PHYS REV E A, V58, R2677
2840    DHAR D, 1999, PHYSICA A, V263, P4
2841    DICKMAN R, CONDMAT9910454
2842    DICKMAN R, UNPUB
2843    DICKMAN R, 1998, PHYS REV E A, V57, P5095
2844    DICKMAN R, 2000, BRAZ J PHYS, V30, P27
2845    DICKMAN R, 2000, PHYS REV E A, V62, P7632
2846    DROSSEL B, 2000, PHYS REV E, V61, R2168
2847    FISHER ME, 1971, FENOMINI CRITICI
2848    FISHER ME, 1972, PHYS REV LETT, V28, P1516
2849    FISHER ME, 1988, FINITE SIZE SCALING
2850    GRASSBERGER P, 1982, Z PHYS B, V47, P465
2851    GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
2852    HALPINHEALY T, 1995, PHYS REP, V254, P215
2853    IVASHKEVICH EV, 1994, J PHYS A-MATH GEN, V27, P3643
2854    IVASHKEVICH EV, 1994, PHYSICA A, V209, P347
2855    JANSSEN HK, 1981, Z PHYS, V42, P141
2856    JANSSEN HK, 1985, Z PHYS B CON MAT, V58, P311
2857    KADANOFF LP, 1989, PHYS REV A, V39, P6524
2858    KARDAR M, 1998, PHYS REP, V301, P85
2859    LESCHHORN H, 1993, PHYSICA A, V195, P324
2860    LOPEZ JM, 1997, PHYS REV E, V56, P3993
2861    LOPEZ JM, 1999, PHYS REV LETT, V83, P4594
2862    MANNA SS, 1990, J STAT PHYS, V59, P509
2863    MANNA SS, 1991, J PHYS A, V24, L363
2864    MARRO J, 1999, NONEQUILIBRIUM PHASE
2865    MONTAKHAB A, 1998, PHYS REV E A, V58, P5608
2866    MUNOZ MA, 1999, PHYS REV E B, V59, P6175
2867    MUNOZ MA, 2001, P 6 GRAN SEM COMP PH
2868    PACZUSKI M, 1994, EUROPHYS LETT, V27, P97
2869    PACZUSKI M, 1994, EUROPHYS LETT, V28, P295
2870    PARISI G, 1991, EUROPHYS LETT, V16, P321
2871    PARISI G, 1991, PHYSICA A, V179, P16
2872    PASTORSATORRAS R, 2000, PHYS REV E A, V62, R5875
2873    PRIEZZHEV VB, 1994, J STAT PHYS, V74, P955
2874    ROSSI M, 2000, PHYS REV LETT, V85, P1803
2875    TANG C, 1988, PHYS REV LETT, V60, P2347
2876    TEBALDI C, 1999, PHYS REV LETT, V83, P3952
2877    VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
2878    VESPIGNANI A, 1998, PHYS REV E, V57, P6345
2879    VESPIGNANI A, 1998, PHYS REV LETT, V81, P5676
2880    VESPIGNANI A, 2000, PHYS REV E A, V62, P4564
2881 NR 48
2882 TC 26
2883 PU AMERICAN PHYSICAL SOC
2884 PI COLLEGE PK
2885 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
2886 SN 1063-651X
2887 J9 PHYS REV E
2888 JI Phys. Rev. E
2889 PD NOV
2890 PY 2001
2891 VL 64
2892 IS 5
2893 PN Part 2
2894 AR 056104
2895 DI ARTN 056104
2896 PG 7
2897 SC Physics, Fluids & Plasmas; Physics, Mathematical
2898 GA 496QH
2899 UT ISI:000172407100015
2900 ER
2901 
2902 PT J
2903 AU Pastor-Satorras, R
2904    Vespignani, A
2905 TI Epidemic dynamics and endemic states in complex networks
2906 SO PHYSICAL REVIEW E
2907 LA English
2908 DT Article
2909 ID SMALL-WORLD NETWORKS; WIDE-WEB; INTERNET; TOPOLOGY
2910 AB We study by analytical methods and large scale simulations a dynamical
2911    model for the spreading of epidemics in complex networks. in networks
2912    with exponentially bounded connectivity we recover the usual epidemic
2913    behavior with a threshold defining a critical point below that the
2914    infection prevalence is null. On the contrary, on a wide range of
2915    scale-free networks we observe the absence of an epidemic threshold and
2916    its associated critical behavior. This implies that scale-free networks
2917    are prone to the spreading and the persistence of infections whatever
2918    spreading rate the epidemic agents might possess. These results can
2919    help understanding. computer virus epidemics and other spreading
2920    phenomena on communication and social networks.
2921 C1 Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
2922    Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
2923 RP Pastor-Satorras, R, Univ Politecn Catalunya, Dept Fis & Engn Nucl,
2924    Campus Nord,Modul B4, ES-08034 Barcelona, Spain.
2925 CR ABRAMOWITZ M, 1972, HDB MATH FUNCTIONS
2926    ABRAMSON G, NLNAO0010012
2927    ALBERT R, 1999, NATURE, V401, P130
2928    ALBERT R, 2000, PHYS REV LETT, V85, P5234
2929    AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
2930    BAILEY NTJ, 1975, MATH THEORY INFECT D
2931    BARABASI AL, 1999, PHYSICA A, V272, P173
2932    BARABASI AL, 1999, SCIENCE, V286, P509
2933    BARRAT A, CONDMAT9903323
2934    BARRAT A, 2000, EUR PHYS J B, V13, P547
2935    BARTHELEMY M, 1999, PHYS REV LETT, V82, P3180
2936    BOLLOBAS B, 1985, RANDOM GRAPHS
2937    BORNHOLDT S, CONDMAT0008465
2938    CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
2939    CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
2940    COHEN R, 2000, PHYS REV LETT, V85, P4626
2941    DEMENEZES MA, 2000, EUROPHYS LETT, V50, P574
2942    DOROGOVTSEV SN, CONDMAT0011115
2943    ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
2944    FALOUTSOS M, 1999, COMP COMM R, V29, P251
2945    HILL MK, 1997, UNDERSTANDING ENV PO
2946    HUBERMAN BA, 1999, NATURE, V401, P131
2947    JEONG H, 2000, NATURE, V407, P651
2948    KEPHART JO, 1993, IEEE SPECTRUM, V30, P20
2949    KEPHART JO, 1997, SCI AM, V277, P56
2950    KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
2951    MARRO J, 1999, NONEQUILIBRIUM PHASE
2952    MEDINA A, 2000, COMPUT COMMUN REV, V30, P18
2953    MONTOYA JM, CONDMAT0011195
2954    MOORE C, 2000, PHYS REV E B, V61, P5678
2955    MURRAY JD, 1993, MATH BIOL
2956    NEWMAN MEJ, 1999, PHYS REV E, V60, P5678
2957    PASTORSATORRAS R, IN PRESS PHYS REV LE
2958    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
2959    SIMON HA, 1955, BIOMETRIKA, V42, P425
2960    TADIC B, 2001, PHYSICA A, V293, P273
2961    WASSERMAN S, 1994, SOCIAL NETWORK ANAL
2962    WATTS DJ, 1998, NATURE, V393, P440
2963    WATTS DJ, 1999, SMALL WORLDS DYNAMIC
2964    WENG GZ, 1999, SCIENCE, V284, P92
2965 NR 40
2966 TC 164
2967 PU AMERICAN PHYSICAL SOC
2968 PI COLLEGE PK
2969 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
2970 SN 1063-651X
2971 J9 PHYS REV E
2972 JI Phys. Rev. E
2973 PD JUN
2974 PY 2001
2975 VL 6306
2976 IS 6
2977 PN Part 2
2978 AR 066117
2979 DI ARTN 066117
2980 PG 8
2981 SC Physics, Fluids & Plasmas; Physics, Mathematical
2982 GA 442KU
2983 UT ISI:000169285300028
2984 ER
2985 
2986 PT J
2987 AU Miguel, MC
2988    Vespignani, A
2989    Zapperi, S
2990    Weiss, J
2991    Grasso, JR
2992 TI Complexity in dislocation dynamics: model
2993 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
2994    MICROSTRUCTURE AND PROCESSING
2995 LA English
2996 DT Article
2997 DE dislocations; statistical modelling; fluctuations; ice single crystal
2998 ID SELF-ORGANIZED CRITICALITY; ACOUSTIC-EMISSION; DEFORMATION
2999 AB We propose a numerical model to study the viscoplastic deformation of
3000    ice single crystals. We consider long-range elastic interactions among
3001    dislocations, the possibility of mutual annihilation, and a
3002    multiplication mechanism representing the activation of Frank-Read
3003    sources due to dislocation pinning. The overdamped equations of motion
3004    for a collection of dislocations are integrated numerically using
3005    different externally applied stresses. Using this approach we analyze
3006    the avalanche-like rearrangements of dislocations during the dynamic
3007    evolution. We observe a power law distribution of avalanche sizes which
3008    we compare with acoustic emission experiments in ice single crystals
3009    under creep deformation. We emphasize the connections of our model with
3010    nonequilibrium phase transitions and critical phenomena. (C) 2001
3011    Elsevier Science B.V. All rights reserved.
3012 C1 Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
3013    Univ La Sapienza, INFM, I-00185 Rome, Italy.
3014    Lab Glaciol & Geophys Environm, CNRS, F-38402 St Martin Dheres, France.
3015    LGIT, F-38041 Grenoble 9, France.
3016 RP Miguel, MC, Univ Barcelona, Dept Fis Fonamental, Fac Fis, Diagonal 647,
3017    E-08028 Barcelona, Spain.
3018 CR AMODEO RJ, 1990, PHYS REV B B, V41, P6958
3019    BAK P, 1987, PHYS REV LETT, V59, P381
3020    BAKO B, 1999, PHYS REV B, V60, P122
3021    BERTOTTI G, 1994, J APPL PHYS, V75, P5490
3022    DICKMAN R, 2000, BRAZ J PHYS, V30, P27
3023    DOMB C, 1972, PHASE TRANSITION CRI, V1
3024    FIELD S, 1995, PHYS REV LETT, V74, P1206
3025    FOURNET R, 1996, PHYS REV B, V53, P6283
3026    GARCIMARTIN A, 1997, PHYS REV LETT, V79, P3202
3027    HAHNER P, 1998, PHYS REV LETT, V81, P2470
3028    HIRTH JP, 1992, THEORY DISLOCATIONS
3029    MIGUEL MC, UNPUB
3030    NABARRO FRN, 1992, THEORY CRYSTAL DISLO
3031    PETRI A, 1994, PHYS REV LETT, V73, P3423
3032    VESPIGNANI A, 1998, PHYS REV E, V57, P6345
3033    WEISS J, 1997, J PHYS CHEM B, V101, P6113
3034    WEISS J, 2000, J GEOPHYS RES-SOL EA, V105, P433
3035    WEISS J, 2001, MAT SCI ENG A-STRUCT, V309, P360
3036 NR 18
3037 TC 9
3038 PU ELSEVIER SCIENCE SA
3039 PI LAUSANNE
3040 PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
3041 SN 0921-5093
3042 J9 MATER SCI ENG A-STRUCT MATER
3043 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
3044 PD JUL 15
3045 PY 2001
3046 VL 309
3047 SI Sp. Iss. SI
3048 BP 324
3049 EP 327
3050 PG 4
3051 SC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
3052 GA 438GE
3053 UT ISI:000169044600066
3054 ER
3055 
3056 PT J
3057 AU Weiss, J
3058    Grasso, JR
3059    Miguel, MC
3060    Vespignani, A
3061    Zapperi, S
3062 TI Complexity in dislocation dynamics: experiments
3063 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
3064    MICROSTRUCTURE AND PROCESSING
3065 LA English
3066 DT Article
3067 DE dislocation; acoustic emission; avalanches; critical phenomena; ice
3068 ID ACOUSTIC-EMISSION; SINGLE-CRYSTALS; DEFORMATION; ICE
3069 AB We present a statistical analysis of the acoustic emissions induced by
3070    dislocation motion during the creep of ice single crystals. The
3071    recorded acoustic waves provide an indirect measure of the inelastic
3072    energy dissipated during dislocation motion. Compression and torsion
3073    creep experiments indicate that viscoplastic deformation, even in the
3074    steady-state (secondary creep), is a complex and inhomogeneous process
3075    characterized by avalanches in the motion of dislocations. The
3076    distribution of avalanche sizes, identified with the acoustic wave
3077    amplitude (or the acoustic wave energy), is found to follow a power law
3078    with a cutoff at large amplitudes which depends on the creep stage
3079    (primary, secondary, tertiary). These results suggest that viscoplastic
3080    deformation in ice and possibly in other materials could be described
3081    in the framework of non-equilibrium critical phenomena. (C) 2001
3082    Elsevier Science B.V. All rights reserved.
3083 C1 Lab Glaciol & Geophys Environm, CNRS, F-38402 St Martin Dheres, France.
3084    LGIT, F-38041 Grenoble 9, France.
3085    Univ Barcelona, Fac Fis, E-08028 Barcelona, Spain.
3086    Abdus Salam ICTP, I-34100 Trieste, Italy.
3087    Univ La Sapienza, INFM, I-00185 Rome, Italy.
3088 RP Weiss, J, Lab Glaciol & Geophys Environm, CNRS, BP 96,54 Rue Moliere,
3089    F-38402 St Martin Dheres, France.
3090 CR ANANTHAKRISHNA G, 1999, PHYS REV E A, V60, P5455
3091    ASHBY MF, 1972, ACTA METALL, V20, P887
3092    ESHELBY JD, 1962, P ROY SOC LOND A MAT, V266, P222
3093    FRIEDEL J, 1964, DISLOCATIONS
3094    GROMA I, 1999, MODEL SIMUL MATER SC, V7, P795
3095    KIESEWETTER N, 1976, PHYS STATUS SOLIDI, V38, P569
3096    LEPINOUX J, 1987, SCRIPTA METALL, V21, P833
3097    MALEN K, 1974, PHYS STATUS SOLIDI B, V61, P637
3098    NEUHAUSER H, 1983, DISLOCATIONS SOLIDS, V6, P319
3099    ROUBY D, 1983, PHILOS MAG A, V47, P671
3100    THIBERT E, 1997, J PHYS CHEM B, V101, P3554
3101    WEISS J, 1997, J PHYS CHEM B, V101, P6113
3102    WEISS J, 2000, J GEOPHYS RES-SOL EA, V105, P433
3103 NR 13
3104 TC 12
3105 PU ELSEVIER SCIENCE SA
3106 PI LAUSANNE
3107 PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
3108 SN 0921-5093
3109 J9 MATER SCI ENG A-STRUCT MATER
3110 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
3111 PD JUL 15
3112 PY 2001
3113 VL 309
3114 SI Sp. Iss. SI
3115 BP 360
3116 EP 364
3117 PG 5
3118 SC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
3119 GA 438GE
3120 UT ISI:000169044600075
3121 ER
3122 
3123 PT J
3124 AU Pastor-Satorras, R
3125    Vespignani, A
3126 TI Reaction-diffusion system with self-organized critical behavior
3127 SO EUROPEAN PHYSICAL JOURNAL B
3128 LA English
3129 DT Article
3130 ID ABSORBING PHASE-TRANSITIONS; ABELIAN SANDPILE; CONSERVED FIELD; MODELS;
3131    EVENTS
3132 AB We describe the construction of a conserved reaction-diffusion system
3133    that exhibits self-organized critical (avalanche-like) behavior under
3134    the action of a slow addition of particles. The model provides an
3135    illustration of the general mechanism to generate self-organized
3136    criticality in conserving systems. Extensive simulations in d = 2 and 3
3137    reveal critical exponents compatible with the universality class of the
3138    stochastic Manna sandpile model.
3139 C1 Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
3140    Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
3141 RP Pastor-Satorras, R, Univ Politecn Catalunya, Dept Fis & Engn Nucl,
3142    Campus Nord,Modul B4, ES-08034 Barcelona, Spain.
3143 CR BAK P, 1987, PHYS REV LETT, V59, P381
3144    BAK P, 1993, PHYS REV LETT, V71, P4083
3145    CARDY JL, 1988, CURRENT PHYSICS SOUR, V2
3146    CHESSA A, 1999, COMPUT PHYS COMMUN, V121, P299
3147    DEMENECH M, 1998, PHYS REV E A, V58, R2677
3148    DHAR D, 1999, PHYSICA A, V263, P4
3149    DICKMAN R, 1998, PHYS REV E A, V57, P5095
3150    DICKMAN R, 2000, BRAZ J PHYS, V30, P27
3151    DROSSEL B, 1992, PHYS REV LETT, V69, P1629
3152    GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
3153    JENSEN HJ, 1998, SELFORGANIZED CRITIC
3154    LUBECK S, 2000, PHYS REV E, V61, P204
3155    MANNA SS, 1991, J PHYS A, V24, L363
3156    MILSHTEIN E, 1998, PHYS REV E, V58, P303
3157    NAKANISHI K, 1997, PHYS REV E, V55, P4012
3158    PASTORSATORRAS R, 2000, PHYS REV E A, V62, R5875
3159    ROSSI M, 2000, PHYS REV LETT, V85, P1803
3160    TEBALDI C, 1999, PHYS REV LETT, V83, P3952
3161    VANWIJLAND F, 1998, PHYSICA A, V251, P179
3162    VESPIGNANI A, 2000, PHYS REV E A, V62, P4564
3163    ZHANG YC, 1989, PHYS REV LETT, V63, P470
3164 NR 21
3165 TC 6
3166 PU SPRINGER-VERLAG
3167 PI NEW YORK
3168 PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
3169 SN 1434-6028
3170 J9 EUR PHYS J B
3171 JI Eur. Phys. J. B
3172 PD FEB
3173 PY 2001
3174 VL 19
3175 IS 4
3176 BP 583
3177 EP 587
3178 PG 5
3179 SC Physics, Condensed Matter
3180 GA 421MY
3181 UT ISI:000168069200011
3182 ER
3183 
3184 PT J
3185 AU Pastor-Satorras, R
3186    Vespignani, A
3187 TI Epidemic spreading in scale-free networks
3188 SO PHYSICAL REVIEW LETTERS
3189 LA English
3190 DT Article
3191 ID SMALL-WORLD NETWORKS; INTERNET
3192 AB The Internet has a very complex connectivity recently modeled by the
3193    class of scale-free networks. This feature, which appears to be very
3194    efficient for a communications network, favors at the same time the
3195    spreading of computer viruses. We analyze real data from computer virus
3196    infections and find the average lifetime and persistence of viral
3197    strains on the Internet. We define a dynamical model for the spreading
3198    of infections on scale-free networks. finding the absence of an
3199    epidemic threshold and its associated critical behavior. This new
3200    epidemiological framework rationalizes data of computer viruses and
3201    could help in the understanding of other spreading phenomena on
3202    communication and social networks.
3203 C1 Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
3204    Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
3205 RP Pastor-Satorras, R, Univ Politecn Catalunya, Dept Fis & Engn Nucl,
3206    Campus Nord,Modul B4, ES-08034 Barcelona, Spain.
3207 CR ALBERT R, 1999, NATURE, V401, P130
3208    AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
3209    BAILEY NTJ, 1975, MATH THEORY INFECT D
3210    BARABASI AL, 1999, PHYSICA A, V272, P173
3211    BARABASI AL, 1999, SCIENCE, V286, P509
3212    BARRAT A, 2000, EUR PHYS J B, V13, P57
3213    CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
3214    COHEN FB, 1994, SHORT COURSE COMPUTE
3215    ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
3216    FALOUTSOS M, 1999, COMP COMM R, V29, P251
3217    HILL MK, 1997, UNDERSTANDING ENV PO
3218    KEPHART JO, 1991, P 1991 IEEE COMP SOC, P343
3219    KEPHART JO, 1993, IEEE SPECTRUM, V30, P20
3220    KEPHART JO, 1997, SCI AM, V277, P56
3221    MARRO J, 1999, NONEQUILIBRIUM PHASE
3222    MEDINA A, 2000, COMPUT COMMUN REV, V30, P18
3223    MOORE C, 2000, PHYS REV E B, V61, P5678
3224    MURRAY JD, 1993, MATH BIOL
3225    MURRAY WH, 1988, COMPUT SECUR, V7, P130
3226    PASTORSATORRAS R, UNPUB
3227    SZABO G, 2000, PHYS REV E B, V62, P7474
3228    WASSERMAN S, 1994, SOCIAL NETWORK ANAL
3229    WATTS DJ, 1998, NATURE, V393, P440
3230    WHITE SR, 1998, P VIR B C MUN 1998
3231 NR 24
3232 TC 451
3233 PU AMERICAN PHYSICAL SOC
3234 PI COLLEGE PK
3235 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
3236 SN 0031-9007
3237 J9 PHYS REV LETT
3238 JI Phys. Rev. Lett.
3239 PD APR 2
3240 PY 2001
3241 VL 86
3242 IS 14
3243 BP 3200
3244 EP 3203
3245 PG 4
3246 SC Physics, Multidisciplinary
3247 GA 417ZX
3248 UT ISI:000167866300072
3249 ER
3250 
3251 PT J
3252 AU Miguel, MC
3253    Vespignani, A
3254    Zapperi, S
3255    Weiss, J
3256    Grasso, JR
3257 TI Intermittent dislocation flow in viscoplastic deformation
3258 SO NATURE
3259 LA English
3260 DT Article
3261 ID ACOUSTIC-EMISSION; SINGLE-CRYSTALS; DYNAMICS; SIMULATION; PATTERNS;
3262    LINES; ICE
3263 AB The viscoplastic deformation (creep) of crystalline materials under
3264    constant stress involves the motion of a large number of interacting
3265    dislocations(1). Analytical methods and sophisticated 'dislocation
3266    dynamics' simulations have proved very effective in the study of
3267    dislocation patterning, and have led to macroscopic constitutive laws
3268    of plastic deformation(2-9). Yet, a statistical analysis of the
3269    dynamics of an assembly of interacting dislocations has not hitherto
3270    been performed. Here we report acoustic emission measurements on
3271    stressed ice single crystals, the results of which indicate that
3272    dislocations move in a scale-free intermittent fashion. This result is
3273    confirmed by numerical simulations of a model of interacting
3274    dislocations that successfully reproduces the main features of the
3275    experiment. We rnd that dislocations generate a slowly evolving
3276    configuration landscape which coexists with rapid collective
3277    rearrangements. These rearrangements involve a comparatively small
3278    fraction of the dislocations and lead to an intermittent behaviour of
3279    the net plastic response. This basic dynamical picture appears to be a
3280    generic feature in the deformation of many other materials(10-12).
3281    Moreover, it should provide a framework for discussing fundamental
3282    aspects of plasticity that goes beyond standard mean-field approaches
3283    that see plastic deformation as a smooth laminar flow.
3284 C1 Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
3285    Univ Barcelona, Fac Fis, Dept Fis Fonamental, E-08028 Barcelona, Spain.
3286    Univ La Sapienza, INFM, I-00185 Rome, Italy.
3287    CNRS, LGGE, F-38402 St Martin Dheres, France.
3288    LGIT, F-38041 Grenoble 9, France.
3289 RP Miguel, MC, Abdus Salam Int Ctr Theoret Phys, POB 586, I-34100 Trieste,
3290    Italy.
3291 CR AMODEO RJ, 1990, PHYS REV B B, V41, P6958
3292    ANANTHAKRISHNA G, 1999, PHYS REV E A, V60, P5455
3293    BECKER R, 1932, Z PHYS, V79, P566
3294    BENGUS VZ, 1966, PHYS STATUS SOLIDI, V14, P215
3295    DUVAL P, 1983, J PHYS CHEM-US, V87, P4066
3296    FOURNET R, 1996, PHYS REV B, V53, P6283
3297    GROMA I, 1993, PHILOS MAG A, V67, P1459
3298    HAHNER P, 1996, APPL PHYS A-MATER, V62, P473
3299    HAHNER P, 1998, PHYS REV LETT, V81, P2470
3300    HIRTH JP, 1992, THEORY DISLOCATIONS
3301    JENSEN HJ, 1998, SELF ORG CRITICALITY
3302    KARDAR M, 1998, PHYS REP, V301, P85
3303    LEPINOUX J, 1987, SCRIPTA METALL, V21, P833
3304    NEUHAUSER H, 1983, DISLOCATIONS SOLIDS, V6, P319
3305    PETRENKO VF, 1994, 9412 US ARM COLD REG
3306    ROUBY D, 1983, PHILOS MAG A, V47, P671
3307    SEVILLANO JG, 1991, SCRIPTA METALL MATER, V25, P355
3308    THOMSON R, 1998, PHYS REV LETT, V81, P3884
3309    WEISS J, 1997, J PHYS CHEM B, V101, P6113
3310    WEISS J, 2000, J GEOPHYS RES-SOL EA, V105, P433
3311    ZAISER M, 1999, ACTA MATER, V47, P2463
3312 NR 21
3313 TC 78
3314 PU MACMILLAN PUBLISHERS LTD
3315 PI LONDON
3316 PA PORTERS SOUTH, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
3317 SN 0028-0836
3318 J9 NATURE
3319 JI Nature
3320 PD APR 5
3321 PY 2001
3322 VL 410
3323 IS 6829
3324 BP 667
3325 EP 671
3326 PG 6
3327 SC Multidisciplinary Sciences
3328 GA 418DJ
3329 UT ISI:000167875400040
3330 ER
3331 
3332 PT J
3333 AU Pietronero, L
3334    Tosatti, E
3335    Tosatti, V
3336    Vespignani, A
3337 TI Explaining the uneven distribution of numbers in nature: the laws of
3338    Benford and Zipf
3339 SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
3340 LA English
3341 DT Article
3342 AB The distribution of first digits in numbers series obtained from very
3343    different origins shows a marked asymmetry in favor of small digits
3344    that goes under the name of Benford's law. We analyze in detail this
3345    property for different data sets and give a general explanation for the
3346    origin of the Benford's law in terms of multiplicative processes. We
3347    show that this law can be also generalized to series of numbers
3348    generated from more complex systems like the catalogs of seismic
3349    activity. Finally, we derive a relation between the generalized
3350    Benford's law and the popular Zipf's law which characterize the rank
3351    order statistics and has been extensively applied to many problems
3352    ranging from city population to linguistics. (C) 2001 Published by
3353    Elsevier Science B.V.
3354 C1 Univ Rome La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
3355    Univ Rome La Sapienza, Unita INFM, I-00185 Rome, Italy.
3356    SISSA, ISAS, I-34014 Trieste, Italy.
3357    SISSA, Unita INFM Trieste, I-34014 Trieste, Italy.
3358    Abdus Salam Int Ctr Theoret Phys, ICTP, I-34100 Trieste, Italy.
3359 RP Pietronero, L, Univ Rome La Sapienza, Dipartimento Fis, P A Moro 2,
3360    I-00185 Rome, Italy.
3361 CR BAK P, 1996, NATURE WORKS SCI SEL
3362    BENFORD F, 1938, P AM PHILOS SOC, V78, P551
3363    GELLMANN M, 1994, QUARK JAGUAR ADVENTU
3364    GUTENBERG B, 1944, B SEISMOL SOC AM, V34, P185
3365    HILL TP, 1998, AM SCI, V86, P358
3366    LEY E, 1996, AM STAT, V50, P311
3367    MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT
3368    NEWCOMB S, 1881, AM J MATH, V4, P39
3369    NIGRINI M, 1996, J AM TAXATION ASS, V18, P72
3370    RAIMI R, 1969, SCI AM           DEC, P109
3371    RAIMI RA, 1976, AM MATH MONTHLY, V83, P521
3372    RICHARDS SP, 1982, NUMBER YOUR THOUGHTS
3373    SCHATTE P, 1988, J INF PROCESS CYBERN, V24, P443
3374    VICSEK T, 1992, FRACTAL GROWTH PHENO
3375    ZIPF GK, 1949, HUMAN BEHAV PRINCIPL
3376 NR 15
3377 TC 18
3378 PU ELSEVIER SCIENCE BV
3379 PI AMSTERDAM
3380 PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
3381 SN 0378-4371
3382 J9 PHYSICA A
3383 JI Physica A
3384 PD APR 1
3385 PY 2001
3386 VL 293
3387 IS 1-2
3388 BP 297
3389 EP 304
3390 PG 8
3391 SC Physics, Multidisciplinary
3392 GA 413TP
3393 UT ISI:000167628300023
3394 ER
3395 
3396 PT J
3397 AU Pastor-Satorras, R
3398    Vespignani, A
3399 TI Anomalous scaling in the Zhang model
3400 SO EUROPEAN PHYSICAL JOURNAL B
3401 LA English
3402 DT Article
3403 ID SELF-ORGANIZED CRITICALITY; ABELIAN SANDPILE; UNIVERSALITY; EVENTS
3404 AB We apply the moment analysis technique to analyze large scale
3405    simulations of the Zhang sandpile model. We find that this model shows
3406    different scaling behavior depending on the update mechanism used. With
3407    the standard parallel updating, the Zhang model violates the
3408    finite-size scaling hypothesis, and it also appears to be incompatible
3409    with the more general multifractal scaling form. This makes impossible
3410    its affiliation to any one of the known universality classes of
3411    sandpile models. With sequential updating, it shows scaling for the
3412    size and area distribution. The introduction of stochasticity into the
3413    toppling rules of the parallel Zhang model leads to a scaling behavior
3414    compatible with the Manna universality class.
3415 C1 Univ Barcelona, Fac Fis, Dept Fis Fonamental, E-08028 Barcelona, Spain.
3416    Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
3417 RP Pastor-Satorras, R, Univ Barcelona, Fac Fis, Dept Fis Fonamental, Av
3418    Diagonal 647, E-08028 Barcelona, Spain.
3419 CR BAK P, 1987, PHYS REV LETT, V59, P381
3420    CARDY JL, 1988, CURRENT PHYSICS SOUR, V2
3421    CHESSA A, 1999, COMPUT PHYS COMMUN, V121, P299
3422    DEMENECH M, 1998, PHYS REV E A, V58, R2677
3423    DHAR D, 1999, PHYSICA A, V263, P4
3424    GIACOMETTI A, 1998, PHYS REV E, V58, P247
3425    GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
3426    JENSEN HJ, 1998, SELF ORG CRITICALITY
3427    KADANOFF LP, 1989, PHYS REV A, V39, P6524
3428    LUBECK S, CONDMAT0008304
3429    LUBECK S, 1997, PHYS REV E, V56, P1590
3430    LUBECK S, 2000, PHYS REV E, V61, P204
3431    MANNA SS, 1991, J PHYS A, V24, L363
3432    MILSHTEIN E, 1998, PHYS REV E, V58, P303
3433    TEBALDI C, 1999, PHYS REV LETT, V83, P3952
3434    VAZQUEZ A, CONDMAT0003420
3435    VESPIGNANI A, 1998, PHYS REV E, V57, P6345
3436    VESPIGNANI A, 2000, PHYS REV E A, V62, P4564
3437    ZHANG YC, 1989, PHYS REV LETT, V63, P470
3438 NR 19
3439 TC 8
3440 PU SPRINGER-VERLAG
3441 PI NEW YORK
3442 PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
3443 SN 1434-6028
3444 J9 EUR PHYS J B
3445 JI Eur. Phys. J. B
3446 PD NOV
3447 PY 2000
3448 VL 18
3449 IS 2
3450 BP 197
3451 EP 200
3452 PG 4
3453 SC Physics, Condensed Matter
3454 GA 381QH
3455 UT ISI:000165774100003
3456 ER
3457 
3458 PT J
3459 AU Pastor-Satorras, R
3460    Vespignani, A
3461 TI Field theory of absorbing phase transitions with a nondiffusive
3462    conserved field
3463 SO PHYSICAL REVIEW E
3464 LA English
3465 DT Article
3466 ID SELF-ORGANIZED CRITICALITY; ABELIAN SANDPILE; CRITICAL-BEHAVIOR; MODEL;
3467    RENORMALIZATION; SYSTEMS; EVENTS; STATES
3468 AB We investigate the critical behavior of a reaction-diffusion system
3469    exhibiting a continuous absorbing-state phase transition. The
3470    reaction-diffusion system strictly conserves the total density of
3471    particles, represented as a nondiffusive conserved field, and allows an
3472    infinite number of absorbing configurations. Numerical results show
3473    that it belongs to a wide universality class that also includes
3474    stochastic sandpile models. We derive microscopically the field theory
3475    representing this universality class.
3476 C1 Univ Barcelona, Fac Fis, Dept Fis Fonamental, E-08028 Barcelona, Spain.
3477    Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
3478 RP Pastor-Satorras, R, Univ Barcelona, Fac Fis, Dept Fis Fonamental, Ave
3479    Diagonal 647, E-08028 Barcelona, Spain.
3480 CR ALBANO EV, 1992, J PHYS A, V25, P2557
3481    BAK P, 1987, PHYS REV LETT, V59, P381
3482    CARDY J, 1996, PHYS REV LETT, V77, P4780
3483    CARDY JL, 1980, J PHYS A, V13, L423
3484    CHESSA A, 1999, COMPUT PHYS COMMUN, V121, P299
3485    DEMENECH M, 1998, PHYS REV E A, V58, R2677
3486    DHAR D, 1999, PHYSICA A, V263, P4
3487    DICKMAN R, 1998, PHYS REV E A, V57, P5095
3488    GRASSBERGER P, 1979, ANN PHYS-NEW YORK, V122, P373
3489    GRASSBERGER P, 1995, PHYS LETT A, V200, P277
3490    JANSSEN HK, 1981, Z PHYS B CON MAT, V42, P151
3491    JANSSEN HK, 1999, EUR PHYS J B, V7, P137
3492    JENSEN HJ, 1998, SELF ORGANIZED CRITI
3493    JENSEN I, 1993, PHYS REV E, V48, P1710
3494    JENSEN I, 1993, PHYS REV LETT, V70, P1465
3495    KREE R, 1989, PHYS REV A, V39, P2214
3496    LEE BP, 1995, J STAT PHYS, V80, P971
3497    LUBECK S, 2000, PHYS REV E, V61, P204
3498    MANNA SS, 1991, J PHYS A, V24, L363
3499    MARRO J, 1999, NONEQUILIBRIUM PHASE
3500    MENDES JFF, 1994, J PHYS A-MATH GEN, V27, P3019
3501    MILSHTEIN E, 1998, PHYS REV E, V58, P303
3502    MUNOZ MA, COMMUNICATION
3503    NAKANISHI K, 1997, PHYS REV E, V55, P4012
3504    PACZUSKI M, 1994, EUROPHYS LETT, V27, P97
3505    PACZUSKI M, 1994, EUROPHYS LETT, V28, P295
3506    ROSSI M, 2000, PHYS REV LETT, V85, P1803
3507    TEBALDI C, 1999, PHYS REV LETT, V83, P3952
3508    VANWIJLAND F, 1998, PHYSICA A, V251, P179
3509    VESPIGNANI A, CONDMAT0003285
3510    VESPIGNANI A, 1998, PHYS REV LETT, V81, P5676
3511 NR 31
3512 TC 10
3513 PU AMERICAN PHYSICAL SOC
3514 PI COLLEGE PK
3515 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
3516 SN 1063-651X
3517 J9 PHYS REV E
3518 JI Phys. Rev. E
3519 PD NOV
3520 PY 2000
3521 VL 62
3522 IS 5
3523 PN Part A
3524 BP R5875
3525 EP R5878
3526 PG 4
3527 SC Physics, Fluids & Plasmas; Physics, Mathematical
3528 GA 374JH
3529 UT ISI:000165341700001
3530 ER
3531 
3532 PT J
3533 AU Pastor-Satorras, R
3534    Vespignani, A
3535 TI Critical behavior and conservation in directed sandpiles
3536 SO PHYSICAL REVIEW E
3537 LA English
3538 DT Article
3539 ID SELF-ORGANIZED CRITICALITY; UPPER CRITICAL DIMENSION; ABELIAN SANDPILE;
3540    MODELS; UNIVERSALITY; EVENTS
3541 AB We perform large-scale simulations of directed sandpile models with
3542    both deterministic and stochastic toppling rules. Our results show the
3543    existence of two distinct universality classes. We also provide
3544    numerical simulations of directed models in the presence of bulk
3545    dissipation. The numerical results indicate that the way in which
3546    dissipation is implemented is irrelevant for the determination of the
3547    critical behavior. The analysis of the self-affine properties of
3548    avalanches shows the existence of a subset of superuniversal exponents,
3549    whose value is independent of the universality class. This feature is
3550    accounted for by means of a phenomenological description of the energy
3551    balance condition in these models.
3552 C1 Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
3553 RP Pastor-Satorras, R, Abdus Salam Int Ctr Theoret Phys, POB 586, I-34100
3554    Trieste, Italy.
3555 CR ALAVA M, CONDMAT0002406
3556    BAK P, 1987, PHYS REV LETT, V59, P381
3557    BAK P, 1988, PHYS REV A, V38, P364
3558    CARDY JL, 1988, CURRENT PHYSICS SOUR, V2
3559    CHESSA A, 1998, PHYS REV E, V57, R6241
3560    CHESSA A, 1999, COMPUT PHYS COMMUN, V121, P299
3561    CHRISTENSEN K, 1993, PHYS REV E, V48, P3361
3562    DEMENECH M, 1998, PHYS REV E A, V58, R2677
3563    DHAR D, 1989, PHYS REV LETT, V63, P1659
3564    DHAR D, 1999, PHYSICA A, V263, P4
3565    DICKMAN R, 1998, PHYS REV E A, V57, P5095
3566    DROSSEL B, 2000, PHYS REV E, V61, R2168
3567    GRADSHTEYN IS, 1979, TABLE INTEGRALS SERI
3568    GRASSBERGER P, 1995, PHYS LETT A, V200, P277
3569    HASTY J, 1998, PHYS REV LETT, V81, P1722
3570    JENSEN HJ, 1998, SEFL ORG CRITICALITY
3571    KADANOFF LP, 1989, PHYS REV A, V39, P6524
3572    KINZEL W, 1983, PERCOLATION STRUCTUR, V5, CH18
3573    KLOSTER MN, CONDMAT0005528
3574    LAURITSEN KB, CONDMAT9903346
3575    LUBECK S, 1998, PHYS REV E A, V58, P2957
3576    LUBECK S, 2000, PHYS REV E, V61, P204
3577    MANNA SS, 1990, J STAT PHYS, V61, P923
3578    MANNA SS, 1990, PHYS REV E, V60, R5005
3579    MANNA SS, 1991, J PHYS A, V24, L363
3580    MARRO J, 1999, NONEQUILIBRIUM PHASE
3581    MILSHTEIN E, 1998, PHYS REV E, V58, P303
3582    PACZUSKI M, CONDMAT0005340
3583    PACZUSKI M, 1994, EUROPHYS LETT, V27, P97
3584    PACZUSKI M, 1994, EUROPHYS LETT, V28, P295
3585    PACZUSKI M, 1996, PHYS REV LETT, V77, P111
3586    PASTORSATORRAS R, 2000, J PHYS A-MATH GEN, V33, L33
3587    TADIC B, 1997, PHYS REV LETT, V79, P1519
3588    TANG C, 1988, PHYS REV LETT, V60, P2347
3589    TEBALDI C, 1999, PHYS REV LETT, V83, P3952
3590    TSUCHIYA T, 1999, J PHYS A-MATH GEN, V32, P1629
3591    VAZQUEZ A, CONDMAT0003420
3592    VESPIGNANI A, 1998, PHYS REV E, V57, P6345
3593    VESPIGNANI A, 1998, PHYS REV LETT, V81, P5676
3594    VESPIGNANI A, 2000, PHYS REV E A, V62, P4564
3595 NR 40
3596 TC 11
3597 PU AMERICAN PHYSICAL SOC
3598 PI COLLEGE PK
3599 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
3600 SN 1063-651X
3601 J9 PHYS REV E
3602 JI Phys. Rev. E
3603 PD NOV
3604 PY 2000
3605 VL 62
3606 IS 5
3607 PN Part A
3608 BP 6195
3609 EP 6205
3610 PG 11
3611 SC Physics, Fluids & Plasmas; Physics, Mathematical
3612 GA 374JH
3613 UT ISI:000165341700047
3614 ER
3615 
3616 PT J
3617 AU Castellano, C
3618    Marsili, M
3619    Vespignani, A
3620 TI Nonequilibrium phase transition in a model for social influence
3621 SO PHYSICAL REVIEW LETTERS
3622 LA English
3623 DT Article
3624 AB We present extensive numerical simulations of the Axelrod's model for
3625    social influence, aimed at understanding the formation of cultural
3626    domains. This is a nonequilibrium model with short range interactions
3627    and a remarkably rich dynamical behavior. We study the phase diagram of
3628    the model and uncover a nonequilibrium phase transition separating an
3629    ordered (culturally polarized) phase from a disordered (culturally
3630    fragmented) one. The nature of the phase transition can be continuous
3631    or discontinuous depending on the model parameters. At the transition,
3632    the size of cultural regions is power-law distributed.
3633 C1 Univ Essen Gesamthsch, Fachbereich Phys, D-45117 Essen, Germany.
3634    INFM, Trieste SISSA Unit, I-34014 Trieste, Italy.
3635    Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy.
3636 RP Castellano, C, Univ Essen Gesamthsch, Fachbereich Phys, D-45117 Essen,
3637    Germany.
3638 CR ANDERSON PW, 1998, EC EVOLVING COMPLEX
3639    AXELROD R, 1997, COMPLEXITY COOPERATI
3640    AXELROD R, 1997, J CONFLICT RESOLUT, V41, P203
3641    AXTELL R, 1996, COMPUTATIONAL MATH O, V1, P123
3642    BIALAS P, 1997, NUCL PHYS B, V493, P505
3643    BRAY AJ, 1994, ADV PHYS, V43, P357
3644    FRACHEBOURG L, 1996, PHYS REV E, V53, P3009
3645    LIGGETT TM, 1985, INTERACTING PARTICLE
3646    MARSILI M, 1998, PHYS REV LETT, V80, P2741
3647    SCHEUCHER M, 1988, J STAT PHYS, V53, P279
3648    STAUFFER D, 1985, INTRO PERCOLATION TH
3649 NR 11
3650 TC 56
3651 PU AMERICAN PHYSICAL SOC
3652 PI COLLEGE PK
3653 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
3654 SN 0031-9007
3655 J9 PHYS REV LETT
3656 JI Phys. Rev. Lett.
3657 PD OCT 16
3658 PY 2000
3659 VL 85
3660 IS 16
3661 BP 3536
3662 EP 3539
3663 PG 4
3664 SC Physics, Multidisciplinary
3665 GA 363YU
3666 UT ISI:000089865900051
3667 ER
3668 
3669 PT J
3670 AU Vespignani, A
3671    Dickman, R
3672    Munoz, MA
3673    Zapperi, S
3674 TI Absorbing-state phase transitions in fixed-energy sandpiles
3675 SO PHYSICAL REVIEW E
3676 LA English
3677 DT Review
3678 ID SELF-ORGANIZED CRITICALITY; CHARGE-DENSITY WAVES; ANNIHILATING
3679    RANDOM-WALKS; TANG-WIESENFELD SANDPILE; ABELIAN SANDPILE;
3680    RENORMALIZATION-GROUP; DIRECTED PERCOLATION; CRITICAL EXPONENTS;
3681    QUENCHED DISORDER; CRITICAL-BEHAVIOR
3682 AB We study sandpile models as closed systems, with the conserved energy
3683    density zeta playing the role of an external parameter. The critical
3684    energy density zeta (c) marks a nonequilibrium phase transition between
3685    active and absorbing states. Several fixed-energy sandpiles are studied
3686    in extensive simulations of stationary and transient properties, as
3687    well as the dynamics of roughening in an interface-height
3688    representation. Our primary goal is to identify the universality
3689    classes of such models, in hopes of assessing the validity of two
3690    recently proposed approaches to sandpiles: a phenomenological continuum
3691    Langevin description with absorbing states, and a mapping to driven
3692    interface dynamics in random media.
3693 C1 Abdus Salam Int Ctr Theoret Phys, ICTP, I-34100 Trieste, Italy.
3694    Univ Fed Minas Gerais, ICEx, Dept Fis, BR-30161970 Belo Horizonte, MG, Brazil.
3695    Univ Granada, Inst Carlos Theoret & Computat Phys 1, E-18071 Granada, Spain.
3696    Univ Granada, Dept Electromagnet & Fis Mat, E-18071 Granada, Spain.
3697    Univ Roma La Sapienza, Dipartimento Fis, Sez Roma 1, INFM, I-00185 Rome, Italy.
3698 RP Vespignani, A, Abdus Salam Int Ctr Theoret Phys, ICTP, POB 586, I-34100
3699    Trieste, Italy.
3700 CR ALAVA M, CONDMAT0002406
3701    ALON U, 1996, PHYS REV LETT, V76, P2746
3702    BAK P, 1987, PHYS REV LETT, V59, P381
3703    BAK P, 1988, PHYS REV A, V38, P364
3704    BAKSNEPPEN SOC, 1994, EUROPHYS LETT, V27, P97
3705    BARBASI AL, 1995, FRACTAL CONCEPTS SUR
3706    BARRAT A, 1999, PHYS REV LETT, V83, P1962
3707    BENHUR A, 1996, PHYS REV E, V53, P1317
3708    BISWAS P, 1998, PHYS REV E A, V58, P1266
3709    BRAY AJ, 1994, ADV PHYS, V43, P357
3710    CALFIERO R, 1998, PHYS REV E, V57, P5060
3711    CARDY J, 1996, PHYS REV LETT, V77, P4780
3712    CARDY JL, 1980, J PHYS A, V13, L423
3713    CHESSA A, 1998, PHYS REV LETT, V80, P4217
3714    CHESSA A, 1999, COMPUT PHYS COMMUN, V121, P299
3715    CHESSA A, 1999, PHYS REV E A, V59, R12
3716    DEMENECH M, 1998, PHYS REV E A, V58, R2677
3717    DHAR D, CONDMAT9909009
3718    DHAR D, 1989, PHYS REV LETT, V63, P1659
3719    DHAR D, 1990, PHYS REV LETT, V64, P1613
3720    DHAR D, 1999, PHYSICA A, V270, P69
3721    DIAZGUILERA A, 1994, EUROPHYS LETT, V26, P177
3722    DICKMAN R, CONDMAT9909347
3723    DICKMAN R, UNPUB
3724    DICKMAN R, 1996, NONEQUILIBRIUM STAT
3725    DICKMAN R, 1998, PHYS REV E A, V57, P1263
3726    DICKMAN R, 1998, PHYS REV E A, V57, P5095
3727    DOI M, 1976, J PHYS A, V9, P1465
3728    FAMILY F, 1985, J PHYS A, V18, L75
3729    FISHER ME, 1971, P INT SUMM SCH E FER
3730    FISHER ME, 1972, PHYS REV LETT, V28, P1516
3731    GRASSBERGER P, COMMUNICATION
3732    GRASSBERGER P, 1982, Z PHYS B CON MAT, V47, P365
3733    GRASSBERGER P, 1984, J PHYS A, V17, L105
3734    GRASSBERGER P, 1989, J PHYS A, V22, L1103
3735    GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
3736    GRASSBERGER P, 1995, PHYS LETT A, V200, P277
3737    GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
3738    GRINSTEIN G, 1997, LECT NOTES PHYS, V493, P223
3739    HASTY J, 1997, J STAT PHYS, V86, P1179
3740    HINRICHSEN H, 1997, PHYS REV E A, V55, P219
3741    HWA T, 1992, PHYS REV A, V45, P7002
3742    HWANG W, 1998, PHYS REV E, V57, P6438
3743    IVASHKEVICH EV, 1994, J PHYS A-MATH GEN, V27, P3643
3744    IVASHKEVICH EV, 1994, PHYSICA A, V209, P347
3745    JANSSEN HK, 1981, Z PHYS B CON MAT, V42, P151
3746    JANSSEN HK, 1989, Z PHYS B CON MAT, V73, P539
3747    JANSSEN HK, 1997, PHYS REV E B, V55, P6253
3748    JENSEN I, 1993, PHYS REV E, V48, P1710
3749    JENSEN I, 1993, PHYS REV LETT, V70, P1465
3750    JENSEN I, 1994, PHYS REV E, V50, P3623
3751    KERTESZ J, 1989, PHYS REV LETT, V62, P2571
3752    KINZEL W, 1985, Z PHYS B CON MAT, V58, P229
3753    KOBAYASHI H, 1997, J PHYS SOC JPN, V66, P2367
3754    KTITAREV DV, 2000, PHYS REV E, V61, P81
3755    LAURITSEN KB, CONDMAT9903346
3756    LEE BP, 1995, J STAT PHYS, V80, P971
3757    LESCHHORN H, 1997, ANN PHYS-LEIPZIG, V6, P1
3758    LIGGET TM, 1985, INTERACTING PARTICLE
3759    LOPEZ JM, 1997, J PHYS I, V7, P1191
3760    LOPEZ JM, 1997, PHYS REV E, V56, P3993
3761    LOPEZ JM, 1999, PHYS REV LETT, V83, P4594
3762    LUBECK S, 1997, PHYS REV E A, V56, P5138
3763    LUBECK S, 1997, PHYS REV E, V55, P4095
3764    LUBECK S, 2000, PHYS REV E, V61, P204
3765    MAJUMDAR SN, 1992, PHYSICA A, V185, P129
3766    MANNA SS, 1990, J STAT PHYS, V59, P509
3767    MANNA SS, 1991, J PHYS A, V24, L363
3768    MARRO J, 1999, NONEQUILIBRIUM PHASE
3769    MARSILI M, 1994, J STAT PHYS, V77, P733
3770    MASLOV S, 1996, PHYSICA A, V223, P1
3771    MEHTA A, 1996, PHYS REV E A, V53, P92
3772    MENDES JFF, 1994, J PHYS A-MATH GEN, V27, P3019
3773    MENYHARD N, 1996, J PHYS A-MATH GEN, V29, P7739
3774    MONTAKHAB A, 1998, PHYS REV E A, V58, P5608
3775    MOREIRA AG, 1996, PHYS REV E, V54, P3090
3776    MUNOZ MA, UNPUB
3777    MUNOZ MA, 1996, PHYS REV LETT, V76, P451
3778    MUNOZ MA, 1998, J STAT PHYS, V91, P541
3779    MUNOZ MA, 1999, PHYS REV E B, V59, P6175
3780    NARAYAN O, 1993, PHYS REV B, V48, P7030
3781    NARAYAN O, 1994, PHYS REV B, V49, P244
3782    NOEST AJ, 1986, PHYS REV LETT, V57, P90
3783    NOEST AJ, 1988, PHYS REV B, V38, P2715
3784    PACZUSKI M, 1996, PHYS REV LETT, V77, P111
3785    PANG NN, 1999, PHYS REV E A, V59, P234
3786    PARISI G, 1991, EUROPHYS LETT, V16, P321
3787    PARISI G, 1991, PHYSICA A, V179, P16
3788    PASTORSATORRAS R, COMMUNICATION
3789    PASTORSATORRAS R, 2000, J PHYS A-MATH GEN, V33, L33
3790    PELITI L, 1985, J PHYS-PARIS, V46, P1469
3791    PIETRONERO L, 1991, PHYSICA A, V173, P129
3792    PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
3793    PRIEZZHEV VB, CONDMAT9904054
3794    PRIEZZHEV VB, 1994, J STAT PHYS, V74, P955
3795    SARMA D, 1996, PHYS REV E, V53, P359
3796    SORNETTE D, 1995, J PHYS I, V5, P325
3797    TADIC B, 1997, PHYS REV LETT, V79, P1519
3798    TAKAYASU H, 1992, PHYS REV LETT, V68, P3060
3799    TANG C, 1988, PHYS REV LETT, V60, P2347
3800    TEBALDI C, 1999, PHYS REV LETT, V83, P3952
3801    VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
3802    VESPIGNANI A, 1998, PHYS REV E, V57, P6345
3803    VESPIGNANI A, 1998, PHYS REV LETT, V81, P5676
3804    ZAPPERI S, 1995, PHYS REV LETT, V75, P4071
3805    ZHANG SD, 1999, PHYS REV E, V60, P259
3806    ZHANG YC, 1989, PHYS REV LETT, V63, P470
3807 NR 107
3808 TC 66
3809 PU AMERICAN PHYSICAL SOC
3810 PI COLLEGE PK
3811 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
3812 SN 1063-651X
3813 J9 PHYS REV E
3814 JI Phys. Rev. E
3815 PD OCT
3816 PY 2000
3817 VL 62
3818 IS 4
3819 PN Part A
3820 BP 4564
3821 EP 4582
3822 PG 19
3823 SC Physics, Fluids & Plasmas; Physics, Mathematical
3824 GA 365XY
3825 UT ISI:000089976800018
3826 ER
3827 
3828 PT J
3829 AU Rossi, M
3830    Pastor-Satorras, R
3831    Vespignani, A
3832 TI Universality class of absorbing phase transitions with a conserved field
3833 SO PHYSICAL REVIEW LETTERS
3834 LA English
3835 DT Article
3836 ID SELF-ORGANIZED CRITICALITY; CRITICAL-BEHAVIOR; ABELIAN SANDPILE; 1/F
3837    NOISE; MODEL; SYSTEMS; STATES; PERCOLATION; LATTICE; EVENTS
3838 AB We investigate the critical behavior of systems exhibiting a continuous
3839    absorbing phase transition in the presence of a conserved field coupled
3840    to the order parameter. The results obtained point out the existence of
3841    a new universality class of nonequilibrium phase transitions that
3842    characterizes a vast set of systems including conserved threshold
3843    transfer processes and stochastic sandpile models.
3844 C1 SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy.
3845    Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
3846 RP Rossi, M, SISSA, Int Sch Adv Studies, Via Beirut 2-4, I-34014 Trieste,
3847    Italy.
3848 CR ALBANO EV, 1992, J PHYS A, V25, P2557
3849    BAK P, 1987, PHYS REV LETT, V59, P381
3850    CARDY J, 1996, PHYS REV LETT, V77, P4780
3851    CARDY JL, 1980, J PHYS A, V13, L423
3852    CHESSA A, 1999, COMPUT PHYS COMMUN, V121, P299
3853    CHRISTENSEN K, 1996, PHYS REV LETT, V77, P107
3854    DEMENECH M, 1998, PHYS REV E A, V58, R2677
3855    DHAR D, 1999, PHYSICA A, V263, P4
3856    DICKMAN R, 1998, PHYS REV E A, V57, P5095
3857    DICKMAN R, 2000, BRAZ J PHYS, V30, P27
3858    GRASSBERGER P, 1979, ANN PHYS-NEW YORK, V122, P373
3859    GRASSBERGER P, 1982, Z PHYS B CON MAT, V47, P365
3860    GRASSBERGER P, 1983, MATH BIOSCI, V63, P157
3861    JANSSEN HK, 1981, Z PHYS B CON MAT, V42, P151
3862    JANSSEN HK, 1985, Z PHYS B CON MAT, V58, P311
3863    JENSEN HJ, 1990, PHYS REV LETT, V64, P3103
3864    JENSEN HJ, 1998, SELF ORGANIZED CRITI
3865    JENSEN I, 1993, PHYS REV E, V48, P1710
3866    JENSEN I, 1993, PHYS REV LETT, V70, P1465
3867    LUBECK S, 2000, PHYS REV E, V61, P204
3868    MANNA SS, 1991, J PHYS A, V24, L363
3869    MARRO J, 1999, NONEQUILIBRIUM PHASE
3870    MENDES JFF, 1994, J PHYS A-MATH GEN, V27, P3019
3871    MUNOZ MA, 1999, PHYS REV E B, V59, P6175
3872    TEBALDI C, 1999, PHYS REV LETT, V83, P3952
3873    VANWIJLAND F, 1998, PHYSICA A, V251, P179
3874    VESPIGNANI A, CONDMAT0003285
3875    VESPIGNANI A, 1998, PHYS REV LETT, V81, P5676
3876 NR 28
3877 TC 76
3878 PU AMERICAN PHYSICAL SOC
3879 PI COLLEGE PK
3880 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
3881 SN 0031-9007
3882 J9 PHYS REV LETT
3883 JI Phys. Rev. Lett.
3884 PD AUG 28
3885 PY 2000
3886 VL 85
3887 IS 9
3888 BP 1803
3889 EP 1806
3890 PG 4
3891 SC Physics, Multidisciplinary
3892 GA 348BW
3893 UT ISI:000088965300006
3894 ER
3895 
3896 PT J
3897 AU Pastor-Satorras, R
3898    Vespignani, A
3899 TI Corrections to scaling in the forest-fire model
3900 SO PHYSICAL REVIEW E
3901 LA English
3902 DT Article
3903 ID SELF-ORGANIZED CRITICALITY; SANDPILE; EVENTS
3904 AB We present a systematic study of corrections to scaling in the
3905    self-organized critical forest-fire model. The analysis of the
3906    steady-state condition for the density of trees allows us to pinpoint
3907    the presence of these corrections, which take the form of subdominant
3908    exponents modifying the standard finite-size scaling form. Applying an
3909    extended version of the moment analysis technique, we find the scaling
3910    region of the model and compute nontrivial corrections to scaling.
3911 C1 Int Ctr Theoret Phys, Condensed Matter Sect, I-34100 Trieste, Italy.
3912 RP Pastor-Satorras, R, Int Ctr Theoret Phys, Condensed Matter Sect, POB
3913    586, I-34100 Trieste, Italy.
3914 CR BAK P, 1987, PHYS REV LETT, V59, P381
3915    BAK P, 1990, PHYS LETT A, V147, P297
3916    CARDY J, 1996, SCALING RENORMALIZAT
3917    CARDY JL, 1988, FINITE SIZE SCALING, V2
3918    CHESSA A, 1999, COMPUT PHYS COMMUN, V121, P299
3919    CHESSA A, 1999, PHYS REV E A, V59, R12
3920    CHRISTENSEN K, 1993, PHYS REV LETT, V71, P2737
3921    CLAR S, 1996, J PHYS-CONDENS MAT, V8, P6803
3922    DEMENECH M, 1998, PHYS REV E A, V58, R2677
3923    DROSSEL B, 1992, PHYS REV LETT, V69, P1629
3924    DROSSEL B, 1994, PHYS REV E, V50, P1009
3925    GRASSBERGER P, 1993, J PHYS A-MATH GEN, V26, P2081
3926    JENSEN HJ, 1998, SELF ORGANIZED CRITI
3927    JOHANSEN A, 1994, PHYSICA D, V78, P186
3928    LUBECK S, 2000, PHYS REV E, V61, P204
3929    PASTORSATORRAS R, 2000, J PHYS A-MATH GEN, V33, L33
3930    PRESS WH, 1992, NUMERICAL RECIPES C
3931    SCHENK K, CONDMAT9904356
3932    TEBALDI C, 1999, PHYS REV LETT, V83, P3952
3933 NR 19
3934 TC 11
3935 PU AMERICAN PHYSICAL SOC
3936 PI COLLEGE PK
3937 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
3938 SN 1063-651X
3939 J9 PHYS REV E
3940 JI Phys. Rev. E
3941 PD MAY
3942 PY 2000
3943 VL 61
3944 IS 5
3945 PN Part A
3946 BP 4854
3947 EP 4859
3948 PG 6
3949 SC Physics, Fluids & Plasmas; Physics, Mathematical
3950 GA 314RH
3951 UT ISI:000087071000028
3952 ER
3953 
3954 PT J
3955 AU Dickman, R
3956    Munoz, MA
3957    Vespignani, A
3958    Zapperi, S
3959 TI Paths to self-organized criticality
3960 SO BRAZILIAN JOURNAL OF PHYSICS
3961 LA English
3962 DT Review
3963 ID SUPERCONDUCTING VORTEX AVALANCHES; KINETIC CRITICAL PHENOMENON;
3964    ANNIHILATING RANDOM-WALKS; UPPER CRITICAL DIMENSION; ABELIAN SANDPILE
3965    MODEL; CHARGE-DENSITY WAVES; FOREST-FIRE MODEL; ABSORBING STATES;
3966    ACOUSTIC-EMISSION; CRITICAL-BEHAVIOR
3967 AB We present a pedagogical introduction to self-organized criticality
3968    (SOC), unraveling its connections with nonequilibrium phase
3969    transitions. There are several paths from a conventional critical point
3970    to SOC. They begin with an absorbing-state phase transition (directed
3971    percolation is a familiar example), and impose supervision or driving
3972    on the system; two commonly used methods are extremal dynamics, and
3973    driving at a rate approaching zero. We illustrate this in sandpiles,
3974    where SOC is a consequence of slow driving in a system exhibiting an
3975    absorbing-state phase transition with a conserved density. Other paths
3976    to SOC, in driven interfaces, the Bak-Sneppen model, and self-organized
3977    directed percolation, are also examined. We review the status of
3978    experimental realizations of SOC in Light of these observations.
3979 C1 Univ Fed Minas Gerais, ICEx, Dept Fis, BR-30161970 Belo Horizonte, MG, Brazil.
3980    Inst Carlos I Theoret & Computat Phys, Granada 18071, Spain.
3981    Dept Electromagnetismo & Fis Mat, Granada 18071, Spain.
3982    Int Ctr Theoret Phys, Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
3983    Ecole Phys & Chim Ind, PMMH, F-75231 Paris 05, France.
3984 RP Dickman, R, Univ Fed Minas Gerais, ICEx, Dept Fis, Caixa Postal 702,
3985    BR-30161970 Belo Horizonte, MG, Brazil.
3986 CR ALI AA, 1995, PHYS REV E A, V51, R2705
3987    ALI AA, 1995, PHYS REV E, V52, P4804
3988    BAGNOLI F, 1997, PHYS REV E, V55, P3970
3989    BAK P, 1987, PHYS REV LETT, V59, P381
3990    BAK P, 1988, PHYS REV A, V38, P364
3991    BAK P, 1993, PHYS REV LETT, V71, P4083
3992    BAK P, 1996, NATURE WORKS
3993    BARABASI AL, 1995, FRACTAL CONCEPTS SUR
3994    BARKHAUSEN H, 1919, PHYS Z, V20, P401
3995    BASSLER KE, 1998, PHYS REV LETT, V81, P3761
3996    BEAN CP, 1964, REV MOD PHYS, V36, P31
3997    BENHUR A, 1996, PHYS REV E, V53, P1317
3998    BERTOTTI G, 1994, J APPL PHYS, V75, P5490
3999    BEZUIDENHOUT C, 1990, ANN PROBAB, V18, P1462
4000    BRETZ M, 1992, PHYS REV LETT, V69, P2431
4001    BROEKER HM, CONDMAT9902195
4002    CANNELLI G, 1993, PHYS REV LETT, V70, P3923
4003    CARDY J, 1996, PHYS REV LETT, V77, P4780
4004    CARDY J, 1996, SCALING RENORMALIZAT, CH10
4005    CARDY JL, 1985, J PHYS A, V18, L267
4006    CARLSON JM, 1994, REV MOD PHYS, V66, P657
4007    CARRILLO L, 1998, PHYS REV LETT, V81, P1889
4008    CHEN K, 1991, PHYS REV A, V43, P625
4009    CHESSA A, 1998, PHYS REV E, V57, R6241
4010    CHESSA A, 1998, PHYS REV LETT, V80, P4217
4011    CHESSA A, 1999, PHYS REV E A, V59, R12
4012    CILIBERTO S, 1994, J PHYS I, V4, P223
4013    CLAR S, 1994, PHYS REV E A, V50, P1009
4014    CLAR S, 1996, J PHYS-CONDENS MAT, V8, P6803
4015    DEGENNES PG, 1966, SUPERCONDUCTIVITY ME
4016    DEMENECH M, 1998, PHYS REV E A, V58, R2677
4017    DHAR D, CONDMAT9909009
4018    DHAR D, 1989, PHYS REV LETT, V63, P1659
4019    DIAZGUILERA A, 1994, EUROPHYS LETT, V26, P177
4020    DICKMAN R, UNPUB
4021    DICKMAN R, 1996, NONEQUILIBRIUM STAT
4022    DICKMAN R, 1998, PHYS REV E A, V57, P5095
4023    DROSSEL B, 1992, PHYS REV LETT, V69, P1629
4024    DURIN G, 1995, FRACTALS, V3, P351
4025    ERZAN A, 1995, REV MOD PHYS, V67, P545
4026    FIELD S, 1995, PHYS REV LETT, V74, P1206
4027    FLYVBJERG H, 1993, PHYS REV LETT, V71, P4087
4028    FRETTE V, 1996, NATURE, V379, P49
4029    GABRIELLE A, CONDMAT9910425
4030    GARCIMARTIN A, 1997, PHYS REV LETT, V79, P3202
4031    GOPAL AD, 1995, PHYS REV LETT, V75, P2610
4032    GRASSBERGER P, 1982, Z PHYS B, V47, P465
4033    GRASSBERGER P, 1984, J PHYS A, V17, L105
4034    GRASSBERGER P, 1989, J PHYS A, V22, L1103
4035    GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
4036    GRASSBERGER P, 1995, PHYS LETT A, V200, P277
4037    GRASSBERGER P, 1996, PHYSICA A, V224, P169
4038    GRINSTEIN G, 1991, J APPL PHYS 2B, V69, P5441
4039    GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
4040    GRINSTEIN G, 1997, LECT NOTES PHYS, V493, P223
4041    GUARINO A, 1998, EUR PHYS J B, V6, P13
4042    HANSEN A, 1987, J PHYS A, V20, L873
4043    HARRIS TE, 1974, ANN PROBAB, V2, P969
4044    HASTY J, 1997, J STAT PHYS, V86, P1179
4045    HAVLIN S, 1993, GROWTH PATTERNS PHYS
4046    HINRICHSEN H, 1997, PHYS REV E A, V55, P219
4047    HWA T, 1992, PHYS REV A, V45, P7002
4048    HWANG W, 1998, PHYS REV E, V57, P6438
4049    JAEGER HM, 1989, PHYS REV LETT, V62, P40
4050    JAEGER HM, 1996, REV MOD PHYS, V68, P1259
4051    JANSSEN HK, 1981, Z PHYS, V42, P141
4052    JANSSEN HK, 1985, Z PHYS B CON MAT, V58, P311
4053    JENSEN I, 1993, PHYS REV E, V48, P1710
4054    JENSEN I, 1993, PHYS REV LETT, V70, P1465
4055    JENSEN I, 1994, PHYS REV E, V50, P3623
4056    JENSEN I, 1996, J PHYS A-MATH GEN, V29, P7013
4057    JOVANOVIC B, 1994, PHYS REV E, V50, P2403
4058    KADANOFF LP, 1989, PHYS REV A, V39, P6524
4059    KARDAR M, 1986, PHYS REV LETT, V56, P889
4060    KINZEL W, 1985, Z PHYS B CON MAT, V58, P229
4061    KIRCHNER JW, 1998, NATURE, V395, P337
4062    LAURITSEN KB, CONDMAT9903346
4063    LESCHHORN H, 1997, ANN PHYS-LEIPZIG, V6, P1
4064    LIGGETT TM, 1985, INTERACTING PARTICLE
4065    LIPOWSKI A, CONDMAT9910029
4066    LIPOWSKI A, 1999, PHYS REV E A, V60, P1516
4067    LUBECK S, 1997, PHYS REV E A, V56, P5138
4068    LUBECK S, 1997, PHYS REV E, V55, P4095
4069    LUBECK S, 1997, PHYS REV E, V56, P1590
4070    MACHTA J, 1993, PHYS REV E, V47, P4581
4071    MAES C, 1998, PHYS REV B, V57, P4987
4072    MALAMUD BD, 1998, SCIENCE, V281, P1840
4073    MANNA SS, 1990, J STAT PHYS, V59, P509
4074    MANNA SS, 1990, J STAT PHYS, V61, P923
4075    MANNA SS, 1991, J PHYS A, V24, L363
4076    MARRO J, 1999, NONEQUILIBRIUM PHASE
4077    MASLOV S, 1996, PHYSICA A, V223, P1
4078    MENYHARD N, 1996, J PHYS A-MATH GEN, V29, P7739
4079    MONTAKHAB A, 1998, PHYS REV E A, V58, P5608
4080    MUNOZ MA, 1999, PHYS REV E B, V59, P6175
4081    NARAYAN O, 1993, PHYS REV B, V48, P7030
4082    NARAYAN O, 1994, PHYS REV B, V49, P244
4083    OLSON CJ, 1997, PHYS REV B, V56, P6175
4084    PACZUSKI M, 1996, PHYS REV E A, V53, P414
4085    PACZUSKI M, 1996, PHYS REV LETT, V77, P111
4086    PARISI G, 1991, EUROPHYS LETT, V16, P321
4087    PERSSON BNJ, 1998, SLIDING FRICTION
4088    PETRI A, 1994, PHYS REV LETT, V73, P3423
4089    PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
4090    ROUX S, 1994, J PHYS I, V4, P515
4091    RUNDLE JB, 1995, P SANT FE I WORKSH R
4092    RUNDLE JB, 1996, PHYS REV LETT, V76, P4285
4093    SNEPPEN K, 1992, PHYS REV LETT, V69, P3539
4094    SNEPPEN K, 1995, PHYSICA A, V221, P168
4095    SOCOLAR JES, 1993, PHYS REV E, V47, P2366
4096    SOLE RV, 1997, NATURE, V388, P764
4097    SORNETTE D, 1995, J PHYS I, V5, P325
4098    SORNETTE D, 1998, EUR PHYS J B, V1, P353
4099    SPASOJEVIC D, 1996, PHYS REV E, V54, P2531
4100    TAKAYASU H, 1989, PHYS REV LETT, V63, P2563
4101    TAKAYASU H, 1992, PHYS REV LETT, V68, P3060
4102    URBACH JS, 1995, PHYS REV LETT, V75, P276
4103    VERGELES M, 1995, PHYS REV LETT, V75, P1969
4104    VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
4105    VESPIGNANI A, 1998, PHYS REV E, V57, P6345
4106    VESPIGNANI A, 1998, PHYS REV LETT, V81, P5676
4107    VICSEK T, 1992, FRACTAL GROWTH PHENO
4108    WEISS J, 1997, J PHYS CHEM B, V101, P6113
4109    WILKINSON D, 1983, J PHYS A-MATH GEN, V16, P3365
4110    ZAITSEV SI, 1992, PHYSICA A, V189, P411
4111    ZAPPERI S, 1997, NATURE, V388, P658
4112    ZAPPERI S, 1998, PHYS REV B, V58, P6353
4113    ZAPPERI S, 1999, PHYS REV E A, V59, P5049
4114 NR 128
4115 TC 84
4116 PU SOCIEDADE BRASILEIRA FISICA
4117 PI SAO PAULO
4118 PA CAIXA POSTAL 66328, 05315-970 SAO PAULO, BRAZIL
4119 SN 0103-9733
4120 J9 BRAZ J PHYS
4121 JI Braz. J. Phys.
4122 PD MAR
4123 PY 2000
4124 VL 30
4125 IS 1
4126 BP 27
4127 EP 41
4128 PG 15
4129 SC Physics, Multidisciplinary
4130 GA 301TB
4131 UT ISI:000086325400004
4132 ER
4133 
4134 PT J
4135 AU Pastor-Satorras, R
4136    Vespignani, A
4137 TI Universality classes in directed sandpile models
4138 SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
4139 LA English
4140 DT Letter
4141 ID SELF-ORGANIZED CRITICALITY; NOISE
4142 AB We perform large-scale numerical simulations of a directed version of
4143    the two-state stochastic sandpile model. Numerical results show that
4144    this stochastic model defines a new universality class with respect to
4145    the Abelian directed sandpile. The physical origin of the different
4146    critical behaviour has to be ascribed to the presence of multiple
4147    topplings in the stochastic model. These results provide new insight
4148    into the long-debated question of universality in Abelian and
4149    stochastic sandpiles.
4150 C1 Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
4151 RP Pastor-Satorras, R, Abdus Salam Int Ctr Theoret Phys, POB 586, I-34100
4152    Trieste, Italy.
4153 CR BAK P, 1987, PHYS REV LETT, V59, P381
4154    CHESSA A, 1998, CONDMAT9811365
4155    CHESSA A, 1998, PHYS REV E, V57, R6421
4156    CHESSA A, 1999, COMPUT PHYS COMMUN, V121, P299
4157    CHESSA A, 1999, PHYS REV E A, V59, R12
4158    DEMENECH M, 1998, PHYS REV E A, V58, R2677
4159    DHAR D, 1989, PHYS REV LETT, V63, P1659
4160    DHAR D, 1999, PHYSICA A, V263, P4
4161    DIAZGUILERA A, 1992, PHYS REV A, V45, P8551
4162    DICKMAN R, 1998, PHYS REV E A, V57, P5095
4163    GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
4164    GRASSBERGER P, 1995, PHYS LETT A, V200, P277
4165    HASTY J, 1998, PHYS REV LETT, V81, P1722
4166    JENSEN HJ, 1998, SELF ORG CRITICALITY
4167    KADANOFF LP, 1989, PHYS REV A, V39, P6524
4168    LAURITSEN KB, 1996, PHYS REV E, V54, P2483
4169    LAURITSEN KB, 1999, CONDMAT9903346
4170    LUBECK S, 1998, PHYS REV E A, V58, P2957
4171    MANNA SS, 1991, J PHYS A, V24, L363
4172    MILSHTEIN E, 1998, PHYS REV E, V58, P303
4173    PACZUSKI M, 1994, EUROPHYS LETT, V27, P97
4174    PACZUSKI M, 1996, PHYS REV LETT, V77, P111
4175    PASTORSATORRAS R, UNPUB
4176    TADIC B, 1997, PHYS REV LETT, V79, P1519
4177    TEBALDI C, 1999, CONDMAT9903270
4178    TEBALDI C, 1999, PHYS REV LETT, V83, P3952
4179    TSUCHIYA T, 1999, J PHYS A-MATH GEN, V32, P1629
4180    VESPIGNANI A, 1995, PHYS REV E, V51, P1711
4181    VESPIGNANI A, 1998, PHYS REV E, V57, P6345
4182    VESPIGNANI A, 1998, PHYS REV LETT, V81, P5676
4183 NR 30
4184 TC 16
4185 PU IOP PUBLISHING LTD
4186 PI BRISTOL
4187 PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
4188 SN 0305-4470
4189 J9 J PHYS-A-MATH GEN
4190 JI J. Phys. A-Math. Gen.
4191 PD JAN 28
4192 PY 2000
4193 VL 33
4194 IS 3
4195 BP L33
4196 EP L39
4197 PG 7
4198 SC Physics, Multidisciplinary; Physics, Mathematical
4199 GA 283AW
4200 UT ISI:000085254800001
4201 ER
4202 
4203 PT J
4204 AU Chessa, A
4205    Vespignani, A
4206    Zapperi, S
4207 TI Critical exponents in stochastic sandpile models
4208 SO COMPUTER PHYSICS COMMUNICATIONS
4209 LA English
4210 DT Article
4211 ID SELF-ORGANIZED CRITICALITY; UPPER CRITICAL DIMENSION; UNIVERSALITY;
4212    BEHAVIOR
4213 AB We present large scale simulations of a stochastic sandpile model in
4214    two dimensions. We use momentum analysis to evaluate critical exponents
4215    and finite size scaling method to consistently test the obtained
4216    results. The general picture resulting from our analysis allows us to
4217    characterize the large scale behavior of the present model with great
4218    accuracy. (C) 1999 Elsevier Science B.V. All rights reserved.
4219 C1 Univ Cagliari, Dipartimento Fis, I-09124 Cagliari, Italy.
4220    Univ Cagliari, Unita INFM, I-09124 Cagliari, Italy.
4221    ICTP, Abdus Salam Int Ctr Theorect Phys, I-34100 Trieste, Italy.
4222    ESPCI, PMMH, F-75234 Paris 05, France.
4223 RP Chessa, A, Univ Cagliari, Dipartimento Fis, Via Osped 72, I-09124
4224    Cagliari, Italy.
4225 CR BAK P, 1987, PHYS REV LETT, V59, P381
4226    BENHUR A, 1996, PHYS REV E, V53, P1317
4227    CHESSA A, 1998, PHYS REV E, V57, R6241
4228    CORRAL A, 1997, PHYS REV E A, V55, P2434
4229    DEMENECH M, 1998, PHYS REV E A, V58, R2677
4230    DHAR D, CONDMAT9808047
4231    DIAZGUILERA A, 1994, EUROPHYS LETT, V26, P177
4232    DICKMAN R, 1998, PHYS REV E A, V57, P5095
4233    GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
4234    LUBECK S, 1997, PHYS REV E A, V56, P5138
4235    LUBECK S, 1997, PHYS REV E, V55, P4095
4236    LUBECK S, 1997, PHYS REV E, V56, P1590
4237    MANNA SS, 1990, J STAT PHYS, V59, P509
4238    MANNA SS, 1991, J PHYS A, V24, L363
4239    MANNA SS, 1991, PHYSICA A, V179, P249
4240    MILSHTEIN E, 1998, PHYS REV E, V58, P303
4241    PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
4242    PRIEZZHEV VB, 1996, PHYS REV LETT, V76, P2093
4243    VESPIGNANI A, CONDMAT9806249
4244    VESPIGNANI A, 1995, PHYS REV E, V51, P1711
4245    VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
4246 NR 21
4247 TC 16
4248 PU ELSEVIER SCIENCE BV
4249 PI AMSTERDAM
4250 PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
4251 SN 0010-4655
4252 J9 COMPUT PHYS COMMUN
4253 JI Comput. Phys. Commun.
4254 PD SEP-OCT
4255 PY 1999
4256 VL 122
4257 SI Sp. Iss. SI
4258 BP 299
4259 EP 302
4260 PG 4
4261 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
4262 GA 263LP
4263 UT ISI:000084126400071
4264 ER
4265 
4266 PT J
4267 AU Barrat, A
4268    Vespignani, A
4269    Zapperi, S
4270 TI Fluctuations and correlations in sandpile models
4271 SO PHYSICAL REVIEW LETTERS
4272 LA English
4273 DT Article
4274 ID SELF-ORGANIZED CRITICALITY; NON-BOLTZMANN FLUCTUATIONS; LATTICE
4275    THRESHOLD SYSTEMS; UPPER CRITICAL DIMENSION; NUMERICAL SIMULATIONS;
4276    AVALANCHES; EXPONENTS; DYNAMICS; EVENTS; NOISE
4277 AB We perform numerical simulations of the sandpile model for nonvanishing
4278    driving fields it and dissipation rates epsilon. Unlike simulations
4279    performed in the slow driving limit, the unique time scale present in
4280    our system allows us to measure unambiguously the response and
4281    correlation functions. We discuss the dynamic scaling of the model and
4282    show that fluctuation-dissipation relations are not obeyed in this
4283    system.
4284 C1 Univ Paris 11, Phys Theor Lab, UMR 8627, F-91405 Orsay, France.
4285    Int Ctr Theoret Phys, I-34100 Trieste, Italy.
4286    Ecole Super Phys & Chim Ind Ville Paris, PMMH, F-75231 Paris, France.
4287 RP Barrat, A, Univ Paris 11, Phys Theor Lab, UMR 8627, Batiment 210,
4288    F-91405 Orsay, France.
4289 CR BAK P, 1987, PHYS REV LETT, V59, P381
4290    BAK P, 1988, PHYS REV A, V38, P364
4291    BARRAT A, IN PRESS
4292    CHESSA A, 1998, PHYS REV E, V57, R6241
4293    CHESSA A, 1999, PHYS REV E A, V59, R12
4294    CUGLIANDOLO LF, 1997, PHYS REV E, V55, P3898
4295    DEMENECH M, 1998, PHYS REV E A, V58, R2677
4296    DHAR D, 1990, PHYS REV LETT, V64, P1613
4297    DIAZGUILERA A, 1992, PHYS REV A, V45, P8551
4298    DICKMAN R, 1998, PHYS REV E A, V57, P5095
4299    GIACOMETTI A, 1998, PHYS REV E, V58, P247
4300    GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
4301    HWA T, 1992, PHYS REV A, V45, P7002
4302    KUTNJAKURBANC B, 1996, PHYS REV E, V54, P6109
4303    LAURITSEN KB, IN PRESS
4304    LUBECK S, 1997, PHYS REV E A, V56, P5138
4305    LUBECK S, 1997, PHYS REV E, V55, P4095
4306    LUBECK S, 1997, PHYS REV E, V56, P1590
4307    MANNA SS, 1990, J STAT PHYS, V59, P509
4308    MANNA SS, 1991, J PHYS A, V24, L363
4309    MANNA SS, 1991, PHYSICA A, V179, P249
4310    MONTAKHAB A, 1998, PHYS REV E A, V58, P5608
4311    NARAYAN O, 1994, PHYS REV B, V49, P244
4312    PACZUSKI M, 1996, PHYS REV LETT, V77, P111
4313    PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
4314    PRIEZZHEV VB, 1994, J STAT PHYS, V74, P955
4315    RUNDLE JB, 1995, PHYS REV LETT, V75, P1658
4316    RUNDLE JB, 1997, PHYS REV LETT, V78, P3798
4317    VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
4318    VESPIGNANI A, 1998, PHYS REV E, V57, P6345
4319    VESPIGNANI A, 1998, PHYS REV LETT, V81, P5676
4320    XU HJ, 1997, PHYS REV LETT, V78, P3797
4321    ZAPPERI S, 1995, PHYS REV LETT, V75, P4071
4322 NR 33
4323 TC 6
4324 PU AMERICAN PHYSICAL SOC
4325 PI COLLEGE PK
4326 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
4327 SN 0031-9007
4328 J9 PHYS REV LETT
4329 JI Phys. Rev. Lett.
4330 PD SEP 6
4331 PY 1999
4332 VL 83
4333 IS 10
4334 BP 1962
4335 EP 1965
4336 PG 4
4337 SC Physics, Multidisciplinary
4338 GA 232WK
4339 UT ISI:000082392800016
4340 ER
4341 
4342 PT J
4343 AU Zapperi, S
4344    Ray, P
4345    Stanley, HE
4346    Vespignani, A
4347 TI Analysis of damage clusters in fracture processes
4348 SO PHYSICA A
4349 LA English
4350 DT Article
4351 DE fracture and cracks; phase transitions; avalanches
4352 ID SELF-ORGANIZED CRITICALITY; ACOUSTIC-EMISSION; ELECTRICAL BREAKDOWN;
4353    BURST AVALANCHES; NUCLEATION; MODELS; MEDIA; PRECURSORS; TRANSITION;
4354    BEHAVIOR
4355 AB We present numerical simulations of two-dimensional models of electric
4356    breakdown and fracture in disordered systems subject to an increasing
4357    external stress. We provide a geometrical characterization of the
4358    damage by studying the scaling behavior of connected bonds clusters,
4359    The average cluster size and the lattice conductivity show features
4360    characteristic of a first order phase transition. The obtained results
4361    are discussed within the spinodal nucleation scenario recently proposed
4362    for fractures. (C) 1999 Published by Elsevier Science B.V. All rights
4363    reserved.
4364 C1 Int Ctr Theoret Phys, I-34100 Trieste, Italy.
4365    Ecole Super Phys & Chim Ind, PMMH, F-75231 Paris 05, France.
4366    Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA.
4367    Boston Univ, Dept Phys, Boston, MA 02215 USA.
4368 RP Vespignani, A, Int Ctr Theoret Phys, POB 586, I-34100 Trieste, Italy.
4369 CR BARDHAN KK, 1994, NONLINEARITY BREAKDO
4370    CANNELLI G, 1993, PHYS REV LETT, V70, P3923
4371    CHAKRABARTI BK, 1997, STAT PHYSICS FRACTUR
4372    DEARCANGELIS L, 1985, J PHYS LETT, V46, L585
4373    DEARCANGELIS L, 1989, PHYS REV B, V39, P2678
4374    DIODATI P, 1991, PHYS REV LETT, V67, P2239
4375    DUXBURY PM, 1986, PHYS REV LETT, V57, P1052
4376    ENGLMAN R, 1990, PHYSICA A, V168, P665
4377    GARCIMARTIN A, 1997, PHYS REV LETT, V79, P3202
4378    GOLUBOVIC L, 1991, PHYS REV A, V43, P5223
4379    GOLUBOVIC L, 1995, PHYS REV E A, V51, P2799
4380    GRIFFITH AA, 1920, PHILOS T R SOC A, V221, P163
4381    GUARINO A, 1998, EUR PHYS J B, V6, P13
4382    HANSEN A, 1994, PHYS LETT A, V184, P394
4383    HEERMANN DW, 1982, PHYS REV LETT, V49, P1262
4384    HEMMER PC, 1992, J APPL MECH-T ASME, V59, P909
4385    KAHNG B, 1988, PHYS REV B, V37, P7625
4386    KLOSTER M, 1997, PHYS REV E A, V56, P2615
4387    LEUNG KT, 1997, EUROPHYS LETT, V38, P589
4388    LEUNG KT, 1998, PHYS REV LETT, V80, P1916
4389    MAES C, 1998, PHYS REV B, V57, P4987
4390    MONETTE L, 1994, INT J MOD PHYS B, V8, P1417
4391    PETRI A, 1994, PHYS REV LETT, V73, P3423
4392    RAY P, 1996, PHYSICA A, V229, P26
4393    RAY TS, 1990, J STAT PHYS, V61, P891
4394    ROUX S, 1988, J STAT PHYS, V52, P237
4395    SELINGER RLB, 1991, J CHEM PHYS, V95, P9128
4396    UNGER C, 1985, PHYS REV B, V31, P6127
4397    WEISS J, 1997, J PHYS CHEM B, V101, P6113
4398    ZAPPERI S, 1997, NATURE, V388, P658
4399    ZAPPERI S, 1997, PHYS REV LETT, V78, P1408
4400    ZAPPERI S, 1999, PHYS REV E A, V59, P5049
4401 NR 32
4402 TC 5
4403 PU ELSEVIER SCIENCE BV
4404 PI AMSTERDAM
4405 PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
4406 SN 0378-4371
4407 J9 PHYSICA A
4408 JI Physica A
4409 PD AUG 1
4410 PY 1999
4411 VL 270
4412 IS 1-2
4413 BP 57
4414 EP 62
4415 PG 6
4416 SC Physics, Multidisciplinary
4417 GA 231PQ
4418 UT ISI:000082319300010
4419 ER
4420 
4421 PT J
4422 AU Ivashkevich, EV
4423    Povolotsky, AM
4424    Vespignani, A
4425    Zapperi, S
4426 TI Dynamical real space renormalization group applied to sandpile models
4427 SO PHYSICAL REVIEW E
4428 LA English
4429 DT Article
4430 ID SELF-ORGANIZED CRITICALITY; FOREST-FIRE MODEL; 2-DIMENSIONAL ABELIAN
4431    SANDPILE; HEIGHT CORRELATIONS; CRITICAL EXPONENTS; CRITICAL-BEHAVIOR;
4432    ABSORBING-STATE; UNIVERSALITY; AVALANCHES; AUTOMATON
4433 AB A general framework for the renormalization group analysis of
4434    self-organized critical sandpile models is formulated. The usual real
4435    space renormalization scheme for lattice models when applied to
4436    nonequilibrium dynamical models must be supplemented by feedback
4437    relations coming from the stationarity conditions. On the basis of
4438    these ideas the dynamically driven renormalization group is applied to
4439    describe the boundary and bulk critical behavior of sandpile models. A
4440    detailed description of the branching nature of sandpile avalanches is
4441    given in terms of the generating functions of the underlying branching
4442    process. [S1063-651X(99)06006-7].
4443 C1 Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia.
4444    Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
4445    ESPCI, PMMH, F-75234 Paris, France.
4446 RP Ivashkevich, EV, Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys,
4447    Dubna 141980, Russia.
4448 CR BAK P, 1988, PHYS REV A, V38, P364
4449    BAK P, 1990, PHYS LETT A, V147, P297
4450    BAK P, 1993, FRACTALS DISORDERED, V2
4451    BENHUR A, 1996, PHYS REV E, V53, P1317
4452    BENHUR A, 1996, PHYS REV E, V54, P1426
4453    CARDY JL, 1972, PHASE TRANSITION CRI, V11
4454    DEOLIVEIRA MJ, 1997, PHYS REV E A, V55, P6377
4455    DHAR D, 1990, PHYS REV LETT, V64, P1613
4456    DICKMAN R, 1988, PHYS REV A, V38, P2588
4457    DICKMAN R, 1998, PHYS REV E A, V57, P5095
4458    DOMB C, 1972, PHASE TRANSITION CRI, V1
4459    DOMB C, 1983, PHASE TRANSITION CRI, V7
4460    DROSSEL B, 1992, PHYS REV LETT, V69, P1629
4461    GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
4462    GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
4463    HASTY J, 1997, J STAT PHYS, V86, P1179
4464    HASTY J, 1998, PHYS REV LETT, V81, P1722
4465    IVASHKEVICH EV, 1994, J PHYS A, V27, L585
4466    IVASHKEVICH EV, 1994, J PHYS A-MATH GEN, V27, P3643
4467    IVASHKEVICH EV, 1994, PHYSICA A, V209, P347
4468    IVASHKEVICH EV, 1996, PHYS REV LETT, V76, P3368
4469    KATZ S, 1983, PHYS REV B, V28, P1655
4470    LORETO V, 1995, PHYS REV LETT, V75, P465
4471    LUBECK S, 1997, PHYS REV E, V55, P4095
4472    LUBECK S, 1997, PHYS REV E, V56, P1590
4473    MAJUMDAR SN, 1991, J PHYS A, V24, L357
4474    MANDELBROT BB, 1983, FRACTAL GEOMETRY NAT
4475    MANNA SS, 1991, J PHYS A, V24, L363
4476    MILSHTEIN E, 1998, PHYS REV E, V58, P303
4477    NIEMEIJER T, 1972, PHASE TRANSITION CRI, V6
4478    PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
4479    PRIEZZHEV VB, 1994, J STAT PHYS, V74, P955
4480    PRIEZZHEV VB, 1996, PHYS REV LETT, V76, P2093
4481    SCHMITTMANN B, 1972, PHASE TRANSITION CRI, V17
4482    STELLA AL, 1995, PHYS REV E A, V52, P72
4483    TOME T, 1997, PHYS REV E, V55, P4000
4484    VESPIGNANI A, 1995, PHYS REV E, V51, P1711
4485    VESPIGNANI A, 1996, PHYS REV LETT, V77, P4560
4486    VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
4487    VESPIGNANI A, 1998, PHYS REV E, V57, P6345
4488    VICSEK T, 1992, FRACTAL GROWTH PHENO
4489    ZHANG YC, 1989, PHYS REV LETT, V63, P470
4490 NR 42
4491 TC 4
4492 PU AMERICAN PHYSICAL SOC
4493 PI COLLEGE PK
4494 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
4495 SN 1063-651X
4496 J9 PHYS REV E
4497 JI Phys. Rev. E
4498 PD AUG
4499 PY 1999
4500 VL 60
4501 IS 2
4502 PN Part A
4503 BP 1239
4504 EP 1251
4505 PG 13
4506 SC Physics, Fluids & Plasmas; Physics, Mathematical
4507 GA 230CU
4508 UT ISI:000082234900023
4509 ER
4510 
4511 PT J
4512 AU Zapperi, S
4513    Ray, P
4514    Stanley, HE
4515    Vespignani, A
4516 TI Comment on "first-order transition in the breakdown of disordered
4517    media" - Zapperi et al. reply
4518 SO PHYSICAL REVIEW LETTERS
4519 LA English
4520 DT Article
4521 ID FRACTURE PRECURSORS
4522 C1 ESPCI, PMMH, F-75231 Paris 05, France.
4523    Inst Math Sci, Chennai 600113, India.
4524    Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA.
4525    Boston Univ, Dept Phys, Boston, MA 02215 USA.
4526    Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
4527 RP Zapperi, S, ESPCI, PMMH, 10 Rue Vauquelin, F-75231 Paris 05, France.
4528 CR CALDARELLI G, 1999, PHYS REV LETT, V83, P1483
4529    DUXBURY PM, 1986, PHYS REV LETT, V57, P1052
4530    GARCIMARTIN A, 1997, PHYS REV LETT, V79, P3202
4531    GUARINO A, 1998, EUR PHYS J B, V6, P13
4532    RAISANEN VI, 1998, PHYS REV B, V58, P14288
4533    ZAPPERI S, 1997, PHYS REV LETT, V78, P1408
4534    ZAPPERI S, 1999, PHYS REV E A, V59, P5049
4535 NR 7
4536 TC 0
4537 PU AMERICAN PHYSICAL SOC
4538 PI COLLEGE PK
4539 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
4540 SN 0031-9007
4541 J9 PHYS REV LETT
4542 JI Phys. Rev. Lett.
4543 PD AUG 16
4544 PY 1999
4545 VL 83
4546 IS 7
4547 BP 1484
4548 EP 1484
4549 PG 1
4550 SC Physics, Multidisciplinary
4551 GA 227EY
4552 UT ISI:000082066600054
4553 ER
4554 
4555 PT J
4556 AU Zapperi, S
4557    Ray, P
4558    Stanley, HE
4559    Vespignani, A
4560 TI Avalanches in breakdown and fracture processes
4561 SO PHYSICAL REVIEW E
4562 LA English
4563 DT Article
4564 ID SELF-ORGANIZED CRITICALITY; ACOUSTIC-EMISSION; DIELECTRIC-BREAKDOWN;
4565    ELECTRICAL BREAKDOWN; BURST AVALANCHES; PHASE-TRANSITION; FUSE
4566    NETWORKS; NUCLEATION; DISORDER; DYNAMICS
4567 AB We investigate the breakdown of disordered networks under the action of
4568    an increasing external-mechanical or electrical-force. We perform a
4569    mean-field analysis and estimate scaling exponents for the approach to
4570    the instability. By simulating two-dimensional models of electric
4571    breakdown and fracture we observe that the breakdown is preceded by
4572    avalanche events. The avalanches can be described by scaling laws, and
4573    the estimated values of the exponents are consistent with those found
4574    in mean-field theory. The breakdown point is characterized by a
4575    discontinuity in the macroscopic properties of the material, such as
4576    conductivity or elasticity, indicative of a first-order transition. The
4577    scaling laws suggest an analogy with the behavior expected in spinodal
4578    nucleation. [S1063-651X(99)09205-3].
4579 C1 Ecole Super Phys & Chim Ind, PMMH, F-75231 Paris 05, France.
4580    Inst Math Sci, Madras 600113, Tamil Nadu, India.
4581    Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA.
4582    Boston Univ, Dept Phys, Boston, MA 02215 USA.
4583    Abdus Salam Int Ctr Theoret Phys, ICTP, I-34100 Trieste, Italy.
4584 RP Zapperi, S, Ecole Super Phys & Chim Ind, PMMH, 10 Rue Vauquelin,
4585    F-75231 Paris 05, France.
4586 CR ACHARYYA M, 1996, PHYS REV E A, V53, P140
4587    ACHARYYA M, 1996, PHYSICA A, V224, P287
4588    BARDHAN KK, 1994, NONLINEARITY BREAKDO
4589    BUCHEL A, 1996, PHYS REV LETT, V77, P1520
4590    CALDARELLI G, 1996, PHYS REV LETT, V77, P2503
4591    CANNELLI G, 1993, PHYS REV LETT, V70, P3923
4592    CHAKRABARTI BK, 1997, STAT PHYSICS FRACTUR
4593    CILIBERTO S, 1994, J PHYS I, V4, P223
4594    DAHMEN K, 1996, PHYS REV B, V53, P14872
4595    DANIELS HE, 1945, PROC R SOC LON SER-A, V183, P405
4596    DEARCANGELIS L, 1985, J PHYS LETT, V46, L585
4597    DEARCANGELIS L, 1989, PHYS REV B, V39, P2678
4598    DIODATI P, 1991, PHYS REV LETT, V67, P2239
4599    DUXBURY PM, 1986, PHYS REV LETT, V57, P1052
4600    ENGLMAN R, 1990, PHYSICA A, V168, P665
4601    FIELD S, 1995, PHYS REV LETT, V74, P1206
4602    GARCIMARTIN A, 1997, PHYS REV LETT, V79, P3202
4603    GOLUBOVIC L, 1991, PHYS REV A, V43, P5223
4604    GRIFFITH AA, 1920, PHILOS T R SOC A, V221, P163
4605    GUARINO A, 1998, EUR PHYS J B, V6, P13
4606    GUNTON JD, 1983, PHASE TRANSITIONS CR, V8
4607    GUTENBERG B, 1944, B SEISMOL SOC AM, V34, P185
4608    HANSEN A, 1994, PHYS LETT A, V184, P394
4609    HANSEN A, 1994, TRENDS STAT PHYS, V1, P213
4610    HEERMANN DW, 1982, PHYS REV LETT, V49, P1262
4611    HEMMER PC, 1992, J APPL MECH-T ASME, V59, P909
4612    HERRMANN HJ, 1990, STAT MODELS FRACTURE
4613    KAHNG B, 1988, PHYS REV B, V37, P7625
4614    KIRKPATRICK S, 1973, REV MOD PHYS, V45, P574
4615    KLOSTER M, 1997, PHYS REV E A, V56, P2615
4616    LEUNG KT, 1997, EUROPHYS LETT, V38, P589
4617    LIEBOWITZ H, 1968, FRACTURE ADV TREATIS, V1
4618    MAES C, 1998, PHYS REV B, V57, P4987
4619    MONETTE L, 1992, PHYS REV LETT, V63, P2336
4620    MONETTE L, 1994, INT J MOD PHYS B, V8, P1417
4621    PETRI A, 1994, PHYS REV LETT, V73, P3423
4622    PHOENIX SL, 1973, ADV APPL PROBAB, V5, P200
4623    PRESS WH, 1991, COMPUT PHYS, V5, P514
4624    RAISANEN VI, 1998, PHYS REV B, V58, P14288
4625    RAY P, 1996, PHYSICA A, V229, P26
4626    RAY TS, 1990, J STAT PHYS, V61, P891
4627    ROUX S, 1988, J STAT PHYS, V52, P237
4628    RUNDLE J, 1998, PHYS REV LETT, V80, P5698
4629    RUNDLE JB, 1989, PHYS REV LETT, V63, P171
4630    RUNDLE JB, 1995, P SANT FE I WORKSH R
4631    RUNDLE JB, 1996, PHYS REV LETT, V76, P4285
4632    SELINGER RLB, 1991, J CHEM PHYS, V95, P9128
4633    SELINGER RLB, 1991, PHYS REV A, V43, P4396
4634    SETHNA JP, 1993, PHYS REV LETT, V70, P3347
4635    SORNETTE D, 1998, EUR PHYS J B, V1, P353
4636    SUKI B, 1994, NATURE, V368, P615
4637    THOMPSON AH, 1987, PHYS REV LETT, V58, P29
4638    TZSCHICHHOLZ F, 1995, PHYS REV E, V51, P1961
4639    UNGER C, 1984, PHYS REV B, V29, P2698
4640    UNGER C, 1985, PHYS REV B, V31, P6127
4641    VASCONCELOS GL, 1996, PHYS REV LETT, V76, P4865
4642    WANG ZG, 1991, PHYS REV B, V44, P378
4643    WEISS J, 1997, J PHYS CHEM B, V101, P6113
4644    ZAPPERI S, 1997, NATURE, V388, P658
4645    ZAPPERI S, 1997, PHYS REV LETT, V78, P1408
4646    ZAPPERI S, 1998, PHYS REV B, V58, P6353
4647 NR 61
4648 TC 47
4649 PU AMERICAN PHYSICAL SOC
4650 PI COLLEGE PK
4651 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
4652 SN 1063-651X
4653 J9 PHYS REV E
4654 JI Phys. Rev. E
4655 PD MAY
4656 PY 1999
4657 VL 59
4658 IS 5
4659 PN Part A
4660 BP 5049
4661 EP 5057
4662 PG 9
4663 SC Physics, Fluids & Plasmas; Physics, Mathematical
4664 GA 197TX
4665 UT ISI:000080382700050
4666 ER
4667 
4668 PT J
4669 AU Munoz, MA
4670    Dickman, R
4671    Vespignani, A
4672    Zapperi, S
4673 TI Avalanche and spreading exponents in systems with absorbing states
4674 SO PHYSICAL REVIEW E
4675 LA English
4676 DT Article
4677 ID SELF-ORGANIZED CRITICALITY; SURFACE-REACTION MODEL; ANNIHILATING
4678    RANDOM-WALKS; BAK-SNEPPEN MODEL; DIRECTED PERCOLATION;
4679    CRITICAL-BEHAVIOR; FIELD-THEORY; PHASE-TRANSITIONS; PUNCTUATED
4680    EQUILIBRIUM; INFINITE NUMBERS
4681 AB We present generic scaling laws relating spreading critical exponents
4682    and avalanche exponents (in the sense of self-organized criticality) in
4683    general systems with absorbing states. Using these scaling laws we
4684    present a collection of the state-of-the-art exponents for directed
4685    percolation, dynamical percolation, and other universality classes.
4686    This collection of results should help to elucidate the connections of
4687    self-organized criticality and systems with absorbing states. In
4688    particular, some nonuniversality in avalanche exponents is predicted
4689    for systems with many absorbing states. [S1063-651X(99)06205-4].
4690 C1 Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
4691    Univ La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
4692    Univ La Sapienza, Unita INFM, I-00185 Rome, Italy.
4693    Univ Fed Santa Catarina, Dept Fis, BR-88040900 Florianopolis, SC, Brazil.
4694    Ecole Super Phys & Chim Ind, PMMH, F-75231 Paris 05, France.
4695 RP Munoz, MA, Abdus Salam Int Ctr Theoret Phys, POB 586, I-34100 Trieste,
4696    Italy.
4697 CR ADLER J, 1987, PHYS REV B, V35, P7046
4698    ADLER J, 1988, PHYS REV B, V37, P7529
4699    BAK P, 1987, PHYS REV LETT, V59, P381
4700    BAK P, 1993, PHYS REV LETT, V71, P4083
4701    BARABASI AL, 1995, FRACTAL CONCEPTS SUR
4702    BARABASI AL, 1996, PHYS REV LETT, V76, P1481
4703    BUNDE A, 1991, FRACTALS DISORDERED
4704    CARDY J, 1996, PHYS REV LETT, V77, P4780
4705    CARDY JL, 1985, J PHYS A, V18, L267
4706    CHESSA A, 1999, PHYS REV E A, V59, R12
4707    CLAR S, 1995, PHYS REV LETT, V75, P2722
4708    DEUTSCHER G, 1983, ANN ISRAEL PHYSICAL, V5
4709    DICKMAN R, 1998, PHYS REV E A, V57, P5095
4710    DOMANY E, 1984, PHYS REV LETT, V53, P311
4711    FROJDH P, 1998, J PHYS A-MATH GEN, V31, P2311
4712    GRASSBERGER P, CONDMAT9808095
4713    GRASSBERGER P, 1979, ANN PHYS-NEW YORK, V122, P373
4714    GRASSBERGER P, 1982, Z PHYS B CON MAT, V47, P365
4715    GRASSBERGER P, 1983, MATH BIOSCI, V63, P157
4716    GRASSBERGER P, 1985, J PHYS A, V18, L215
4717    GRASSBERGER P, 1995, J STAT PHYS, V79, P13
4718    GRASSBERGER P, 1995, PHYS LETT A, V200, P277
4719    HARRIS TE, 1974, ANN PROBAB, V2, P969
4720    HAVLIN S, 1984, J PHYS A-MATH GEN, V17, L427
4721    JANSSEN HK, 1981, Z PHYS B CON MAT, V42, P151
4722    JANSSEN HK, 1985, Z PHYS B CON MAT, V58, P311
4723    JENSEN I, 1990, PHYS REV A, V41, P3411
4724    JENSEN I, 1992, PHYS REV A, V45, R563
4725    JENSEN I, 1993, PHYS REV E, V48, P1710
4726    JENSEN I, 1993, PHYS REV LETT, V70, P1465
4727    JENSEN I, 1994, INT J MOD PHYS B, V8, P3299
4728    JENSEN I, 1994, PHYS REV E, V50, P3623
4729    JENSEN I, 1996, J PHYS A-MATH GEN, V29, P7013
4730    JOVANOVIC B, 1994, PHYS REV E, V50, P2403
4731    KERTESZ J, 1989, PHYS REV LETT, V62, P2571
4732    KIM MH, 1994, PHYS REV LETT, V73, P2579
4733    LAURITSEN KB, 1997, PHYSICA A, V247, P1
4734    LAURITSEN KB, 1998, PHYS REV LETT, V81, P2104
4735    LIGGETT TM, 1985, INTERACTING PARTICLE
4736    MARRO J, 1997, LECT NOTE PHYS, V493, P223
4737    MASLOV S, 1995, PHYS REV LETT, V74, P562
4738    MENDES JFF, 1994, J PHYS A-MATH GEN, V27, P3019
4739    MUNOZ MA, REPORT
4740    MUNOZ MA, 1996, PHYS REV LETT, V76, P451
4741    MUNOZ MA, 1997, PHYS REV E A, V56, P5101
4742    MUNOZ MA, 1997, PHYSICA D, V103, P485
4743    MUNOZ MA, 1998, J STAT PHYS, V91, P541
4744    PACZUSKI M, 1994, EUROPHYS LETT, V27, P97
4745    PACZUSKI M, 1996, PHYS REV E A, V53, P414
4746    SORNETTE D, 1996, PHYS REV E A, V54, P3334
4747    TAKAYASU H, 1992, PHYS REV LETT, V68, P3060
4748    VESPIGNANI A, 1998, PHYS REV LETT, V81, P5676
4749    VOIGT CA, 1997, PHYS REV E, V56, P6241
4750    ZIFF RM, 1986, PHYS REV LETT, V56, P2553
4751 NR 54
4752 TC 50
4753 PU AMERICAN PHYSICAL SOC
4754 PI COLLEGE PK
4755 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
4756 SN 1063-651X
4757 J9 PHYS REV E
4758 JI Phys. Rev. E
4759 PD MAY
4760 PY 1999
4761 VL 59
4762 IS 5
4763 PN Part B
4764 BP 6175
4765 EP 6179
4766 PG 5
4767 SC Physics, Fluids & Plasmas; Physics, Mathematical
4768 GA 197TZ
4769 UT ISI:000080382900084
4770 ER
4771 
4772 PT J
4773 AU Chessa, A
4774    Stanley, HE
4775    Vespignani, A
4776    Zapperi, S
4777 TI Universality in sandpiles
4778 SO PHYSICAL REVIEW E
4779 LA English
4780 DT Article
4781 ID SELF-ORGANIZED CRITICALITY; MODEL; NOISE
4782 AB We perform extensive numerical simulations of different versions of the
4783    sandpile model. We find that previous claims about universality classes
4784    are unfounded, since the method previously employed to analyze the data
4785    suffered from a systematic bias. We identify the correct scaling
4786    behavior and provide evidences suggesting that sandpiles with
4787    stochastic and deterministic toppling rules belong to the same
4788    universality class. [S1063-651X(99)50701-0].
4789 C1 Univ Cagliari, Dipartimento Fis, I-09124 Cagliari, Italy.
4790    Univ Cagliari, Unita INFM, I-09124 Cagliari, Italy.
4791    Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA.
4792    Boston Univ, Dept Phys, Boston, MA 02215 USA.
4793    Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
4794    Ecole Super Phys & Chim Ind Ville Paris, PMMH, F-75231 Paris 05, France.
4795 RP Chessa, A, Univ Cagliari, Dipartimento Fis, Via Osped 72, I-09124
4796    Cagliari, Italy.
4797 CR AMARAL LAN, 1997, PHYS REV E A, V56, P231
4798    BAK P, 1987, PHYS REV LETT, V59, P381
4799    BENHUR A, 1996, PHYS REV E, V53, P1317
4800    CHESSA A, 1998, PHYS REV E, V57, R6241
4801    CHRISTENSEN K, 1991, J STAT PHYS, V63, P653
4802    CILIBERTO S, 1994, J PHYS I, V4, P223
4803    DEMENECH M, 1998, PHYS REV E A, V58, R2677
4804    DHAR D, 1989, PHYS REV LETT, V63, P1659
4805    DIAZGUILERA A, 1994, EUROPHYS LETT, V26, P177
4806    DICKMAN R, 1998, PHYS REV E A, V57, P5095
4807    DURIN G, 1995, FRACTALS, V3, P351
4808    FIELD S, 1995, PHYS REV LETT, V74, P1206
4809    GARCIMARTIN A, 1997, PHYS REV LETT, V79, P3202
4810    GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
4811    GUTENBERG B, 1956, ANN GEOFIS, V9, P1
4812    LUBECK S, 1997, PHYS REV E A, V56, P5138
4813    LUBECK S, 1997, PHYS REV E, V55, P4095
4814    LUBECK S, 1997, PHYS REV E, V56, P1590
4815    MANNA SS, 1991, J PHYS A, V24, L363
4816    MILSHTEIN E, CONDMAT9805206
4817    MILSHTEIN E, 1998, PHYS REV E, V58, P303
4818    PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
4819    SPASOJEVIC D, 1996, PHYS REV E, V54, P2531
4820    VESPIGNANI A, CONDMAT9806249
4821    VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
4822    VESPIGNANI A, 1998, PHYS REV E, V57, P6345
4823    ZHANG YC, 1989, PHYS REV LETT, V63, P470
4824 NR 27
4825 TC 31
4826 PU AMERICAN PHYSICAL SOC
4827 PI COLLEGE PK
4828 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
4829 SN 1063-651X
4830 J9 PHYS REV E
4831 JI Phys. Rev. E
4832 PD JAN
4833 PY 1999
4834 VL 59
4835 IS 1
4836 PN Part A
4837 BP R12
4838 EP R15
4839 PG 4
4840 SC Physics, Fluids & Plasmas; Physics, Mathematical
4841 GA 158JH
4842 UT ISI:000078111900004
4843 ER
4844 
4845 PT J
4846 AU Vespignani, A
4847    Dickman, R
4848    Munoz, MA
4849    Zapperi, S
4850 TI Driving, conservation, and absorbing states in sandpiles
4851 SO PHYSICAL REVIEW LETTERS
4852 LA English
4853 DT Article
4854 ID SELF-ORGANIZED CRITICALITY; CRITICAL-BEHAVIOR; PHASE-TRANSITIONS;
4855    MODEL; EXPONENTS; LATTICE
4856 AB We use a phenomenological field theory, reflecting the symmetries and
4857    conservation laws of sandpiles, to compare the driven dissipative
4858    sandpile, widely studied in the context of self-organized criticality,
4859    with the corresponding fixed-energy model. The latter displays an
4860    absorbing-state phase transition with upper critical dimension d(c) =
4861    4. We show that the driven model exhibits a fundamentally different
4862    approach to the critical point, and compute a subset of critical
4863    exponents. We present numerical simulations in support of our
4864    theoretical predictions.
4865 C1 Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
4866    Univ Fed Santa Catarina, Dept Fis, BR-88040900 Florianopolis, SC, Brazil.
4867    Univ Rome La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
4868    Univ Rome La Sapienza, Unita INFM, I-00185 Rome, Italy.
4869    ESPCI, PMMH, F-75231 Paris 05, France.
4870 RP Vespignani, A, Abdus Salam Int Ctr Theoret Phys, POB 586, I-34100
4871    Trieste, Italy.
4872 CR BAK P, 1987, PHYS REV LETT, V59, P381
4873    BARABASI AL, 1995, FRACTAL CONCEPTS SUR
4874    CARDY J, 1996, PHYS REV LETT, V77, P4780
4875    CHESSA A, CONDMAT9808263
4876    CHESSA A, 1998, PHYS REV E, V57, R6241
4877    DHAR D, CONDMAT9808047
4878    DHAR D, 1990, PHYS REV LETT, V64, P1613
4879    DIAZGUILERA A, 1994, EUROPHYS LETT, V26, P177
4880    DICKMAN R, 1996, NONEQUILIBRIUM STAT
4881    DICKMAN R, 1998, PHYS REV E A, V57, P5095
4882    GRASSBERGER P, COMMUNICATION
4883    GRASSBERGER P, 1979, ANN PHYS-NEW YORK, V122, P373
4884    GRASSBERGER P, 1982, Z PHYS B CON MAT, V47, P365
4885    GRASSBERGER P, 1995, PHYS LETT A, V200, P277
4886    GRINSTEIN G, 1995, NATO ASI B, V344
4887    HARRIS TE, 1974, ANN PROBAB, V2, P969
4888    HARRIS TE, 1989, THEORY BRANCHING PRO
4889    JENSEN I, 1993, PHYS REV LETT, V70, P1465
4890    KINZEL W, 1985, Z PHYS B CON MAT, V58, P229
4891    LAURITSEN KB, COMMUNICATION
4892    LUBECK S, 1997, PHYS REV E, V55, P4095
4893    LUBECK S, 1998, PHYS REV E A, V58, P2957
4894    MANNA SS, 1991, J PHYS A, V24, L363
4895    MARRO J, 1998, NONEQUILIBRIUM PHASE
4896    MILSHTEIN E, 1998, PHYS REV E, V58, P303
4897    MUNOZ MA, 1996, PHYS REV LETT, V76, P451
4898    MUNOZ MA, 1998, J STAT PHYS, V91, P541
4899    PACZUSKI M, 1994, EUROPHYS LETT, V27, P97
4900    SORNETTE D, 1995, J PHYS I, V5, P325
4901    TANG C, 1988, PHYS REV LETT, V60, P2347
4902    VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
4903 NR 31
4904 TC 63
4905 PU AMERICAN PHYSICAL SOC
4906 PI COLLEGE PK
4907 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
4908 SN 0031-9007
4909 J9 PHYS REV LETT
4910 JI Phys. Rev. Lett.
4911 PD DEC 21
4912 PY 1998
4913 VL 81
4914 IS 25
4915 BP 5676
4916 EP 5679
4917 PG 4
4918 SC Physics, Multidisciplinary
4919 GA 150HT
4920 UT ISI:000077659500050
4921 ER
4922 
4923 PT J
4924 AU Chessa, A
4925    Marinari, E
4926    Vespignani, A
4927    Zapperi, S
4928 TI Mean-field behavior of the sandpile model below the upper critical
4929    dimension
4930 SO PHYSICAL REVIEW E
4931 LA English
4932 DT Article
4933 ID SELF-ORGANIZED CRITICALITY
4934 AB We present results of large scale numerical simulations of the Bak,
4935    Tang, and Wiesenfeld [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38,
4936    364 (1988)] sandpile model. We analyze the critical behavior of the
4937    model in Euclidean dimensions 2 less than or equal to d less than or
4938    equal to 6. We consider a dissipative generalization of the model and
4939    study the avalanche size and duration distributions for different
4940    values of the lattice size and dissipation. We find that the scaling
4941    exponents in d=4 significantly differ from mean-field predictions, thus
4942    Suggesting an upper critical dimension d(c)greater than or equal to 5.
4943    Using the relations among the dissipation rate epsilon and the finite
4944    lattice size L, we find that a subset of the exponents displays
4945    mean-field values below the upper critical dimensions. This behavior is
4946    explained in terms of conservation laws.
4947 C1 Univ Cagliari, Dipartimento Fis, I-09124 Cagliari, Italy.
4948    INFM, Sez Cagliari, I-09124 Cagliari, Italy.
4949    INFN, Sez Cagliari, I-09124 Cagliari, Italy.
4950    Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
4951    Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA.
4952    Boston Univ, Dept Phys, Boston, MA 02215 USA.
4953 RP Chessa, A, Univ Cagliari, Dipartimento Fis, Via Osped 72, I-09124
4954    Cagliari, Italy.
4955 CR BAK P, 1987, PHYS REV LETT, V59, P381
4956    BENHUR A, 1996, PHYS REV E, V53, P1317
4957    CHESSA A, UNPUB
4958    CHRISTENSEN K, 1993, PHYS REV E, V48, P3361
4959    DHAR D, 1990, PHYS REV LETT, V64, P1613
4960    DIAZGUILERA A, 1994, EUROPHYS LETT, V26, P177
4961    DICKMAN R, IN PRESS PHYS REV E
4962    DICKMAN R, 1996, NONEQUILIBRIUM STAT
4963    GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
4964    LUBECK S, 1997, PHYS REV E A, V56, P5138
4965    LUBECK S, 1997, PHYS REV E, V55, P4095
4966    LUBECK S, 1997, PHYS REV E, V56, P1590
4967    MANNA SS, 1990, J STAT PHYS, V59, P509
4968    MANNA SS, 1990, J STAT PHYS, V61, P923
4969    PRIEZZHEV VB, 1994, J STAT PHYS, V74, P955
4970    SORNETTE D, 1995, J PHYS I, V5, P325
4971    VESPIGNANI A, IN PRESS PHYS REV E
4972    VESPIGNANI A, 1995, PHYS REV E, V51, P1711
4973    VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
4974    ZAPPERI S, 1995, PHYS REV LETT, V75, P4071
4975    ZHANG YC, 1989, PHYS REV LETT, V63, P470
4976 NR 21
4977 TC 10
4978 PU AMERICAN PHYSICAL SOC
4979 PI COLLEGE PK
4980 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
4981 SN 1063-651X
4982 J9 PHYS REV E
4983 JI Phys. Rev. E
4984 PD JUN
4985 PY 1998
4986 VL 57
4987 IS 6
4988 BP R6241
4989 EP R6244
4990 PG 4
4991 SC Physics, Fluids & Plasmas; Physics, Mathematical
4992 GA ZU947
4993 UT ISI:000074252400004
4994 ER
4995 
4996 PT J
4997 AU Vespignani, A
4998    Zapperi, S
4999 TI How self-organized criticality works: A unified mean-field picture
5000 SO PHYSICAL REVIEW E
5001 LA English
5002 DT Article
5003 ID FOREST-FIRE MODEL; CRITICAL-BEHAVIOR; SANDPILE MODELS;
5004    BRANCHING-PROCESSES; NONEQUILIBRIUM SYSTEMS; PHASE-TRANSITIONS; ABELIAN
5005    SANDPILE; AVALANCHES; RENORMALIZATION; PERCOLATION
5006 AB We present a unified dynamical mean-field theory, based on the single
5007    site approximation to the master-equation, for stochastic
5008    self-organized critical models. In particular, we analyze in detail the
5009    properties of sandpile and forest-fire (FF) models. In analogy with
5010    other nonequilibrium critical phenomena, we identify an order parameter
5011    with the density of ''active'' sites, and control parameters with the
5012    driving rates. Depending on the values of the control parameters, the
5013    system is shown to reach a subcritical (absorbing) or supercritical
5014    (active) stationary state. Criticality is analyzed in terms of the
5015    singularities of the zero-field susceptibility. In the limit of
5016    vanishing control parameters, the stationary state displays scaling
5017    characteristics of self-organized criticality (SOC). We show that this
5018    limit corresponds to the breakdown of space-time locality in the
5019    dynamical rules of the models. We define a complete set of critical
5020    exponents, describing the scaling of order parameter, response
5021    functions, susceptibility and correlation length in the subcritical and
5022    supercritical states. In the subcritical state, the response of the
5023    system to small perturbations takes place in avalanches. We analyze
5024    their scaling behavior in relation with branching processes. In
5025    sandpile models, because of conservation laws, a critical exponents
5026    subset displays mean-field values (nu=1/2 and gamma=1) in any
5027    dimensions. We treat bull; and boundary dissipation and introduce a
5028    critical exponent relating dissipation and finite size effects. We
5029    present numerical simulations that confirm our results. In the case of
5030    the forest-fire model, our approach can distinguish between different
5031    regimes (SOC-FF and deterministic FF) studied in the literature, and
5032    determine the full spectrum of critical exponents.
5033 C1 Int Ctr Theoret Phys, I-34100 Trieste, Italy.
5034    Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA.
5035    Boston Univ, Dept Phys, Boston, MA 02215 USA.
5036 RP Vespignani, A, Int Ctr Theoret Phys, POB 586, I-34100 Trieste, Italy.
5037 CR BAK P, 1987, PHYS REV LETT, V59, P381
5038    BAK P, 1988, PHYS REV A, V38, P364
5039    BAK P, 1990, PHYS LETT A, V147, P297
5040    BAK P, 1993, PHYS REV LETT, V71, P4083
5041    BENHUR A, 1996, PHYS REV E, V53, P1317
5042    BROKER HM, 1997, PHYS REV E A, V56, R4918
5043    BROKER HM, 1997, PHYS REV E, V56, P3944
5044    CALDARELLI G, UNPUB
5045    CHABANOL ML, 1997, PHYS REV E A, V56, R2343
5046    CHESSA A, UNPUB
5047    CHRISTENSEN K, 1993, PHYS REV E, V48, P3361
5048    CHRISTENSEN K, 1993, PHYS REV LETT, V71, P2737
5049    CLAR S, 1994, PHYS REV E A, V50, P1009
5050    CLAR S, 1996, J PHYS-CONDENS MAT, V8, P6803
5051    DHAR D, 1990, J PHYS A-MATH GEN, V23, P4333
5052    DHAR D, 1990, PHYS REV LETT, V64, P1613
5053    DIAZGUILERA A, 1992, PHYS REV A, V45, P8551
5054    DICKMAN R, 1986, PHYS REV A, V34, P4246
5055    DROSSEL B, 1993, PHYS REV LETT, V71, P3739
5056    DURIN G, 1995, FRACTALS, V3, P351
5057    ESSAM JW, 1972, PHASE TRANSITIONS CR, V2
5058    FIELD S, 1995, PHYS REV LETT, V74, P1206
5059    FLYVBJERG H, 1993, PHYS REV LETT, V71, P4087
5060    FRETTE V, 1996, NATURE, V379, P49
5061    GARCIAPELAYO R, 1994, PHYS REV E A, V49, P4903
5062    GIL L, 1996, PHYS REV LETT, V76, P3991
5063    GRASSBERGER P, 1979, ANN PHYS-NEW YORK, V122, P373
5064    GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
5065    GRASSBERGER P, 1993, J PHYS A-MATH GEN, V26, P2081
5066    GRASSBERGER P, 1994, PHYS REV E, V49, P2436
5067    GRASSBERGER P, 1996, PHYSICA A, V224, P169
5068    GRINSTEIN G, 1990, PHYS REV LETT, V64, P1927
5069    GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
5070    GUTENBERG B, 1956, ANN GEOFIS, V9, P1
5071    HARRIS TE, 1989, THEORY BRANCHING PRO
5072    HASTY J, 1997, J STAT PHYS, V86, P1179
5073    HENLEY CL, 1993, PHYS REV LETT, V71, P2741
5074    HWA T, 1989, PHYS REV LETT, V62, P1813
5075    IVASHKEVICH EV, 1996, PHYS REV LETT, V76, P3368
5076    JAEGER HM, 1989, PHYS REV LETT, V62, P40
5077    JANOWSKY SA, 1993, J PHYS A, V26, L973
5078    KADANOFF LP, 1989, PHYS REV A, V39, P6524
5079    KATORI M, 1996, PHYSICA A, V229, P461
5080    LAURITSEN KB, 1996, PHYS REV E, V54, P2483
5081    LILLY MP, 1993, PHYS REV LETT, V71, P4186
5082    LORETO V, 1995, PHYS REV LETT, V75, P465
5083    LUBECK S, 1997, PHYS REV E, V55, P4095
5084    LUBECK S, 1997, PHYS REV E, V56, P1590
5085    MANNA SS, 1990, J STAT PHYS, V59, P509
5086    MANNA SS, 1990, J STAT PHYS, V61, P923
5087    MANNA SS, 1991, J PHYS A, V24, L363
5088    MENDES JFF, 1994, J PHYS A-MATH GEN, V27, P3019
5089    MIDDLETON AA, 1995, PHYS REV LETT, V74, P742
5090    MUNOZ MA, 1996, PHYS REV LETT, V76, P451
5091    OLAMI Z, 1992, PHYS REV LETT, V68, P1244
5092    PACZUSKI M, 1996, PHYS REV E A, V53, P414
5093    PATZLAFF H, 1994, PHYS LETT A, V189, P187
5094    PETRI A, 1994, PHYS REV LETT, V73, P3423
5095    PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
5096    PRIEZZHEV VB, 1994, J STAT PHYS, V74, P955
5097    SCHMITTMANN B, 1995, PHASE TRANSITIONS CR, V17
5098    SORNETTE D, 1992, J PHYS I, V2, P2065
5099    SORNETTE D, 1995, J PHYS I, V5, P325
5100    STELLA AL, 1995, PHYS REV E A, V52, P72
5101    SUKI B, 1994, NATURE, V368, P615
5102    TANG C, 1988, PHYS REV LETT, V60, P2347
5103    VERGELES M, 1997, PHYS REV E, V55, P1998
5104    VESPIGNANI A, UNPUB
5105    VESPIGNANI A, 1995, PHYS REV E, V51, P1711
5106    VESPIGNANI A, 1996, PHYS REV LETT, V77, P4560
5107    VESPIGNANI A, 1997, J STAT PHYS, V88, P47
5108    VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
5109    WILKINSON D, 1983, J PHYS A-MATH GEN, V16, P3365
5110    ZAPPERI S, 1995, PHYS REV LETT, V75, P4071
5111    ZHANG YC, 1989, PHYS REV LETT, V63, P470
5112 NR 75
5113 TC 111
5114 PU AMERICAN PHYSICAL SOC
5115 PI COLLEGE PK
5116 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
5117 SN 1063-651X
5118 J9 PHYS REV E
5119 JI Phys. Rev. E
5120 PD JUN
5121 PY 1998
5122 VL 57
5123 IS 6
5124 BP 6345
5125 EP 6362
5126 PG 18
5127 SC Physics, Fluids & Plasmas; Physics, Mathematical
5128 GA ZU947
5129 UT ISI:000074252400020
5130 ER
5131 
5132 PT J
5133 AU Vespignani, A
5134    Zapperi, S
5135    Loreto, V
5136 TI Dynamically driven renormalization group applied to self-organized
5137    critical systems
5138 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
5139 LA English
5140 DT Article
5141 ID FOREST-FIRE MODEL; CRITICAL-BEHAVIOR; SANDPILE MODELS; SIMULATION;
5142    DIMENSIONS; STATES
5143 AB The Dynamically Driven Renormalization Group is a general framework
5144    developed to study the critical properties of nonequilibrium systems
5145    with stationary states. In particular this renormalization scheme
5146    allows the systematic analysis of several models showing self-organised
5147    criticality in terms of usual concepts of phase transitions and
5148    critical phenomena.
5149 C1 Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands.
5150    Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA.
5151    Boston Univ, Dept Phys, Boston, MA 02215 USA.
5152    ENEA, Res Ctr, I-80055 Napoli, Italy.
5153 RP Vespignani, A, Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden,
5154    Netherlands.
5155 CR BAK P, 1987, PHYS REV LETT, V59, P381
5156    BAK P, 1988, PHYS REV A, V38, P364
5157    BAK P, 1990, PHYS LETT A, V147, P297
5158    BAK P, 1993, FRACTALS DISORDERED, V2
5159    BENHUR A, 1996, PHYS REV E, V54, P1426
5160    CHRISTENSEN K, 1993, PHYS REV LETT, V71, P2737
5161    CLAR S, 1994, PHYS REV E A, V50, P1009
5162    CRESWICK RJ, 1992, INTRO RENORMALIZATIO
5163    DOMB C, 1972, PHASE TRANSITION CRI, V1
5164    DOMB C, 1983, PHASE TRANSITION CRI, V7
5165    DROSSEL B, COMMUNICATION
5166    DROSSEL B, 1992, PHYS REV LETT, V69, P1629
5167    DROSSEL B, 1993, PHYS REV LETT, V71, P3739
5168    ERZAN A, 1995, REV MOD PHYS, V67, P545
5169    GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
5170    GRASSBERGER P, 1991, J STAT PHYS, V63, P685
5171    GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
5172    IVASHKEVICH EV, 1996, PHYS REV LETT, V76, P3368
5173    KATZ S, 1983, PHYS REV B, V28, P1655
5174    KATZ S, 1984, J STAT PHYS, V34, P497
5175    LORETO V, 1995, PHYS REV LETT, V75, P465
5176    MANDELBROT BB, 1983, FRACTAL GEOMETRY NAT
5177    MANNA SS, 1990, J STAT PHYS, V59, P509
5178    MANNA SS, 1991, PHYSICA A, V179, P249
5179    MOSSNER WK, 1992, PHYSICA A, V190, P205
5180    PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
5181    STELLA AL, 1995, PHYS REV E A, V52, P72
5182    VESPIGNANI A, 1995, PHYS REV E, V51, P1711
5183    VESPIGNANI A, 1997, J STAT PHYS, V88, P47
5184    VICSEK T, 1992, FRACTAL GROWTH PHENO
5185    ZHANG YC, 1989, PHYS REV LETT, V63, P470
5186 NR 31
5187 TC 0
5188 PU WORLD SCIENTIFIC PUBL CO PTE LTD
5189 PI SINGAPORE
5190 PA JOURNAL DEPT PO BOX 128 FARRER ROAD, SINGAPORE 9128, SINGAPORE
5191 SN 0217-9792
5192 J9 INT J MOD PHYS B
5193 JI Int. J. Mod. Phys. B
5194 PD MAY 30
5195 PY 1998
5196 VL 12
5197 IS 12-13
5198 BP 1407
5199 EP 1417
5200 PG 11
5201 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
5202 GA ZT481
5203 UT ISI:000074092200015
5204 ER
5205 
5206 PT J
5207 AU Dickman, R
5208    Vespignani, A
5209    Zapperi, S
5210 TI Self-organized criticality as an absorbing-state phase transition
5211 SO PHYSICAL REVIEW E
5212 LA English
5213 DT Article
5214 ID REGGEON FIELD-THEORY; CRITICAL-BEHAVIOR; CELLULAR-AUTOMATA; 2
5215    DIMENSIONS; AVALANCHES; SYSTEMS; DYNAMICS; LATTICE; MODELS; NOISE
5216 AB We explore the connection between self-organized criticality and phase
5217    transitions in models with absorbing states. sandpile models are found
5218    to exhibit criticality only when a pair of relevant parameters -
5219    dissipation epsilon and driving field h - are set to their critical
5220    values. The critical values of epsilon and h are both equal to zero.
5221    The first result is due to the absence of saturation (no bound on
5222    energy) in the sandpile model, while the second result is common to
5223    other absorbing-state transitions. The original definition of the
5224    sandpile model places it at the point (epsilon = 0,h = 0(+)): it is
5225    critical by definition. We argue power-law avalanche distributions are
5226    a general feature of models with infinitely many absorbing
5227    configurations, when they are subject to slow driving at the critical
5228    point. Our assertions are supported by simulations of the sandpile at
5229    epsilon=h=0 and fixed energy density zeta (no drive, periodic
5230    boundaries), and of the slowly driven pair contact process. We
5231    formulate a held theory for the sandpile model, in which the order
5232    parameter is coupled to a conserved energy density, which plays the
5233    role of an effective creation rate.
5234 C1 CUNY Herbert H Lehman Coll, Dept Phys & Astron, Bronx, NY 10468 USA.
5235    Int Ctr Theoret Phys, I-34100 Trieste, Italy.
5236    Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA.
5237    Boston Univ, Dept Phys, Boston, MA 02215 USA.
5238 RP Dickman, R, Univ Fed Santa Catarina, Dept Fis, Campus Univ, BR-88040900
5239    Florianopolis, SC, Brazil.
5240 CR BAK P, 1987, PHYS REV LETT, V59, P381
5241    BAK P, 1988, PHYS REV A, V38, P364
5242    BAK P, 1996, NATURE WORKS
5243    CARDY JL, 1980, J PHYS A, V13, L423
5244    CLAR S, 1996, J PHYS-CONDENS MAT, V8, P6803
5245    DIAZGUILERA A, 1992, PHYS REV A, V45, P8551
5246    DIAZGUILERA A, 1994, EUROPHYS LETT, V26, P177
5247    DICKMAN R, UNPUB
5248    DICKMAN R, 1996, NONEQUILIBRIUM STAT
5249    DICKMAN R, 1996, PHYS REV E, V53, P2223
5250    DURIN G, 1995, FRACTALS, V3, P351
5251    FIELD S, 1995, PHYS REV LETT, V74, P1206
5252    GRASSBERGER P, 1979, ANN PHYS-NEW YORK, V122, P373
5253    GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
5254    GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
5255    GUTENBERG B, 1956, ANN GEOFIS, V9, P1
5256    HARRIS TE, 1974, ANN PROBAB, V2, P969
5257    JANSSEN HK, 1981, Z PHYS B CON MAT, V42, P151
5258    JENSEN I, 1993, PHYS REV E, V48, P1710
5259    JENSEN I, 1993, PHYS REV LETT, V70, P1465
5260    KADANOFF LP, 1989, PHYS REV A, V39, P6524
5261    KATORI M, 1996, PHYSICA A, V229, P461
5262    KINZEL W, 1985, Z PHYS B CON MAT, V58, P229
5263    LILLY MP, 1993, PHYS REV LETT, V71, P4186
5264    LUBECK S, 1997, CONDMAT9708055
5265    LUBECK S, 1997, PHYS REV E, V55, P4095
5266    LUBECK S, 1997, PHYS REV E, V56, P1590
5267    MANNA SS, 1990, J STAT PHYS, V59, P509
5268    MANNA SS, 1990, J STAT PHYS, V61, P923
5269    MANNA SS, 1991, J PHYS A, V24, L363
5270    MANNA SS, 1991, PHYSICA A, V179, P249
5271    MARRO J, 1997, NONEQUILIBRIUM PHASE
5272    MENDES JFF, 1994, J PHYS A-MATH GEN, V27, P3019
5273    MUNOZ MA, IN PRESS J STAT PHYS
5274    MUNOZ MA, 1996, PHYS REV LETT, V76, P451
5275    MUNOZ MA, 1997, PHYSICA D, V103, P485
5276    PACZUSKI M, 1996, PHYS REV E A, V53, P414
5277    PELITI L, 1985, J PHYS-PARIS, V46, P1469
5278    PETRI A, 1994, PHYS REV LETT, V73, P3423
5279    PRIEZZHEV VB, 1994, J STAT PHYS, V74, P955
5280    SAHIMI M, 1993, REV MOD PHYS, V65, P1393
5281    SORNETTE D, 1995, J PHYS I, V5, P325
5282    SPASOJEVIC D, 1996, PHYS REV E, V54, P2531
5283    SUKI B, 1994, NATURE, V368, P615
5284    VESPIGNANI A, 1996, PHYS REV LETT, V77, P4560
5285    VESPIGNANI A, 1997, J STAT PHYS, V88, P47
5286    VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
5287    ZAPPERI S, UNPUB
5288    ZAPPERI S, 1997, NATURE, V388, P658
5289 NR 49
5290 TC 78
5291 PU AMERICAN PHYSICAL SOC
5292 PI COLLEGE PK
5293 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
5294 SN 1063-651X
5295 J9 PHYS REV E
5296 JI Phys. Rev. E
5297 PD MAY
5298 PY 1998
5299 VL 57
5300 IS 5
5301 PN Part A
5302 BP 5095
5303 EP 5105
5304 PG 11
5305 SC Physics, Fluids & Plasmas; Physics, Mathematical
5306 GA ZP582
5307 UT ISI:000073767900034
5308 ER
5309 
5310 PT J
5311 AU Chessa, A
5312    Marinari, E
5313    Vespignani, A
5314 TI Energy constrained sandpile models
5315 SO PHYSICAL REVIEW LETTERS
5316 LA English
5317 DT Article
5318 ID SELF-ORGANIZED CRITICALITY; NOISE
5319 AB We study two driven dynamical systems with conserved energy. The two
5320    automata contain the basic dynamical rules of the Bak, Tang, and
5321    Wiesenfeld sandpile model. In addition a global constraint on the
5322    energy contained in the lattice is imposed. In the limit of an
5323    infinitely slow driving of the system, the conserved energy E becomes
5324    the only parameter governing the dynamical behavior of the system. Both
5325    models show scale-fret behavior at a critical value E-c of the fixed
5326    energy. The scaling with respect to the relevant scaling field points
5327    out that the developing of critical correlations is in a different
5328    universality class than self-organized critical sandpiles. Despite this
5329    difference, the activity (avalanche) probability distributions appear
5330    to coincide with the one of the standard self-organized critical
5331    sandpile.
5332 C1 Univ Cagliari, Dipartimento Fis, I-09124 Cagliari, Italy.
5333    INFM, Cagliari, Italy.
5334    Ist Nazl Fis Nucl, Cagliari, Italy.
5335    Int Ctr Theoret Phys, I-34100 Trieste, Italy.
5336 RP Chessa, A, Univ Cagliari, Dipartimento Fis, Via Osped 72, I-09124
5337    Cagliari, Italy.
5338 CR BAK P, 1987, PHYS REV LETT, V59, P381
5339    BAK P, 1988, PHYS REV A, V38, P364
5340    BENHUR A, 1996, PHYS REV E, V53, P1317
5341    CHESSA A, IN PRESS
5342    CHESSA A, 1998, CONDMAT9802123
5343    DICKMAN R, IN PRESS
5344    DICKMAN R, 1996, NONEQUILIBRIUM STAT
5345    DURIN G, 1995, FRACTALS, V3, P351
5346    GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
5347    GRINSTEIN G, 1995, SCALE INVARIANCE I B, V344
5348    GUTENBERG B, 1956, ANN GEOFIS, V9, P1
5349    LUBECK S, 1997, PHYS REV E, V55, P4095
5350    LUBECK S, 1997, PHYS REV E, V56, P1590
5351    MANNA SS, 1990, J STAT PHYS, V59, P509
5352    MANNA SS, 1991, PHYSICA A, V179, P249
5353    PETRI A, 1994, PHYS REV LETT, V73, P3423
5354    SORNETTE D, 1995, J PHYS I, V5, P325
5355    SPASOJEVIC D, 1996, PHYS REV E, V54, P2531
5356    VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
5357    ZAPPERI S, 1997, NATURE, V388, P658
5358 NR 20
5359 TC 18
5360 PU AMERICAN PHYSICAL SOC
5361 PI COLLEGE PK
5362 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
5363 SN 0031-9007
5364 J9 PHYS REV LETT
5365 JI Phys. Rev. Lett.
5366 PD MAY 11
5367 PY 1998
5368 VL 80
5369 IS 19
5370 BP 4217
5371 EP 4220
5372 PG 4
5373 SC Physics, Multidisciplinary
5374 GA ZM538
5375 UT ISI:000073550200027
5376 ER
5377 
5378 PT J
5379 AU Cafiero, R
5380    Vespignani, A
5381    Zapperi, S
5382    Pietronero, L
5383 TI Universality and scale invariant dynamics in laplacian fractal growth
5384 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
5385 LA English
5386 DT Article
5387 ID DIFFUSION-LIMITED AGGREGATION; RENORMALIZATION-GROUP APPROACH; INVASION
5388    PERCOLATION; DIELECTRIC-BREAKDOWN; BRANCHED GROWTH; CLUSTERS; MODELS;
5389    MEDIA
5390 AB The individuation of the scale invariant dynamics in Laplacian fractal
5391    growth processes, like diffusion-limited aggregation (DLA), is an
5392    important problem whose solution would clarify some crucial issues
5393    concerning the origin of fractal properties and the identification of
5394    universality classes for such models. Here, we develop a real space
5395    renormalization group scheme to study the dynamic evolution of DLA in a
5396    restricted space of relevant parameters. In particular, we investigate
5397    the effect of a sticking probability P-s and an effective noise
5398    reduction parameter S. The renormalization equations flow towards an
5399    attractive fixed point corresponding to the scale invariant DLA
5400    dynamics (P-s* = 1, S* similar or equal to 2.0). The existence of a
5401    non-trivial fixed point value for S, shows that noise is spontaneously
5402    generated by the DLA growth process, and that screening, which is at
5403    the origin of fractal properties, persists at all scales.
5404 C1 Max Planck Inst Phys Complex Syst, D-01187 Dresden, Germany.
5405    Int Ctr Theoret Phys, I-34100 Trieste, Italy.
5406    Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA.
5407    Boston Univ, Dept Phys, Boston, MA 02215 USA.
5408    Univ Rome La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
5409    Univ Rome La Sapienza, Unita INFM, I-00185 Rome, Italy.
5410 RP Cafiero, R, Max Planck Inst Phys Complex Syst, Thnitzer Str 38, D-01187
5411    Dresden, Germany.
5412 CR AMITRANO C, 1993, FRACTALS, V1, P840
5413    BARKER PW, 1990, PHYS REV A, V42, P6289
5414    CAFIERO R, 1993, PHYS REV LETT, V70, P3939
5415    CAFIERO R, 1996, PHYS REV E, V54, P1406
5416    CAFIERO R, 1997, PHYS REV LETT, V79, P1503
5417    DEANGELIS R, 1991, EUROPHYS LETT, V16, P417
5418    DEARCANGELIS L, 1989, PHYS REV B, V40, P877
5419    ECKMANN JP, 1989, PHYS REV A, V39, P3185
5420    EDEN M, 1961, 4 BERK S MATH STAT P, P223
5421    ERZAN A, 1995, REV MOD PHYS, V67, P861
5422    EVERTSZ C, 1990, PHYS REV A, V41, P1830
5423    FAMILY F, 1986, J PHYS A, V19, L733
5424    HALSEY TC, 1992, PHYS REV A, V46, P7793
5425    HALSEY TC, 1994, PHYS REV LETT, V72, P1228
5426    HASTINGS MB, CONDMAT9607007
5427    HASTINGS MB, CONDMAT9607021
5428    JULLIEN R, 1984, J PHYS A, V17, L639
5429    KERTESZ J, 1986, J PHYS A, V19, L257
5430    MANDELBROT BB, 1995, EUROPHYS LETT, V32, P199
5431    MARSILI M, 1994, J STAT PHYS, V77, P733
5432    MEAKIN P, 1983, PHYS REV A, V27, P1495
5433    MEAKIN P, 1983, PHYS REV LETT, V51, P1119
5434    MEAKIN P, 1988, PHASE TRANSITIONS CR, V12, P335
5435    MOUKARZEL C, 1992, PHYSICA A, V188, P469
5436    NAGATANI T, 1987, J PHYS A, V20, L381
5437    NAGATANI T, 1987, PHYS REV A, V36, P5812
5438    NEIMEYER L, 1984, PHYS REV LETT, V52, P1033
5439    NITTMANN J, 1986, NATURE, V321, P663
5440    PIETRONERO L, 1990, PHYSICA A, V119, P249
5441    VESPIGNANI A, 1993, FRACTALS, V1, P1002
5442    VICSEK T, 1992, FRACTAL GROWTH PHENO
5443    WANG XR, 1989, J PHYS A, V22, L507
5444    WANG XR, 1989, PHYS REV A, V39, P5974
5445    WILKINSON D, 1983, J PHYS A-MATH GEN, V16, P3365
5446    WITTEN TA, 1981, PHYS REV LETT, V47, P1400
5447 NR 35
5448 TC 0
5449 PU WORLD SCIENTIFIC PUBL CO PTE LTD
5450 PI SINGAPORE
5451 PA JOURNAL DEPT PO BOX 128 FARRER ROAD, SINGAPORE 9128, SINGAPORE
5452 SN 0217-9792
5453 J9 INT J MOD PHYS B
5454 JI Int. J. Mod. Phys. B
5455 PD DEC 10
5456 PY 1997
5457 VL 11
5458 IS 30
5459 BP 3595
5460 EP 3619
5461 PG 25
5462 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
5463 GA YP694
5464 UT ISI:000071304600006
5465 ER
5466 
5467 PT J
5468 AU Vespignani, A
5469    Zapperi, S
5470    Loreto, V
5471 TI Dynamically driven renormalization group
5472 SO JOURNAL OF STATISTICAL PHYSICS
5473 LA English
5474 DT Article
5475 DE renormalization group; nonequilibrium steady states; driven dynamical
5476    systems; self-organized criticality
5477 ID FOREST-FIRE MODEL; SELF-ORGANIZED CRITICALITY; MEAN-FIELD THEORY;
5478    CRITICAL-BEHAVIOR; SANDPILE MODELS; LATTICE GAS; DIMENSIONS; SYSTEMS;
5479    STATES; SCHEME
5480 AB We present a detailed discussion of a novel dynamical renormalization
5481    group scheme: the dynamically driven renormalization group (DDRG). This
5482    is a general renormalization method developed for dynamical systems
5483    with nonequilibrium critical steady state. The method is based on a
5484    real-space renormalization scheme driven by a dynamical steady-state
5485    condition which acts as a feedback on the transformation equations.
5486    This approach has been applied to open nonlinear systems such as
5487    self-organized critical phenomena, and it allows the analytical
5488    evaluation of scaling dimensions and critical exponents. Equilibrium
5489    models at the critical point can also be considered. The explicit
5490    application to some models and the corresponding results are discussed.
5491 C1 BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
5492    BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
5493    UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,I-00185 ROME,ITALY.
5494 RP Vespignani, A, LEIDEN UNIV,INST LORENTZ,POB 9506,NL-2300 RA
5495    LEIDEN,NETHERLANDS.
5496 CR ACHIAM Y, 1978, PHYS REV LETT, V41, P128
5497    AMIT DJ, 1984, FIELD THEORY RENORMA
5498    BAK P, 1987, PHYS REV LETT, V59, P381
5499    BAK P, 1988, PHYS REV A, V38, P364
5500    BAK P, 1989, NETURE, V342, P7800
5501    BAK P, 1990, PHYS LETT A, V147, P297
5502    BAK P, 1993, FRACTALS DISORDERED, V2
5503    BENHUR A, 1996, PHYS REV E, V54, P1426
5504    BURKHARDT TW, 1982, REAL SPACE RENORMALI
5505    CHRISTENSEN K, 1993, PHYS REV LETT, V71, P2737
5506    CLAR S, 1994, PHYS REV E A, V50, P1009
5507    CRESWICK RJ, 1992, INTRO RENORMALIZATIO
5508    DHAR D, 1989, PHYS REV LETT, V63, P1659
5509    DHAR D, 1990, PHYS REV LETT, V64, P1613
5510    DICKMAN R, 1988, PHYS REV A, V38, P2588
5511    DOMB C, 1972, PHASE TRANSITION CRI, V1
5512    DOMB C, 1983, PHASE TRANSITION CRI, V7
5513    DROSSEL B, 1992, PHYS REV LETT, V69, P1629
5514    DROSSEL B, 1993, PHYS REV LETT, V71, P3739
5515    ERZAN A, 1995, REV MOD PHYS, V67, P545
5516    GLAUBER RJ, 1963, J MATH PHYS, V4, P294
5517    GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
5518    GRASSBERGER P, 1991, J STAT PHYS, V63, P685
5519    GRASSBERGER P, 1993, J PHYS A-MATH GEN, V26, P2081
5520    GRINSTEIN G, 1995, SCALE INVARIANCE I B, V344
5521    HENLEY CL, 1993, PHYS REV LETT, V71, P2741
5522    HUANG K, 1987, STATISTICAL MECHANIC
5523    IVASHKEVICH EV, 1996, PHYS REV LETT, V76, P3368
5524    KADANOFF LP, 1966, PHYSICS, V2, P263
5525    KADANOFF LP, 1976, ANN PHYS-NEW YORK, V100, P359
5526    KADANOFF LP, 1990, PHYSICA A, V163, P1
5527    KADANOFF LP, 1991, PHYS TODAY, V44, P9
5528    KATZ S, 1983, PHYS REV B, V28, P1655
5529    KATZ S, 1984, J STAT PHYS, V34, P497
5530    KEIZER J, 1987, STAT THERMODYNAMICS
5531    LORETO V, 1995, PHYS REV LETT, V75, P465
5532    LORETO V, 1996, J PHYS A-MATH GEN, V29, P2981
5533    MA SK, 1976, MODERN THEORY CRITIC
5534    MAJUMDAR SN, 1992, PHYSICA A, V185, P129
5535    MANDELBROT BB, 1983, FRACTAL GEOMETRY NAT
5536    MANNA SS, 1991, PHYSICA A, V179, P249
5537    MAZENKO GF, 1982, REAL SPACE RENORMALI, P87
5538    MIGDAL AA, 1975, SOV PHYS JETP, V42, P413
5539    MOSSNER WK, 1992, PHYSICA A, V190, P205
5540    NIEMEIJER T, 1976, FRACTAL GEOMETRY NAT, V6
5541    PARISI G, 1988, STAT FIELD THEORY
5542    PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
5543    PRENTIS JJ, 1995, J PHYS A, V528, P5469
5544    SCHMITTMANN B, 1995, PHASE TRANSITION CRI, V17
5545    STELLA AL, 1995, PHYS REV E A, V52, P72
5546    SUZUKI M, 1974, PROG THEOR PHYS, V51, P1257
5547    SUZUKI M, 1979, DYNAMICAL CRITICAL P, V104
5548    SUZUKI M, 1979, PROG THEOR PHYS, V61, P864
5549    VESPIGNANI A, 1995, PHYS REV E, V51, P1711
5550    VICSEK T, 1992, FRACTAL GROWTH PHENO
5551    YEOMANS JM, 1992, STAT MECH PHASE TRAN
5552    ZHANG YC, 1989, PHYS REV LETT, V63, P470
5553 NR 57
5554 TC 10
5555 PU PLENUM PUBL CORP
5556 PI NEW YORK
5557 PA 233 SPRING ST, NEW YORK, NY 10013
5558 SN 0022-4715
5559 J9 J STATIST PHYS
5560 JI J. Stat. Phys.
5561 PD JUL
5562 PY 1997
5563 VL 88
5564 IS 1-2
5565 BP 47
5566 EP 79
5567 PG 33
5568 SC Physics, Mathematical
5569 GA XT833
5570 UT ISI:A1997XT83300003
5571 ER
5572 
5573 PT J
5574 AU Zapperi, S
5575    Vespignani, A
5576    Stanley, HE
5577 TI Plasticity and avalanche behaviour in microfracturing phenomena
5578 SO NATURE
5579 LA English
5580 DT Article
5581 ID SELF-ORGANIZED CRITICALITY; ACOUSTIC-EMISSION; FUSE NETWORKS; POWER
5582    LAWS; DYNAMICS
5583 AB Inhomogeneous materials, such as plaster or concrete, subjected to an
5584    external elastic stress display sudden movements owing to the formation
5585    and propagation of microfractures. Studies of acoustic emission from
5586    these systems reveal power-law behaviour(1). Similar behaviour in
5587    damage propagation has also been seen in acoustic emission resulting
5588    from volcanic activity(2) and hydrogen precipitation in niobium(3). It
5589    has been suggested that the underlying fracture dynamics in these
5590    systems might display self-organized criticality(4), implying that
5591    long-ranged correlations between fracture events lead to a scale-free
5592    cascade of 'avalanches'. A hierarchy of avalanche events is also
5593    observed in a wide range of other systems, such as the dynamics of
5594    random magnets(5) and high-temperature superconductors(6) in magnetic
5595    fields, lung inflation(7) and seismic behaviour characterized by the
5596    Gutenberg-Richter law(8). The applicability of self-organized
5597    criticality to microfracturing has been questioned(9,10), however, as
5598    power laws alone are not unequivocal evidence for it. Here we present a
5599    scalar model of microfracturing which generates power-law behaviour in
5600    properties related to acoustic emission, and a scale-free hierarchy of
5601    avalanches characteristic of self-organized criticality. The geometric
5602    structure of the fracture surfaces agrees with that seen
5603    experimentally. We find that the critical steady state exhibits plastic
5604    macroscopic behaviour, which is commonly observed in real materials.
5605 C1 BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
5606    LEIDEN UNIV,INST LORENTZ,NL-2300 RA LEIDEN,NETHERLANDS.
5607 RP Zapperi, S, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
5608 CR BAK P, 1987, PHYS REV LETT, V59, P381
5609    CALDARELLI G, 1996, PHYS REV LETT, V77, P2503
5610    CANNELLI G, 1993, PHYS REV LETT, V70, P3923
5611    CANNELLI G, 1994, PHYS REV LETT, V72, P2307
5612    CHEN WF, 1982, PLASTICITY REINFORCE
5613    COTE PJ, 1991, PHYS REV LETT, V67, P1334
5614    DEARCANGELIS L, 1985, J PHYS LETT, V46, L585
5615    DEARCANGELIS L, 1989, PHYS REV B, V39, P2678
5616    DIODATI P, 1991, PHYS REV LETT, V67, P2239
5617    FIELD S, 1995, PHYS REV LETT, V74, P1206
5618    GUTENBERG B, 1944, B SEISMOL SOC AM, V34, P185
5619    HERRMANN HJ, 1990, STAT MODELS FRACTURE
5620    HERRMANN HJ, 1991, EUROPHYS LETT, V10, P514
5621    LANDAU LD, 1960, THEORY ELASTICITY
5622    MILTENBERGER P, 1993, PHYS REV LETT, V71, P3604
5623    OKUZONO T, 1995, PHYS REV E, V51, P1246
5624    OMORI F, 1894, J COLL SCI IMP U TOK, V7, P111
5625    PETRI A, 1994, PHYS REV LETT, V73, P3423
5626    PRESS WH, 1991, COMPUT PHYS, V5, P154
5627    SAHIMI M, 1996, PHYS REV LETT, V77, P3689
5628    SORNETTE D, 1992, PHYS REV LETT, V68, P612
5629    SORNETTE D, 1994, J PHYS I, V4, P209
5630    SORNETTE D, 1994, PHYS REV LETT, V72, P2306
5631    STROEVEN P, 1990, ENG FRACT MECH, V35, P775
5632    STROEVEN P, 1993, INTERFACES CEMENTOUS, P187
5633    SUKI B, 1994, NATURE, V368, P615
5634    TILLEMANS HJ, 1995, PHYSICA A, V217, P261
5635    TZSCHICHHOLZ F, 1995, PHYS REV E, V51, P1961
5636    WILSHIRE B, 1983, ENG APPROACHES HIGH
5637 NR 29
5638 TC 64
5639 PU MACMILLAN MAGAZINES LTD
5640 PI LONDON
5641 PA PORTERS SOUTH, 4 CRINAN ST, LONDON, ENGLAND N1 9XW
5642 SN 0028-0836
5643 J9 NATURE
5644 JI Nature
5645 PD AUG 14
5646 PY 1997
5647 VL 388
5648 IS 6643
5649 BP 658
5650 EP 660
5651 PG 3
5652 SC Multidisciplinary Sciences
5653 GA XQ863
5654 UT ISI:A1997XQ86300044
5655 ER
5656 
5657 PT J
5658 AU Vespignani, A
5659    Zapperi, S
5660 TI Order parameter and scaling fields in self-organized criticality
5661 SO PHYSICAL REVIEW LETTERS
5662 LA English
5663 DT Article
5664 ID CRITICAL EXPONENTS; CRITICAL-BEHAVIOR; SANDPILE MODELS; LATTICE;
5665    SIMULATION; DIMENSIONS; AUTOMATON
5666 AB We present a unified dynamical mean-held theory for stochastic
5667    self-organized critical models. We, use a single site approximation,
5668    and we include the details of different models by using effective
5669    parameters and constraints. We identify the order parameter and the
5670    relevant scaling fields in order to describe the critical behavior in
5671    terms of the usual concepts of nonequilibrium lattice models with
5672    steady states. We point out the inconsistencies of previous mean-field
5673    approaches, which lead to different predictions. Numerical simulations
5674    confirm the validity of our results beyond mean-field theory.
5675 C1 BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
5676    BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
5677 RP Vespignani, A, LEIDEN UNIV,INST LORENTZ,POB 9506,NL-2300 RA
5678    LEIDEN,NETHERLANDS.
5679 CR BAK P, 1987, PHYS REV LETT, V59, P381
5680    BAK P, 1988, PHYS REV A, V38, P364
5681    CALDARELLI G, UNPUB
5682    CALDARELLI G, 1996, EUROPHYS LETT, V35, P481
5683    CHRISTENSEN K, 1993, PHYS REV E, V48, P3361
5684    CHRISTENSEN K, 1993, PHYS REV LETT, V71, P2737
5685    CLAR S, 1996, J PHYS-CONDENS MAT, V8, P6803
5686    DHAR D, 1990, PHYS REV LETT, V64, P1613
5687    DICKMAN R, 1986, PHYS REV A, V34, P4246
5688    DICKMAN R, 1988, PHYS REV A, V38, P2588
5689    DICKMAN R, 1989, J STAT PHYS, V55, P997
5690    GRASSBERGER P, 1979, ANN PHYS-NEW YORK, V122, P373
5691    GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
5692    GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
5693    LAURITSEN KB, 1996, PHYS REV E, V54, P2483
5694    MANDELBROT BB, 1983, FRACTAL GEOMETRY NAT
5695    MANNA SS, 1990, J STAT PHYS, V59, P509
5696    MANNA SS, 1990, J STAT PHYS, V61, P923
5697    MANNA SS, 1991, J PHYS A, V24, L363
5698    MANNA SS, 1991, PHYSICA A, V179, P249
5699    MENDES JFF, 1994, J PHYS A-MATH GEN, V27, P3019
5700    MUNOZ MA, 1996, PHYS REV LETT, V76, P451
5701    PIETRONERO L, 1991, PHYSICA A, V173, P129
5702    SCHMITTMANN B, 1995, PHASE TRANSITION CRI, V17
5703    SORNETTE D, 1995, J PHYS I, V5, P325
5704    STELLA AL, 1995, PHYS REV E A, V52, P72
5705    TANG C, 1988, J STAT PHYS, V51, P797
5706    TANG C, 1988, PHYS REV LETT, V60, P2347
5707    TOME T, 1994, PHYSICA A, V212, P99
5708    VERGELES M, 1997, PHYS REV E, V55, P1998
5709    VESPIGNANI A, UNPUB
5710    VESPIGNANI A, 1995, PHYS REV E, V51, P1711
5711    VESPIGNANI A, 1996, PHYS REV LETT, V77, P4560
5712    ZHANG YC, 1989, PHYS REV LETT, V63, P470
5713 NR 34
5714 TC 61
5715 PU AMERICAN PHYSICAL SOC
5716 PI COLLEGE PK
5717 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
5718 SN 0031-9007
5719 J9 PHYS REV LETT
5720 JI Phys. Rev. Lett.
5721 PD JUN 23
5722 PY 1997
5723 VL 78
5724 IS 25
5725 BP 4793
5726 EP 4796
5727 PG 4
5728 SC Physics, Multidisciplinary
5729 GA XJ269
5730 UT ISI:A1997XJ26900031
5731 ER
5732 
5733 PT J
5734 AU Zapperi, S
5735    Ray, P
5736    Stanley, HE
5737    Vespignani, A
5738 TI First-order transition in the breakdown of disordered media
5739 SO PHYSICAL REVIEW LETTERS
5740 LA English
5741 DT Article
5742 ID SELF-ORGANIZED CRITICALITY; ACOUSTIC-EMISSION; ELECTRICAL BREAKDOWN;
5743    NUCLEATION; EARTHQUAKES; FRACTURE; DYNAMICS; GROWTH; SOLIDS; MODEL
5744 AB We study the approach to global breakdown in disordered media driven by
5745    increasing external forces. We first analyze the problem by mean-field
5746    theory, showing that the failure process can be described as a
5747    first-order phase transition, similarly to the case of thermally
5748    activated fracture in homogeneous media. Then we quantitatively confirm
5749    the predictions of the mean-field theory using numerical simulations of
5750    discrete models. Widely distributed avalanches and the corresponding
5751    mean-field scaling are explained by the long-range nature of elastic
5752    interactions. We discuss the analogy of our results to driven
5753    disordered first-order transitions and spinodal nucleation in magnetic
5754    systems.
5755 C1 BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
5756    INST MATH SCI,MADRAS 600113,TAMIL NADU,INDIA.
5757    LEIDEN UNIV,INST LORENTZ,NL-2300 RA LEIDEN,NETHERLANDS.
5758 RP Zapperi, S, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
5759 CR ACHARYYA M, 1996, PHYS REV E A, V53, P140
5760    ACHARYYA M, 1996, PHYSICA A, V224, P287
5761    ANIFRANI JC, 1995, J PHYS I, V5, P631
5762    BAK P, 1987, PHYS REV LETT, V59, P381
5763    BARDHAN KK, 1994, NONLINEARITY BREAKDO
5764    BUCHEL A, CONDMAT9610008
5765    BUCHEL A, 1996, PHYS REV LETT, V77, P1520
5766    CALDARELLI G, 1996, PHYS REV LETT, V77, P2503
5767    CANNELLI G, 1993, PHYS REV LETT, V70, P3923
5768    DAHMEN K, 1996, PHYS REV B, V53, P14872
5769    DANIELS HE, 1945, PROC R SOC LON SER-A, V183, P405
5770    DEARCANGELIS L, 1985, J PHYS LETT, V46, L585
5771    DEARCANGELIS L, 1989, PHYS REV B, V39, P2678
5772    DIODATI P, 1991, PHYS REV LETT, V67, P2239
5773    DUXBURY PM, 1986, PHYS REV LETT, V57, P1052
5774    GOLUBOVIC L, 1991, PHYS REV A, V43, P5223
5775    GOLUBOVIC L, 1995, PHYS REV E A, V51, P2799
5776    GRIFFITH AA, 1920, PHILOS T R SOC A, V221, P163
5777    GUNTON JD, 1983, PHASE TRANSITIONS CR, V8
5778    HEERMANN DW, 1982, PHYS REV LETT, V49, P1262
5779    HEMMER PC, 1992, J APPL MECH-T ASME, V59, P909
5780    HERRMANN HJ, 1990, STAT MODELS FRACTURE
5781    KAHNG B, 1988, PHYS REV B, V37, P7625
5782    KIRKPATRICK S, 1973, REV MOD PHYS, V45, P574
5783    MONETTE L, 1994, INT J MOD PHYS B, V8, P1417
5784    OLAMI Z, 1992, PHYS REV LETT, V68, P1244
5785    PETRI A, 1994, PHYS REV LETT, V73, P3423
5786    PHOENIX SL, 1973, ADV APPL PROBAB, V5, P200
5787    RAY P, 1996, PHYSICA A, V229, P26
5788    RAY TS, 1990, J STAT PHYS, V61, P891
5789    RUNDLE JB, 1989, PHYS REV LETT, V63, P171
5790    RUNDLE JB, 1996, PHYS REV LETT, V76, P4285
5791    SAHIMI M, 1996, PHYS REV LETT, V77, P3689
5792    SELINGER RLB, 1991, J CHEM PHYS, V95, P9128
5793    SELINGER RLB, 1991, PHYS REV A, V43, P4396
5794    SETHNA JP, 1993, PHYS REV LETT, V70, P3347
5795    SORNETTE D, 1989, J PHYS A, V22, L243
5796    SORNETTE D, 1992, J PHYS I, V2, P2089
5797    SORNETTE D, 1994, J PHYS I, V4, P209
5798    STRAUVEN H, IN PRESS
5799    TILLEMANS HJ, 1995, PHYSICA A, V217, P261
5800    TZSCHICHHOLZ F, 1995, PHYS REV E, V51, P1961
5801    UNGER C, 1984, PHYS REV B, V29, P2698
5802    UNGER C, 1985, PHYS REV B, V31, P6127
5803    VESPIGNANI A, 1996, PHYS REV LETT, V77, P4560
5804    ZAPPERI S, IN PRESS
5805    ZAPPERI S, 1996, MATER RES SOC SYMP P, V409, P355
5806 NR 47
5807 TC 98
5808 PU AMERICAN PHYSICAL SOC
5809 PI COLLEGE PK
5810 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
5811 SN 0031-9007
5812 J9 PHYS REV LETT
5813 JI Phys. Rev. Lett.
5814 PD FEB 24
5815 PY 1997
5816 VL 78
5817 IS 8
5818 BP 1408
5819 EP 1411
5820 PG 4
5821 SC Physics, Multidisciplinary
5822 GA WK157
5823 UT ISI:A1997WK15700003
5824 ER
5825 
5826 PT J
5827 AU Loreto, V
5828    Pietronero, L
5829    Vespignani, A
5830    Zapperi, S
5831 TI Renormalization group approach to the critical behavior of the
5832    forest-fire model - Reply
5833 SO PHYSICAL REVIEW LETTERS
5834 LA English
5835 DT Article
5836 C1 LEIDEN UNIV,INST LORENTZ,NL-2300 RA LEIDEN,NETHERLANDS.
5837    BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
5838    BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
5839 RP Loreto, V, UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,P A MORO 2,I-00185
5840    ROME,ITALY.
5841 CR BURKHARDT TW, 1982, REAL SPACE RENORMALI
5842    DROSSEL B, 1996, PHYS REV LETT, V76, P936
5843    DROSSEL B, 1997, PHYS REV LETT, V78, P1392
5844    LORETO V, 1995, PHYS REV LETT, V75, P465
5845    VESPIGNANI A, IN PRESS J STAT PHYS
5846    VESPIGNANI A, 1996, PHYS REV LETT, V77, P4560
5847 NR 6
5848 TC 0
5849 PU AMERICAN PHYSICAL SOC
5850 PI COLLEGE PK
5851 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
5852 SN 0031-9007
5853 J9 PHYS REV LETT
5854 JI Phys. Rev. Lett.
5855 PD FEB 17
5856 PY 1997
5857 VL 78
5858 IS 7
5859 BP 1393
5860 EP 1393
5861 PG 1
5862 SC Physics, Multidisciplinary
5863 GA WH917
5864 UT ISI:A1997WH91700051
5865 ER
5866 
5867 PT J
5868 AU Piccioni, M
5869    Cafiero, R
5870    Vespignani, A
5871 TI Monte Carlo fixed scale transformation for nonlocal fractal growth
5872    models
5873 SO PHYSICAL REVIEW E
5874 LA English
5875 DT Article
5876 ID DIFFUSION-LIMITED AGGREGATION; DIELECTRIC-BREAKDOWN MODEL; PERCOLATION
5877 AB The fixed scale transformation (FST) is a theoretical framework
5878    developed for the evaluation of scaling dimensions in a vast class of
5879    complex systems showing fractal geometric correlations. For models with
5880    long range interactions, such as Laplacian growth models, the
5881    identification by analytical methods of the transformation's basic
5882    elements is a very difficult task. Here we present a Monte Carlo
5883    renormalization approach which allows the direct numerical evaluation
5884    of the FST transfer matrix, overcoming the usual problems of analytical
5885    and numerical treatments. The scheme is explicitly applied to the
5886    diffusion limited aggregation case where a scale invariant regime is
5887    identified and the fractal dimension is computed. The Monte Carlo FST
5888    represents an alternative tool which can be easily generalized to other
5889    fractal growth models with nonlocal interactions.
5890 C1 INFM,UNITA ROMA 1,ROME,ITALY.
5891    LEIDEN UNIV,INST LORENTZ,NL-2300 RA LEIDEN,NETHERLANDS.
5892 RP Piccioni, M, UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,PIAZZALE ALDO MORO
5893    2,I-00185 ROME,ITALY.
5894 CR BINDER K, 1992, MONTE CARLO METHODS
5895    CAFIERO R, 1993, PHYS REV LETT, V70, P3939
5896    CALDARELLI G, 1988, PHYSICA A, V151, P207
5897    DEANGELIS R, 1991, EUROPHYS LETT, V16, P417
5898    ERZAN A, 1995, REV MOD PHYS, V67, P545
5899    EVERTSZ C, 1990, PHYS REV A, V41, P1830
5900    HANSEN A, 1990, EUROPHYS LETT, V13, P341
5901    HOSHEN J, 1976, PHYS REV B, V14, P3428
5902    PIETRONERO L, 1988, PHYSICA A, V151, P207
5903    STAUFFER D, 1985, INTRO PERCOLATION TH
5904    TREMBLAY RR, 1991, PHYS REV A, V44, P7985
5905    VICSEK T, 1992, FRACTAL GROWTH PHENO
5906    WILKINSON D, 1983, J PHYS A-MATH GEN, V16, P3365
5907    WITTEN TA, 1981, PHYS REV LETT, V47, P1400
5908 NR 14
5909 TC 2
5910 PU AMERICAN PHYSICAL SOC
5911 PI COLLEGE PK
5912 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
5913 SN 1063-651X
5914 J9 PHYS REV E
5915 JI Phys. Rev. E
5916 PD JAN
5917 PY 1997
5918 VL 55
5919 IS 1
5920 PN Part B
5921 BP 1170
5922 EP 1173
5923 PG 4
5924 SC Physics, Fluids & Plasmas; Physics, Mathematical
5925 GA WD546
5926 UT ISI:A1997WD54600065
5927 ER
5928 
5929 PT J
5930 AU Vespignani, A
5931    Zapperi, S
5932    Loreto, V
5933 TI Renormalization of nonequilibrium systems with critical stationary
5934    states
5935 SO PHYSICAL REVIEW LETTERS
5936 LA English
5937 DT Article
5938 ID FOREST-FIRE MODEL; SELF-ORGANIZED CRITICALITY; MEAN-FIELD THEORY;
5939    CRITICAL-BEHAVIOR; SANDPILE MODELS; LATTICE GAS
5940 AB We introduce the general formulation of a renormalization method
5941    suitable to study the critical properties of nonequilibrium systems
5942    with steady states: the dynamically driven renormalization group. We
5943    renormalize the time evolution operator by computing the rescaled time
5944    transition rate between coarse grained states. The obtained
5945    renormalization equations are coupled to a stationarity condition which
5946    provides the approximate nonequilibrium statistical weights of
5947    steady-state configurations to be used in the calculations. in this way
5948    we are able to write recursion relations for the parameter evolution
5949    under scale change, from which we can extract numerical values for the
5950    critical exponents. This general framework allows the systematic
5951    analysis of several models showing self-organized criticality in terms
5952    of usual concepts of phase transitions and critical phenomena.
5953 C1 BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
5954    BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
5955    ENEA,RES CTR,I-80055 PORTICI,NAPOLI,ITALY.
5956 RP Vespignani, A, LEIDEN UNIV,INST LORENTZ,POB 9506,NL-2300 RA
5957    LEIDEN,NETHERLANDS.
5958 CR BAK P, 1987, PHYS REV LETT, V59, P381
5959    BAK P, 1988, PHYS REV A, V38, P364
5960    BAK P, 1990, PHYS LETT A, V147, P297
5961    BAK P, 1993, FRACTALS DISORDERED, V2
5962    CHRISTENSEN K, 1993, PHYS REV LETT, V71, P2737
5963    CLAR S, 1994, PHYS REV E A, V50, P1009
5964    CRESWICK RJ, 1992, INTRO RENORMALIZATIO
5965    DICKMAN R, 1988, PHYS REV A, V38, P2588
5966    DOMB C, 1972, PHASE TRANSITION CRI, V1
5967    DOMB C, 1983, PHASE TRANSITION CRI, V7
5968    DROSSEL B, COMMUNICATION
5969    DROSSEL B, 1992, PHYS REV LETT, V69, P1629
5970    DROSSEL B, 1993, PHYS REV LETT, V71, P3739
5971    ERZAN A, 1995, REV MOD PHYS, V67, P545
5972    GRASSBERGER P, 1991, J STAT PHYS, V63, P685
5973    GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
5974    IVASHKEVICH EV, 1996, PHYS REV LETT, V76, P3368
5975    KATZ S, 1983, PHYS REV B, V28, P1655
5976    KATZ S, 1984, J STAT PHYS, V34, P497
5977    KEIZER J, 1987, STAT THERMODYNAMICS
5978    LORETO V, 1995, PHYS REV LETT, V75, P465
5979    MANDELBROT BB, 1983, FRACTAL GEOMETRY NAT
5980    MOSSNER WK, 1992, PHYSICA A, V190, P205
5981    NIEMEIJER T, 1972, PHASE TRANSITIONS CR, V6
5982    PATZLAFF H, 1994, PHYS LETT A, V189, P187
5983    PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
5984    SCHMITTMANN B, 1983, PHASE TRANSITION CRI, V17
5985    VESPIGNANI A, IN PRESS
5986    VESPIGNANI A, 1995, PHYS REV E, V51, P1711
5987    VICSEK T, 1992, FRACTAL GROWTH PHENO
5988 NR 30
5989 TC 16
5990 PU AMERICAN PHYSICAL SOC
5991 PI COLLEGE PK
5992 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
5993 SN 0031-9007
5994 J9 PHYS REV LETT
5995 JI Phys. Rev. Lett.
5996 PD NOV 25
5997 PY 1996
5998 VL 77
5999 IS 22
6000 BP 4560
6001 EP 4563
6002 PG 4
6003 SC Physics, Multidisciplinary
6004 GA VU502
6005 UT ISI:A1996VU50200020
6006 ER
6007 
6008 PT J
6009 AU Caldarelli, G
6010    Vespignani, A
6011 TI Fixed scale transformation approach for born model of fractures
6012 SO FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE
6013 LA English
6014 DT Article
6015 ID DIFFUSION-LIMITED AGGREGATION; FRACTAL GROWTH
6016 AB We use the Fixed Scale Transformation theoretical approach to study the
6017    problem of fractal growth in fractures generated by using the Born
6018    Model. In this case the application of the method is more complex
6019    because of the vectorial nature of the model considered. In particular,
6020    one needs a careful choice of the lattice path integral for the
6021    fracture evolution and the identification of the appropriate way to
6022    take effectively into account screening effects. The good agreement of
6023    our results with computer simulations shows the validity and
6024    flexibility of the FST method in the study of fractal patterns
6025    evolution.
6026 C1 YALE UNIV,DEPT MATH,NEW HAVEN,CT 06520.
6027 RP Caldarelli, G, SCUOLA INT SUPER STUDI AVANZATI,ISAS,V BEIRUT
6028    2-4,I-34014 TRIESTE,ITALY.
6029 CR CAFIERO R, 1993, PHYS REV LETT, V70, P3939
6030    CALDARELLI G, 1994, PHYS REV E A, V49, P2673
6031    DEANGELIS R, 1991, EUROPHYS LETT, V16, P417
6032    ERZAN A, 1995, REV MOD PHYS
6033    LOUIS E, 1987, EUROPHYS LETT, V3, P871
6034    NIEMEYER L, 1984, PHYS REV LETT, V52, P1033
6035    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
6036    PIETRONERO L, 1988, PHYSICA A, V151, P207
6037    VESPIGNANI A, 1990, PHYSICA A, V168, P723
6038    WITTEN TA, 1981, PHYS REV LETT, V47, P1400
6039    YAN H, 1989, EUROPHYS LETT, V10, P7
6040 NR 11
6041 TC 0
6042 PU WORLD SCIENTIFIC PUBL CO PTE LTD
6043 PI SINGAPORE
6044 PA JOURNAL DEPT PO BOX 128 FARRER ROAD, SINGAPORE 9128, SINGAPORE
6045 SN 0218-348X
6046 J9 FRACTALS
6047 JI Fractals-Interdiscip. J. Complex Geom. Nat.
6048 PD DEC
6049 PY 1995
6050 VL 3
6051 IS 4
6052 BP 829
6053 EP 837
6054 PG 9
6055 SC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences
6056 GA VB886
6057 UT ISI:A1995VB88600019
6058 ER
6059 
6060 PT J
6061 AU Vespignani, A
6062    Petri, A
6063    Alippi, A
6064    Paparo, G
6065    Costantini, M
6066 TI Long range correlation on properties of aftershock relaxation signals
6067 SO FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE
6068 LA English
6069 DT Article
6070 ID SELF-ORGANIZED CRITICALITY; ACOUSTIC-EMISSION; 1/F NOISE; MODELS
6071 AB Relaxation processes taking place after microfracturing of laboratory
6072    samples give rise to ultrasonic acoustic emission signals. Statistical
6073    analysis of the resulting time series has revealed many features which
6074    are characteristic of critical phenomena. In particular, the
6075    autocorrelation functions obey a power-law behavior, implying a power
6076    spectrum of the kind 1/f. Also the amplitude distribution N(V) of such
6077    signals follows a power law, and the obtained exponents are consistent
6078    with those found in other experiments: N(V) dV similar or equal to
6079    V--gamma dV, with gamma = 1.7 +/- 0.2. We also analyzed the
6080    distribution N(tau) of the delay time tau between two consecutive
6081    acoustic emission events. We found that a N(tau) distribution rather
6082    close to a power law constitutes a common feature of all the recorded
6083    signals. These experimental results can be considered as a striking
6084    evidence for a critical dynamics underlying the microfracturing
6085    processes.
6086 C1 YALE UNIV,DEPT MATH,NEW HAVEN,CT 06520.
6087    UNIV PERUGIA,DIPARTIMENTO FIS,IST NAZL FIS NUCL,SEZ PERUGIA,I-06100 PERUGIA,ITALY.
6088    CONSORZIO RIC GRAN SASSO,I-67010 ASSERGI,LAQUILA,ITALY.
6089    UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,I-00185 ROME,ITALY.
6090    CNR,IST ACUST OM CORBINO,I-00189 ROME,ITALY.
6091 CR BAK P, 1987, PHYS REV LETT, V59, P381
6092    BAK P, 1988, PHYS REV A, V38, P364
6093    BAK P, 1989, NETURE, V342, P7800
6094    BAK P, 1993, FRACTALS DISORDERED, V2
6095    CAFIERO R, 1995, EUROPHYS LETT, V29, P111
6096    CANNELLI G, 1993, PHYS REV LETT, V70, P3923
6097    CHRISTENSEN K, 1991, J STAT PHYS, V63, P653
6098    CHRISTENSEN K, 1992, PHYS REV LETT, V68, P2417
6099    DERUBEIS V, PREPRINT
6100    DIODATI P, 1991, PHYS REV LETT, V67, P2239
6101    GUTENBERG B, 1956, ANN GEOFIS, V9, P1
6102    HIRATA T, 1987, J GEOPHYS RES-SOLID, V92, P6215
6103    HUANG J, 1988, EARTH PLANET SC LETT, V91, P223
6104    ISHIMOTO M, 1939, B EARTHQ RES I TOKYO, V17, P443
6105    KERTESZ J, 1990, J PHYS A, V23, L433
6106    LORD AE, 1981, PHYSICAL ACOUSTICS, V15
6107    MANDELBROT BB, 1983, FRACTAL GEOMETRY NAT
6108    MCDONALD DKC, 1962, NOISE FLUCTUATIONS
6109    MOGI K, 1962, B EARTHQ RES I TOKIO, V40, P815
6110    MOGI K, 1962, B EARTHQ RES I TOKYO, V40, P125
6111    MOGI K, 1963, B EARTHQ RES I TOKYO, V41, P595
6112    OMORI F, 1894, REP EARTH INV COMM, V2, P103
6113    PACZUSKI M, 1994, EUROPHYS LETT, V27, P97
6114    PETRI A, 1994, PHYS REV LETT, V73, P3423
6115    PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
6116    SORNETTE D, 1994, J PHYS I, V4, P209
6117    TZSCHICHHOLZ F, 1994, PHYS REV B, V49, P15035
6118    UTSU T, 1969, J FS HOKKAIDO U    7, V3, P129
6119    VICSEK T, 1994, FRACTALS NATURAL SCI
6120 NR 29
6121 TC 8
6122 PU WORLD SCIENTIFIC PUBL CO PTE LTD
6123 PI SINGAPORE
6124 PA JOURNAL DEPT PO BOX 128 FARRER ROAD, SINGAPORE 9128, SINGAPORE
6125 SN 0218-348X
6126 J9 FRACTALS
6127 JI Fractals-Interdiscip. J. Complex Geom. Nat.
6128 PD DEC
6129 PY 1995
6130 VL 3
6131 IS 4
6132 BP 839
6133 EP 847
6134 PG 9
6135 SC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences
6136 GA VB886
6137 UT ISI:A1995VB88600020
6138 ER
6139 
6140 PT J
6141 AU Loreto, V
6142    Pietronero, L
6143    Vespignani, A
6144    Zapperi, S
6145 TI Renormalization group approach for forest fire models
6146 SO FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE
6147 LA English
6148 DT Article
6149 ID SELF-ORGANIZED CRITICALITY; SANDPILE MODELS
6150 AB We introduce a Renormalization scheme for the one- and two-dimensional
6151    Forest-Fire models in order to characterize the nature of the critical
6152    state and its scale invariant dynamics. We show the existence of a
6153    relevant scaling field associated with a repulsive fixed point. These
6154    models are therefore critical in the usual sense because the fixed
6155    point value of the control parameter is crucial in order to get
6156    criticality and it is not just the expression of a time scale
6157    separation. This general scheme allows us to calculate analytically the
6158    critical exponents for the one- and two-dimensional cases. The results
6159    obtained are in good agreement with exact or numerical results.
6160 C1 YALE UNIV,DEPT MATH,NEW HAVEN,CT 06520.
6161    BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
6162    BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
6163 RP Loreto, V, UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,PIAZZALE ALDO MORO
6164    2,I-00185 ROME,ITALY.
6165 CR BAK P, 1987, PHYS REV LETT, V59, P381
6166    BAK P, 1988, PHYS REV A, V38, P364
6167    BAK P, 1990, PHYS LETT A, V147, P297
6168    CAFIERO R, 1993, PHYS REV LETT, V70, P3939
6169    CAFIERO R, 1995, EUROPHYS LETT, V29, P111
6170    CHRISTENSEN K, 1993, PHYS REV LETT, V71, P2737
6171    CLAR S, 1994, PHYS REV E A, V50, P1009
6172    DROSSEL B, 1992, PHYS REV LETT, V69, P1629
6173    DROSSEL B, 1993, PHYS REV LETT, V71, P3739
6174    ERZAN A, UNPUB REV MOD PHYS
6175    GRASSBERGER P, 1991, J STAT PHYS, V63, P685
6176    GRASSBERGER P, 1993, J PHYS A-MATH GEN, V26, P2081
6177    LORETO V, UNPUB J PHYS
6178    MOSSNER WK, 1992, PHYSICA A, V190, P205
6179    PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
6180    VESPIGNANI A, 1995, PHYS REV E, V51, P1711
6181 NR 16
6182 TC 1
6183 PU WORLD SCIENTIFIC PUBL CO PTE LTD
6184 PI SINGAPORE
6185 PA JOURNAL DEPT PO BOX 128 FARRER ROAD, SINGAPORE 9128, SINGAPORE
6186 SN 0218-348X
6187 J9 FRACTALS
6188 JI Fractals-Interdiscip. J. Complex Geom. Nat.
6189 PD SEP
6190 PY 1995
6191 VL 3
6192 IS 3
6193 BP 445
6194 EP 452
6195 PG 8
6196 SC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences
6197 GA VB883
6198 UT ISI:A1995VB88300005
6199 ER
6200 
6201 PT J
6202 AU Loreto, V
6203    Vespignani, A
6204    Zapperi, S
6205 TI Renormalization scheme for forest-fire models
6206 SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
6207 LA English
6208 DT Article
6209 ID SELF-ORGANIZED CRITICALITY; DIFFUSION-LIMITED AGGREGATION; PERCOLATION
6210 AB We introduce a renormalization scheme for forest-fire models in order
6211    to characterize the nature of the critical state and its
6212    scale-invariant dynamics. We study one- and two-dimensional models
6213    defining a characterization of the phase space that allows us to
6214    describe the evolution of the dynamics under a scale transformation. We
6215    show the existence of a relevant critical parameter associated with a
6216    repulsive fixed point in the phase space, From the
6217    renormalization-group point of view these models are therefore critical
6218    in the usual sense, because the fixed-point value of the control
6219    parameter is crucial in order to get criticality. This general scheme
6220    allows us to calculate analytically the critical exponent nu which
6221    describes the approach to the critical point along the repulsive
6222    direction and the exponent tau that characterizes the distribution of
6223    forest clusters at the critical point. We obtain nu = 1.0, tau = 1.0
6224    and nu = 0.65, tau = 1.16, respectively, for the one- and
6225    two-dimensional cases, in very good agreement with exact and numerical
6226    results.
6227 C1 LEIDEN UNIV,INST LORENTZ,2300 RA LEIDEN,NETHERLANDS.
6228    BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
6229    BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
6230 RP Loreto, V, UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,PIAZZALE A MORO
6231    2,I-00185 ROME,ITALY.
6232 CR BAK P, 1987, PHYS REV LETT, V59, P381
6233    BAK P, 1988, PHYS REV A, V38, P364
6234    BAK P, 1989, J GEOPHYS RES-SOLID, V94, P15635
6235    BAK P, 1990, PHYS LETT A, V147, P297
6236    BAK P, 1993, PHYS REV LETT, V71, P4083
6237    BAK P, 1993, RICERCHE ECONOMICHE, V47, P3
6238    BENHUR A, 1996, UNPUB PHYS REV E
6239    CAFIERO R, 1993, PHYS REV LETT, V70, P3939
6240    CHRISTENSEN K, 1993, PHYS REV LETT, V71, P2737
6241    CLAR S, 1994, PHYS REV E A, V50, P1009
6242    DROSSEL B, 1992, PHYS REV LETT, V69, P1629
6243    DROSSEL B, 1993, PHYS REV LETT, V71, P3739
6244    DROSSEL B, 1994, PHYSICA A, V204, P212
6245    ERZAN A, 1995, REV MOD PHYS, V67, P545
6246    GRASSBERGER P, 1991, J STAT PHYS, V63, P685
6247    GRASSBERGER P, 1993, J PHYS A-MATH GEN, V26, P2081
6248    HENLEY CL, 1993, PHYS REV LETT, V71, P2741
6249    LORETO V, 1995, PHYS REV LETT, V75, P465
6250    MOSSNER WK, 1992, PHYSICA A, V190, P205
6251    NIEMEYER L, 1984, PHYS REV LETT, V52, P1033
6252    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
6253    PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
6254    VESPIGNANI A, UNPUB J STAT PHYS
6255    VESPIGNANI A, 1995, PHYS REV E, V51, P1711
6256    WILKINSON D, 1983, J PHYS A-MATH GEN, V16, P3365
6257    WITTEN TA, 1981, PHYS REV LETT, V47, P1400
6258 NR 26
6259 TC 9
6260 PU IOP PUBLISHING LTD
6261 PI BRISTOL
6262 PA TECHNO HOUSE, REDCLIFFE WAY, BRISTOL, ENGLAND BS1 6NX
6263 SN 0305-4470
6264 J9 J PHYS-A-MATH GEN
6265 JI J. Phys. A-Math. Gen.
6266 PD JUN 21
6267 PY 1996
6268 VL 29
6269 IS 12
6270 BP 2981
6271 EP 3004
6272 PG 24
6273 SC Physics, Multidisciplinary; Physics, Mathematical
6274 GA UU803
6275 UT ISI:A1996UU80300008
6276 ER
6277 
6278 PT J
6279 AU KAUFMAN, H
6280    VESPIGNANI, A
6281    MANDELBROT, BB
6282    WOOG, L
6283 TI PARALLEL DIFFUSION-LIMITED AGGREGATION
6284 SO PHYSICAL REVIEW E
6285 LA English
6286 DT Article
6287 ID OFF-LATTICE; CLUSTERS; DLA
6288 AB We present methods for simulating very large diffusion-limited
6289    aggregation (DLA) clusters using parallel processing (PDLA). With our
6290    techniques, we have been able to simulate clusters of up to 130 million
6291    particles. The time required for generating a 100 million particle PDLA
6292    is approximately 13 h. The fractal behavior of these ''parallel''
6293    clusters changes from a multiparticle aggregation dynamics to the usual
6294    DLA dynamics. The transition is described by simple scaling assumptions
6295    that define a characteristic cluster size separating the two dynamical
6296    regimes. We also use DLA clusters as seeds for parallel processing. In
6297    this case, the transient regime disappears and the dynamics converges
6298    from the early stage to that of DLA.
6299 C1 IBM CORP,THOMAS J WATSON RES CTR,YORKTOWN HTS,NY 10598.
6300 RP KAUFMAN, H, YALE UNIV,DEPT MATH,NEW HAVEN,CT 06520.
6301 CR AMITRANO C, 1993, FRACTALS, V1, P840
6302    CAFIERO R, 1993, PHYS REV LETT, V70, P3939
6303    EVERTSZ C, 1990, PHYS REV A, V41, P1830
6304    FOLEY J, 1990, COMPUTER GRAPHICS PR
6305    HALSEY TC, 1994, PHYS REV LETT, V72, P1228
6306    MANDELBROT BB, 1992, PHYSICA A, V191, P95
6307    MANDELBROT BB, 1995, EUROPHYS LETT, V29, P599
6308    MEAKIN P, 1988, PHASE TRANSITIONS CR, V12, P335
6309    OSSADNIK P, 1992, PHYS REV A, V45, P1058
6310    OSSADNIK P, 1993, PHYSICA A, V195, P319
6311    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
6312    TOLMAN S, 1989, PHYS REV A, V40, P428
6313    VICSEK T, 1992, FRACTAL GROWTH PHENO
6314    VICSEK T, 1994, FRACTALS NATURAL SCI
6315    VOSS RF, 1984, PHYS REV B, V30, P334
6316    VOSS RF, 1993, FRACTALS, V1, P141
6317    WITTEN TA, 1981, PHYS REV LETT, V47, P1400
6318    YEKUTIELI I, 1994, J PHYS A-MATH GEN, V27, P275
6319 NR 18
6320 TC 16
6321 PU AMERICAN PHYSICAL SOC
6322 PI COLLEGE PK
6323 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
6324 SN 1063-651X
6325 J9 PHYS REV E
6326 JI Phys. Rev. E
6327 PD NOV
6328 PY 1995
6329 VL 52
6330 IS 5
6331 PN Part B
6332 BP 5602
6333 EP 5609
6334 PG 8
6335 SC Physics, Fluids & Plasmas; Physics, Mathematical
6336 GA TG337
6337 UT ISI:A1995TG33700057
6338 ER
6339 
6340 PT J
6341 AU PIETRONERO, L
6342    VESPIGNANI, A
6343 TI FRACTALS, SELF-ORGANIZED-CRITICALITY AND THE FIXED SCALE TRANSFORMATION
6344 SO CHAOS SOLITONS & FRACTALS
6345 LA English
6346 DT Article
6347 AB DLA Fractal growth models and the sand pile models are both
6348    characterized by a non linear irreversible dynamics that evolves
6349    spontaneously in a critical state. These phenomena pose questions of
6350    new type for which novel theoretical concepts are necessary. We argue
6351    that the approach of the Fixed Scale Transformation contains some of
6352    the essential theoretical elements to treat these problems and to
6353    compute their properties analytically. Its original application to
6354    DLA-like problems has been made more systematic by the analysis of the
6355    scale invariant growth dynamics. Recently these concepts have been also
6356    developed for an analytical study of the critical properties of
6357    sandpile models.
6358 RP PIETRONERO, L, UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,PIAZZALE A MORO
6359    2,I-00185 ROME,ITALY.
6360 CR BAK P, 1987, PHYS REV LETT, V59, P381
6361    CAFIERO R, 1993, PHYS REV LETT, V70, P3939
6362    CRESWICK RJ, 1992, RENORMALIZATION GROU
6363    MANNA SS, 1991, J PHYS A, V24, L363
6364    PIETRONERO L, PREPRINT
6365    PIETRONERO L, UNPUB REV MODERN PHY
6366    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
6367    PIETRONERO L, 1991, PHYS REV LETT, V66, P2336
6368    VICSEK T, 1992, FRACTAL GROWTH PHENO
6369 NR 9
6370 TC 2
6371 PU PERGAMON-ELSEVIER SCIENCE LTD
6372 PI OXFORD
6373 PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB
6374 SN 0960-0779
6375 J9 CHAOS SOLITON FRACTAL
6376 JI Chaos Solitons Fractals
6377 PY 1995
6378 VL 6
6379 BP 471
6380 EP 480
6381 PG 10
6382 SC Mathematics, Interdisciplinary Applications; Physics,
6383    Multidisciplinary; Physics, Mathematical
6384 GA TF140
6385 UT ISI:A1995TF14000054
6386 ER
6387 
6388 PT J
6389 AU ZARATTI, F
6390    RUIZ, I
6391    PIETRONERO, L
6392    VESPIGNANI, A
6393 TI FIXED SCALE TRANSFORMATION APPLIED TO FRACTAL AGGREGATION WITH LEVY
6394    FLIGHT PARTICLE TRAJECTORIES
6395 SO CHAOS SOLITONS & FRACTALS
6396 LA English
6397 DT Article
6398 ID DIFFUSION-LIMITED AGGREGATION
6399 AB We extend the Fixed Scale Transformation (FST) method, developed for
6400    Laplacian fractal growth, to the case of aggregation phenomena based on
6401    diffusing particles following Levy-flight walk. We compute analytically
6402    the clusters fractal dimension for different values of the exponent
6403    governing the Levy-flight trajectories. The results obtained are in
6404    very good agreement with the numerical simulations and show
6405    analytically how the different screening effects present in the
6406    Levy-flight diffusion change the aggregates fractal dimension.
6407 C1 UNIV TOMAS FRIAS,DEPT FIS,POTOSI,BOLIVIA.
6408    UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,I-00185 ROME,ITALY.
6409 RP ZARATTI, F, UNIV MAYOR SAN ANDRES,INST INVEST FIS,LA PAZ,BOLIVIA.
6410 CR CAFIERO R, 1993, PHYS REV LETT, V70, P3939
6411    ERZAN A, 1994, REV MOD PHYS
6412    MEAKIN P, 1984, KINETICS AGGREGATION
6413    MEAKIN P, 1984, PHYS REV B, V29, P3722
6414    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
6415    PIETRONERO L, 1995, CHAOS SOLITON FRACT, V6, P471
6416    VICSEK T, 1991, FRACTAL GROWTH PHENO
6417    WITTEN TA, 1981, PHYS REV LETT, V47, P1400
6418    WITTEN TA, 1981, PHYS REV LETT, V47, P1400
6419    ZARATTI F, 1993, PREPRINT
6420 NR 10
6421 TC 0
6422 PU PERGAMON-ELSEVIER SCIENCE LTD
6423 PI OXFORD
6424 PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB
6425 SN 0960-0779
6426 J9 CHAOS SOLITON FRACTAL
6427 JI Chaos Solitons Fractals
6428 PY 1995
6429 VL 6
6430 BP 585
6431 EP 591
6432 PG 7
6433 SC Mathematics, Interdisciplinary Applications; Physics,
6434    Multidisciplinary; Physics, Mathematical
6435 GA TF140
6436 UT ISI:A1995TF14000066
6437 ER
6438 
6439 PT J
6440 AU MANDELBROT, BB
6441    VESPIGNANI, A
6442    KAUFMAN, H
6443 TI CROSSCUT ANALYSIS OF LARGE RADIAL DLA - DEPARTURES FROM SELF-SIMILARITY
6444    AND LACUNARITY EFFECTS
6445 SO EUROPHYSICS LETTERS
6446 LA English
6447 DT Article
6448 ID DIFFUSION-LIMITED AGGREGATION; DIELECTRIC-BREAKDOWN; ACTIVE ZONE;
6449    CLUSTERS; MODEL
6450 AB In order to understand better the morphology and the asymptotic
6451    behavior in Diffusion-Limited Aggregation (DLA), we studied a large
6452    number of very large off-lattice circular clusters. We inspected both
6453    dynamical and geometric asymptotic properties via the scaling behavior
6454    of the transverse growth crosscuts, ie. the one-dimensional cuts by
6455    circles. The emerging picture corresponds qualitatively and
6456    quantitatively to the scenario of infinite drift that starts from the
6457    familiar five-armed shape for small sizes and proceeds through
6458    increasingly tight multi-armed shapes. The transverse crosscuts show
6459    quantitatively how the lacunarity of circular clusters becomes
6460    increasingly compact with size. Finally, we find the transverse-cut
6461    dimensions to be in agreement for clusters grown in circular and
6462    cylindrical geometry, suggesting that the question of universality is
6463    best addressed on the crosscut.
6464 C1 IBM CORP,THOMAS J WATSON RES CTR,YORKTOWN HTS,NY 10598.
6465 RP MANDELBROT, BB, YALE UNIV,DEPT MATH,NEW HAVEN,CT 06520.
6466 CR AMITRANO C, 1993, FRACTALS, V1, P840
6467    ARNEODO A, 1992, PHYS REV LETT, V68, P3456
6468    ERZAN A, 1995, REV MOD PHYS, V67, P545
6469    EVERTSZ C, 1990, PHYS REV A, V41, P1830
6470    HALSEY TC, 1992, PHYS REV A, V46, P7793
6471    MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT
6472    MANDELBROT BB, 1992, PHYSICA A, V191, P95
6473    MANDELBROT BB, 1994, J PHYS A, V27, L237
6474    MANDELBROT BB, 1995, EUROPHYS LETT, V29, P599
6475    MANDELBROT BB, 1995, FRACTAL GEOMETRY STO
6476    MEAKIN P, 1988, PHASE TRANSITIONS CR, V12, P335
6477    NIEMEYER L, 1984, PHYS REV LETT, V52, P1033
6478    OSSADNIK P, 1993, PHYSICA A, V195, P319
6479    PICCIONI M, UNPUB
6480    PLISCHKE M, 1984, PHYS REV LETT, V53, P415
6481    VICSEK T, 1989, FRACTAL GROWTH PHENO
6482    VOSS RF, 1993, FRACTALS, V1, P141
6483    WITTEN TA, 1981, PHYS REV LETT, V47, P1400
6484    YEKUTIELI L, 1994, J PHYS A, V27, P275
6485 NR 19
6486 TC 18
6487 PU EDITIONS PHYSIQUE
6488 PI LES ULIS CEDEX
6489 PA Z I DE COURTABOEUF AVE 7 AV DU HOGGAR, BP 112, 91944 LES ULIS CEDEX,
6490    FRANCE
6491 SN 0295-5075
6492 J9 EUROPHYS LETT
6493 JI Europhys. Lett.
6494 PD OCT 20
6495 PY 1995
6496 VL 32
6497 IS 3
6498 BP 199
6499 EP 204
6500 PG 6
6501 SC Physics, Multidisciplinary
6502 GA TC610
6503 UT ISI:A1995TC61000002
6504 ER
6505 
6506 PT J
6507 AU ERZAN, A
6508    PIETRONERO, L
6509    VESPIGNANI, A
6510 TI THE FIXED-SCALE TRANSFORMATION APPROACH TO FRACTAL GROWTH
6511 SO REVIEWS OF MODERN PHYSICS
6512 LA English
6513 DT Review
6514 ID DIFFUSION-LIMITED-AGGREGATION; RENORMALIZATION-GROUP-APPROACH;
6515    SELF-ORGANIZED CRITICALITY; DIELECTRIC-BREAKDOWN MODEL; CLUSTER-CLUSTER
6516    AGGREGATION; REGGEON FIELD-THEORY; STATE POTTS-MODEL; DIRECTED
6517    PERCOLATION; INVASION PERCOLATION; CRITICAL EXPONENTS
6518 AB Irreversible fractal-growth models like diffusion-limited aggregation
6519    (DLA) and the dielectric breakdown model (DBM) have confronted us with
6520    theoretical problems of a new type for which standard concepts like
6521    field theory and renormalization group do not seem to be suitable. The
6522    fixed-scale transformation (FST) is a theoretical scheme of a novel
6523    type that can deal with such problems in a reasonably systematic way.
6524    The main idea is to focus on the irreversible dynamics at a given scale
6525    and to compute accurately the nearest-neighbor correlations at this
6526    scale by suitable lattice path integrals. The next basic step is to
6527    identify the scale-invariant dynamics that refers to coarse-grained
6528    variables of arbitrary scale. The use of scale-invariant growth rules
6529    allows us to generalize these correlations to coarse-grained cells of
6530    any size and therefore to compute the fractal dimension. The basic
6531    point is to split the long-time limit (t-->infinity) for the dynamical
6532    process at a given scale that produces the asymptotically frozen
6533    structure, from the large-scale limit (r-->infinity) which defines the
6534    scale-invariant dynamics. In addition, by working at a fixed scale with
6535    respect to dynamical evolution, it is possible to include the
6536    fluctuations of boundary conditions and to reach;a remarkable level of
6537    accuracy for a real-space method. This new framework is able to explain
6538    the self-organized critical nature and the origin of fractal structures
6539    in irreversible-fractal-growth models, it also provides a rather
6540    systematic procedure for the analytical calculation of the fractal
6541    dimension and other critical exponents. The FST method can be naturally
6542    extended to a variety of equilibrium and nonequilibrium models that
6543    generate fractal structures.
6544 C1 UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,I-00185 ROME,ITALY.
6545    LEIDEN UNIV,INST LORENTZ,2300 RA LEIDEN,NETHERLANDS.
6546 RP ERZAN, A, ISTANBUL TECH UNIV,FAC SCI & LETTERS,DEPT PHYS,ISTANBUL
6547    80626,TURKEY.
6548 CR ABARBANEL HDI, 1976, PHYS REV D, V14, P632
6549    AMIT DJ, 1978, FIELD THEORY RENORMA
6550    ARNEODO A, 1988, PHYS REV LETT, V61, P2281
6551    ARNEODO A, 1989, PHYS REV LETT, V63, P984
6552    BAK P, 1987, PHYS REV LETT, V59, P381
6553    BAK P, 1988, PHYS REV A, V38, P364
6554    BAK P, 1993, PHYS REV LETT, V71, P4083
6555    BALL RC, 1984, PHYS REV A, V29, P2966
6556    BARKER PW, 1990, PHYS REV A, V42, P6289
6557    BAXTER RJ, 1988, J PHYS A, V21, P3193
6558    BENAVRAHAM D, 1991, PHYS REV A, V43, P7093
6559    BENZI R, 1984, J PHYS A-MATH GEN, V17, P3521
6560    BLUMENFELD R, 1989, PHYS REV LETT, V62, P2927
6561    BOHR T, 1988, EUROPHYS LETT, V6, P445
6562    BURKHARDT TW, 1982, REAL SPACE RENORMALI
6563    CAFIERO R, 1993, PHYS REV LETT, V70, P3939
6564    CALDARELLI G, 1994, PHYS REV E A, V49, P2673
6565    CALDARELLI G, 1995, PHYSICA A, V215, P223
6566    CARDY JL, 1980, J PHYS A, V13, L423
6567    CHAYES JT, 1986, CRITICAL PHENOMENA R, P1090
6568    CHENDLER R, 1982, J FLUID MECH, V119, P249
6569    COLEMAN PH, 1992, PHYS REP, V213, P311
6570    CONIGLIO A, 1980, J PHYS             A, V13, P2775
6571    CONIGLIO A, 1982, J PHYS A, V15, P1873
6572    CONIGLIO A, 1986, PHYS REV LETT, V57, P1016
6573    CONIGLIO A, 1989, PHYS REV LETT, V62, P3054
6574    CONIGLIO A, 1990, PHYSICA A, V163, P325
6575    DEANGELIS R, 1991, EUROPHYS LETT, V16, P417
6576    DEDOMINICIS C, 1975, LETT NUOVO CIMENTO, V12, P567
6577    DEDOMINICIS C, 1975, PHYS REV B, V12, P4945
6578    DEDOMINICIS C, 1976, J PHYS-PARIS, V37, P247
6579    DEDOMINICIS C, 1977, PHYS REV B, V18, P353
6580    DEDOMINICIS C, 1977, PHYS REV LETT, V38, P505
6581    DEGENNES PG, 1979, SCALING CONCEPTS POL
6582    DENNIJS M, 1983, PHYS REV B, V27, P1674
6583    DENNIJS MPM, 1979, J PHYS A, V12, P1857
6584    DERRIDA B, 1985, J PHYS-PARIS, V46, P1623
6585    DICKMAN R, 1986, PHYS REV A, V34, P4246
6586    DISTASIO M, 1994, J PHYS A-MATH GEN, V27, P317
6587    DUPLANTIER B, 1989, PHYS REV LETT, V63, P2536
6588    ECKMANN JP, 1989, PHYS REV A, V29, P3185
6589    ECKMANN JP, 1990, PHYS REV LETT, V65, P52
6590    EDEN M, 1961, 4TH P BERK S MATH ST, V4, P223
6591    ELDERFIELD D, 1985, J PHYS A, V18, P2591
6592    ELDERFIELD D, 1985, J PHYS A-MATH GEN, V18, L767
6593    ELDERFIELD D, 1985, J PHYS A-MATH GEN, V18, L773
6594    ERZAN A, 1991, J PHYS A, V24, P1875
6595    ERZAN A, 1991, PHYS REV LETT, V66, P2750
6596    ERZAN A, 1992, EUROPHYS LETT, V20, P595
6597    ERZAN A, 1992, PHYSICA A, V185, P66
6598    ESSAM JW, 1988, J PHYS A, V21, P3815
6599    EVERTSZ C, 1989, THESIS U GRONINGEN
6600    EVERTSZ C, 1990, PHYS REV A, V41, P1830
6601    FEDER J, 1988, FRACTALS
6602    FISHER ME, 1967, REP PROGR PHYS, V30, P615
6603    FURNBERG L, 1988, PHYS REV LETT, V61, P2117
6604    GLAUBER RJ, 1963, J MATH PHYS, V4, P294
6605    GRASSBERGER P, 1979, ANN PHYS-NEW YORK, V122, P373
6606    GRASSBERGER P, 1982, Z PHYS B, V47, P465
6607    GRASSBERGER P, 1986, FRACTALS PHYSICS, P273
6608    GRASSBERGER P, 1992, J PHYS A-MATH GEN, V25, P5475
6609    GUNTON JD, 1979, LECTURE NOTES PHYSIC, V1, P104
6610    GUOLD H, 1983, PHYS REV LETT, V50, P686
6611    HALPERIN BI, 1972, PHYS REV LETT, V29, P1548
6612    HALPINHEALY T, 1955, PHYS REP, V254, P215
6613    HALSEY TC, 1992, PHYS REV A, V46, P7793
6614    HALSEY TC, 1994, PHYS REV LETT, V72, P1228
6615    HOHENBERG PC, 1977, REV MOD PHYS, V49, P425
6616    HOLSCHNEIDER M, 1988, J STAT PHYS, V50, P953
6617    HONDA K, 1986, J PHYS SOC JPN, V55, P707
6618    HUNER M, 1994, PHYSICA A, V212, P314
6619    JANSSEN HK, 1979, LECT NOTE PHYS, V104, P26
6620    JULLIEN R, 1987, AGGREGATIONN FRACTAL
6621    KADANOFF LP, 1967, REV MOD PHYS, V39, P395
6622    KANEKO K, 1985, COLLAPSE TORI GENESI
6623    KARDAR M, 1986, PHYS REV LETT, V56, P889
6624    KERTESZ J, 1986, J PHYS A, V19, L257
6625    KINZEL W, 1983, ANN ISRAEL PHYSICAL, V5, P425
6626    KIRKALDY JS, 1992, REP PROG PHYS, V55, P723
6627    KOLB M, 1983, PHYS REV LETT, V51, P1123
6628    LEYVRAZ F, 1986, GROWTH FORM, P136
6629    LIGGETT TM, 1985, INTERACTING PARTICLE
6630    LUIS E, 1987, EUROPHYS LETT, V3, P871
6631    MANDELBROT BB, 1974, J FLUID MECH, V62, P331
6632    MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT
6633    MANDELBROT BB, 1990, NATURE, V348, P143
6634    MANDELBROT BB, 1992, PHYSICA A, V191, P95
6635    MANDELBROT BB, 1995, IN PRESS EUROPHYS LE
6636    MARSILI M, 1991, PHYSICA A, V175, P9
6637    MARSILI M, 1994, J STAT PHYS, V77, P733
6638    MAZENKO GF, 1979, LECTURE NOTES PHYSIC, V104, P97
6639    MEAKIN P, 1983, PHYS REV LETT, V51, P1119
6640    MEAKIN P, 1984, PHYS REV B, V29, P3722
6641    MEAKIN P, 1988, PHASE TRANSITIONS CR, V12, P335
6642    MEAKIN P, 1989, FRACTALS PHYSICAL OR, P137
6643    MEINHARDT H, 1992, REP PROG PHYS, V55, P797
6644    MIGDAL AA, 1974, PHYS LETT B, V48, P239
6645    MIGDAL AA, 1974, ZH EKSP TEOR FIZ, V67, P84
6646    MOUKARZEL C, 1992, PHYSICA A, V188, P469
6647    MUTHUKUMAR M, 1983, PHYS REV LETT, V50, P839
6648    NAGATANI T, 1987, J PHYS A, V20, L381
6649    NAGATANI T, 1987, PHYS REV A, V36, P5812
6650    NICOLIS G, 1977, SELF ORG NONEQUILIBR
6651    NIEMEYER L, 1984, PHYS REV LETT, V52, P1038
6652    NITTMANN J, 1986, NATURE, V321, P663
6653    OHONO K, 1992, PHYS REV A, V46, P3400
6654    OSSADNIK P, 1992, PHYS REV A, V45, P1058
6655    PALADIN G, 1987, PHYS REP, V156, P145
6656    PARISI G, 1985, J STAT PHYS, V41, P1
6657    PELITI L, 1985, J PHYS-PARIS, V46, P1469
6658    PICCIONI M, 1995, UNPUB
6659    PIETRONERO L, 1984, J STAT PHYS, V36, P811
6660    PIETRONERO L, 1986, FRACTALS PHYSICS
6661    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
6662    PIETRONERO L, 1988, PHYSICA A, V151, P207
6663    PIETRONERO L, 1990, PHYS REV A, V42, P7496
6664    PIETRONERO L, 1990, PHYSICA A, V170, P64
6665    PIETRONERO L, 1990, PHYSICA A, V170, P81
6666    PIETRONERO L, 1991, PHYS REV LETT, V66, P2336
6667    PIETRONERO L, 1991, PHYSICA A, V173, P22
6668    PIETRONERO L, 1993, FRACTALS, V1, P41
6669    PIETRONERO L, 1993, J FRACTALS, V1, P650
6670    PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
6671    PIETRONERO L, 1995, PREPRINT
6672    PIETRONERO L, 1995, STOCHASTIC PROCESSES, P581
6673    RINTOUL MD, 1992, J PHYS A, V25, L945
6674    ROUX S, 1989, J PHYS A, V19, P3693
6675    SCHLOGL F, 1972, Z PHYS, V253, P147
6676    SCHWARZER S, 1990, PHYS REV LETT, V65, P603
6677    SHAPIR Y, 1986, J PHYS PARIS LETT, V46, L529
6678    SIDORETTI S, 1992, PHYSICA A, V185, P202
6679    SIEBESMA AP, 1988, PHYSICA A, V156, P613
6680    SMOLUCHOWSKI MV, 1916, PHYS Z, V17, P585
6681    STANLEY HE, 1971, INTRO PHASE TRANSITI
6682    STANLEY HE, 1982, REAL SPACE RENORMALI
6683    STANLEY HE, 1986, GROWTH FORM FRACTAL
6684    STAUFFER D, 1985, INTRO PERCOLATION TH
6685    STELL G, 1987, PHASE TRANSITIONS CR, P205
6686    STELLA AL, 1989, PHYS REV LETT, V62, P1067
6687    SUZUKI M, 1979, LECTURE NOTES PHYSIC, V104, P75
6688    SYKES MF, 1972, J PHYS A, V5, P653
6689    TANG C, 1988, PHYS REV LETT, V60, P2347
6690    TREMBLAY RR, 1989, PHYS REV A, V40, P5377
6691    TURKEVICH LA, 1985, PHYS REV LETT, V55, P1026
6692    VANDERZANDE C, 1992, PHYSICA A, V185, P235
6693    VANNIMENUS J, 1984, PHYS REV B, V30, P391
6694    VESPIGNANI A, 1990, PHYSICA A, V168, P723
6695    VESPIGNANI A, 1991, PHYSICA A, V173, P1
6696    VESPIGNANI A, 1993, FRACTALS, V1, P1002
6697    VESPIGNANI A, 1995, PHYS REV E, V51, P1711
6698    VICSEK T, 1984, PHYS REV LETT, V52, P1669
6699    VICSEK T, 1985, PHYS REV A, V32, P1122
6700    VICSEK T, 1992, FRACTAL GROWTH PHENO
6701    WANG XR, 1989, J PHYS A, V22, L507
6702    WANG XR, 1989, PHYS REV A, V39, P5974
6703    WATTS MG, 1975, J PHYS A, V8, P61
6704    WHITE SR, 1992, PHYS REV LETT, V68, P3487
6705    WILKINSON D, 1983, J PHYS A-MATH GEN, V16, P3365
6706    WILSON KG, 1974, PHYS REP, V12, P75
6707    WITTEN TA, 1981, PHYS REV LETT, V47, P1400
6708    WITTEN TA, 1983, PHYS REV B, V27, P5685
6709    WOLFRAM S, 1983, REV MOD PHYS, V55, P601
6710    WOLFRAM S, 1983, REV MOD PHYS, V55, P601
6711    YAN H, 1989, EUROPHYS LETT, V10, P7
6712    ZARATTI F, 1995, UNPUB
6713    ZHANG YC, 1989, PHYS REV LETT, V63, P473
6714    ZIFF RM, 1992, PHYS REV LETT, V69, P2670
6715 NR 167
6716 TC 85
6717 PU AMERICAN PHYSICAL SOC
6718 PI COLLEGE PK
6719 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
6720 SN 0034-6861
6721 J9 REV MOD PHYS
6722 JI Rev. Mod. Phys.
6723 PD JUL
6724 PY 1995
6725 VL 67
6726 IS 3
6727 BP 545
6728 EP 604
6729 PG 60
6730 SC Physics, Multidisciplinary
6731 GA RW066
6732 UT ISI:A1995RW06600001
6733 ER
6734 
6735 PT J
6736 AU LORETO, V
6737    PIETRONERO, L
6738    VESPIGNANI, A
6739    ZAPPERI, S
6740 TI RENORMALIZATION-GROUP APPROACH TO THE CRITICAL-BEHAVIOR OF THE
6741    FOREST-FIRE MODEL
6742 SO PHYSICAL REVIEW LETTERS
6743 LA English
6744 DT Article
6745 ID SELF-ORGANIZED CRITICALITY
6746 AB We introduce a renormalization scheme for the one- and two-dimensional
6747    forest-fire model in order to characterize the nature of the critical
6748    state and its scale invariant dynamics. We show the existence of a
6749    relevant scaling field associated with a repulsive fixed point. This
6750    model is therefore critical in the usual sense because the control
6751    parameter has to be tuned to its critical value in order to get
6752    criticality. It turns out that this is not just the condition for a
6753    time scale separation. The critical exponents are computed analytically
6754    and we obtain nu = 1.0, tau = 1.0 and nu = 0.65, tau = 1.16,
6755    respectively, for the one- and two-dimensional cases, in very good
6756    agreement with numerical simulations.
6757 C1 LEIDEN UNIV,INST LORENTZ,2300 RA LEIDEN,NETHERLANDS.
6758    BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
6759    BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
6760 RP LORETO, V, UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,PIAZZALE ALDO MORO
6761    2,I-00185 ROME,ITALY.
6762 CR BAK P, 1987, PHYS REV LETT, V59, P381
6763    BAK P, 1988, PHYS REV A, V38, P364
6764    BAK P, 1990, PHYS LETT A, V147, P297
6765    CAFIERO R, 1993, PHYS REV LETT, V70, P3939
6766    CAFIERO R, 1995, EUROPHYS LETT, V29, P111
6767    CHRISTENSEN K, 1993, PHYS REV LETT, V71, P2737
6768    CLAR S, 1994, PHYS REV E A, V50, P1009
6769    DROSSEL B, 1992, PHYS REV LETT, V69, P1629
6770    DROSSEL B, 1993, PHYS REV LETT, V71, P3739
6771    DROSSEL B, 1994, PHYSICA A, V204, P212
6772    ERZAN A, IN PRESS FIXED SCALE
6773    GRASSBERGER P, 1991, J STAT PHYS, V63, P685
6774    GRASSBERGER P, 1993, J PHYS A-MATH GEN, V26, P2081
6775    LORETO V, IN PRESS RENORMALIZE
6776    MOSSNER WK, 1992, PHYSICA A, V190, P205
6777    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
6778    PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
6779    VESPIGNANI A, 1995, PHYS REV E, V51, P1711
6780 NR 18
6781 TC 33
6782 PU AMERICAN PHYSICAL SOC
6783 PI COLLEGE PK
6784 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
6785 SN 0031-9007
6786 J9 PHYS REV LETT
6787 JI Phys. Rev. Lett.
6788 PD JUL 17
6789 PY 1995
6790 VL 75
6791 IS 3
6792 BP 465
6793 EP 468
6794 PG 4
6795 SC Physics, Multidisciplinary
6796 GA RK330
6797 UT ISI:A1995RK33000028
6798 ER
6799 
6800 PT J
6801 AU CALDARELLI, G
6802    VESPIGNANI, A
6803    PIETRONERO, L
6804 TI FIXED SCALE TRANSFORMATION FOR FRACTURE GROWTH-PROCESSES GOVERNED BY
6805    VECTORIAL FIELDS
6806 SO PHYSICA A
6807 LA English
6808 DT Article
6809 ID DIFFUSION-LIMITED AGGREGATION
6810 AB We use the Fixed Scale Transformation (FST) approach to study the
6811    problem of fractal growth in fracture patterns generated by using the
6812    Born Model, The application of the method to this model is very complex
6813    because of the vectorial nature of the system considered. In
6814    particular, the implementation of this scheme requires a careful choice
6815    of the fracture path and the identification of the appropriate way to
6816    take into account screening effects, The good agreements of our results
6817    with computer simulations shows the validity and flexibility of the FST
6818    method which represents a general theoretical approach for the study of
6819    fractal patterns evolution.
6820 C1 YALE UNIV,DEPT MATH,NEW HAVEN,CT 06520.
6821    UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,I-00185 ROME,ITALY.
6822 RP CALDARELLI, G, ISAS,SISSA,V BEIRUT 2-4,I-34014 GRIGNANO TRIESTE,ITALY.
6823 CR CAFIERO R, 1993, PHYS REV LETT, V70, P3939
6824    CALDARELLI G, 1994, PHYS REV E A, V49, P2673
6825    DEANGELIS R, 1991, EUROPHYS LETT, V16, P417
6826    ERZAN A, 1995, REV MOD PHYS
6827    HERRING RD, 1990, SCH COUNSELOR, V38, P13
6828    LOUIS E, 1987, EUROPHYS LETT, V3, P871
6829    NIEMEYER L, 1984, PHYS REV LETT, V52, P1033
6830    PIETRONERO L, 1987, PHYSICA A, V151, P207
6831    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
6832    VESPIGNANI A, 1990, PHYSICA A, V168, P723
6833    WITTEN TA, 1981, PHYS REV LETT, V47, P1400
6834    YAN H, 1989, EUROPHYS LETT, V10, P7
6835 NR 12
6836 TC 1
6837 PU ELSEVIER SCIENCE BV
6838 PI AMSTERDAM
6839 PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
6840 SN 0378-4371
6841 J9 PHYSICA A
6842 JI Physica A
6843 PD MAY 1
6844 PY 1995
6845 VL 215
6846 IS 3
6847 BP 223
6848 EP 232
6849 PG 10
6850 SC Physics, Multidisciplinary
6851 GA QX194
6852 UT ISI:A1995QX19400001
6853 ER
6854 
6855 PT J
6856 AU MANDELBROT, BB
6857    KAUFMAN, H
6858    VESPIGNANI, A
6859    YEKUTIELI, I
6860    LAM, CH
6861 TI DEVIATIONS FROM SELF-SIMILARITY IN PLANE DLA AND THE INFINITE DRIFT
6862    SCENARIO
6863 SO EUROPHYSICS LETTERS
6864 LA English
6865 DT Article
6866 ID DIFFUSION-LIMITED AGGREGATION; ACTIVE ZONE; GROWING CLUSTERS; EDEN MODEL
6867 AB The behavior of very large clusters of diffusion-limited aggregation
6868    (DLA) was investigated to help discriminate between the two geometric
6869    scenarios recently described by Mandelbrot: finite transient and
6870    infinite drift. Using 50 DLA clusters of I million particles, we follow
6871    the increase during growth of the maximum radius of the clusters and of
6872    various relative moments. One can distinguish two regions: an inactive
6873    completely grown core and an active growing region. In the growing
6874    region, scale factors were defined the moments of the atoms distances
6875    from the original ''seed''. They do not cross-over to the behavior
6876    characteristic of self-similarity for finite sizes and support the
6877    novel ''drift'', scenario that postulate an infinite continuing
6878    ''transient''. The moment's ''misbehavior'' may help understand the
6879    disagreement between previous estimates of the clusters' fractal
6880    dimension.
6881 C1 IBM CORP,THOMAS J WATSON RES CTR,YORKTOWN HTS,NY 10598.
6882    UNIV PITTSBURGH,DEPT PHYS & ASTRON,PITTSBURGH,PA 15260.
6883    HONG KONG POLYTECH,DEPT APPL PHYS,KOWLOON,HONG KONG.
6884 RP MANDELBROT, BB, YALE UNIV,DEPT MATH,BOX 208283,NEW HAVEN,CT 06520.
6885 CR LAM CH, IN PRESS
6886    MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT
6887    MANDELBROT BB, 1992, PHYSICA A, V191, P95
6888    MEAKIN P, 1985, PHYS REV LETT, V54, P2053
6889    MEAKIN P, 1988, PHASE TRANSITIONS CR, V12, P335
6890    OSSADNIK P, 1993, PHYSICA A, V195, P319
6891    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
6892    PLISCHKE M, 1984, PHYS REV LETT, V53, P415
6893    VICSEK T, 1989, FRACTAL GROWTH PHENO
6894    VOSS RF, 1993, FRACTALS, V1, P141
6895    WITTEN TA, 1981, PHYS REV LETT, V47, P1400
6896    YEKUTIELI I, 1994, J PHYS A-MATH GEN, V27, P275
6897 NR 12
6898 TC 20
6899 PU EDITIONS PHYSIQUE
6900 PI LES ULIS CEDEX
6901 PA Z I DE COURTABOEUF AVE 7 AV DU HOGGAR, BP 112, 91944 LES ULIS CEDEX,
6902    FRANCE
6903 SN 0295-5075
6904 J9 EUROPHYS LETT
6905 JI Europhys. Lett.
6906 PD MAR 10
6907 PY 1995
6908 VL 29
6909 IS 8
6910 BP 599
6911 EP 604
6912 PG 6
6913 SC Physics, Multidisciplinary
6914 GA QN883
6915 UT ISI:A1995QN88300002
6916 ER
6917 
6918 PT J
6919 AU VESPIGNANI, A
6920    ZAPPERI, S
6921    PIETRONERO, L
6922 TI RENORMALIZATION APPROACH TO THE SELF-ORGANIZED CRITICAL-BEHAVIOR OF
6923    SANDPILE MODELS
6924 SO PHYSICAL REVIEW E
6925 LA English
6926 DT Article
6927 ID DIFFUSION-LIMITED AGGREGATION; CRITICAL EXPONENTS; PHASE-TRANSITIONS;
6928    UNIVERSALITY; DYNAMICS; SYSTEMS; NOISE
6929 C1 YALE UNIV,DEPT MATH,NEW HAVEN,CT 06520.
6930    BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
6931    BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
6932 RP VESPIGNANI, A, UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,PIAZZALE ALDO
6933    MORO 2,I-00185 ROME,ITALY.
6934 CR BAK P, 1987, PHYS REV LETT, V59, P381
6935    BAK P, 1988, PHYS REV A, V38, P364
6936    BAK P, 1989, NATURE, V342, P780
6937    BAK P, 1993, FRACTALS DISORDERED, V2
6938    BAK P, 1993, RICERCHE ECONOMICHE, V47, P3
6939    BURKHARDT TW, 1982, REAL SPACE RENORMALI
6940    CAFIERO R, 1993, PHYS REV LETT, V70, P3939
6941    CAFIERO R, 1995, EUROPHYS LETT, V29, P111
6942    CALDARELLI G, COMMUNICATION
6943    CHRISTENSEN K, 1991, J STAT PHYS, V61, P653
6944    CHRISTENSEN K, 1992, PHYS REV A, V46, P1829
6945    CRESWICK RJ, 1992, INTRO RENORMALIZATIO
6946    DHAR D, 1989, PHYS REV LETT, V63, P1659
6947    DHAR D, 1991, PHYS REV LETT, V64, P1613
6948    DIAZGUILERA A, 1992, PHYS REV A, V45, P8551
6949    DIAZGUILERA A, 1994, EUROPHYS LETT, V26, P177
6950    ERZAN A, UNPUB
6951    GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
6952    HWA T, 1989, PHYS REV LETT, V62, P1813
6953    KADANOFF LP, 1989, PHYS REV A, V39, P6524
6954    KADANOFF LP, 1990, PHYSICA A, V163, P1
6955    KADANOFF LP, 1991, PHYS TODAY, V44, P9
6956    LORETO V, UNPUB
6957    MAJUMDAR SN, 1992, PHYSICA A, V185, P129
6958    MANNA SS, 1990, J STAT PHYS, V59, P509
6959    MANNA SS, 1990, J STAT PHYS, V61, P923
6960    MANNA SS, 1991, J PHYS A, V24, L363
6961    MANNA SS, 1991, PHYSICA A, V179, P249
6962    OLAMI Z, 1992, PHYS REV LETT, V68, P1244
6963    PACZUSKI M, 1994, EUROPHYS LETT, V27, P97
6964    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
6965    PIETRONERO L, 1991, PHYS REV LETT, V66, P2336
6966    PIETRONERO L, 1991, PHYSICA A, V173, P129
6967    PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
6968    SORNETTE D, 1992, J PHYS I, V2, P2065
6969    TANG C, 1988, PHYS REV LETT, V60, P2347
6970    VICSEK T, 1992, FRACTAL GROWTH PHENO
6971    WITTEN TA, 1981, PHYS REV LETT, V47, P1400
6972    ZHANG YC, 1989, PHYS REV LETT, V63, P470
6973 NR 39
6974 TC 71
6975 PU AMERICAN PHYSICAL SOC
6976 PI COLLEGE PK
6977 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
6978 SN 1063-651X
6979 J9 PHYS REV E
6980 JI Phys. Rev. E
6981 PD MAR
6982 PY 1995
6983 VL 51
6984 IS 3
6985 PN Part A
6986 BP 1711
6987 EP 1724
6988 PG 14
6989 SC Physics, Fluids & Plasmas; Physics, Mathematical
6990 GA QP252
6991 UT ISI:A1995QP25200016
6992 ER
6993 
6994 PT J
6995 AU CAFIERO, R
6996    LORETO, V
6997    PIETRONERO, L
6998    VESPIGNANI, A
6999    ZAPPERI, S
7000 TI LOCAL RIGIDITY AND SELF-ORGANIZED CRITICALITY FOR AVALANCHES
7001 SO EUROPHYSICS LETTERS
7002 LA English
7003 DT Article
7004 ID FOREST-FIRE MODEL; FRACTAL GROWTH; RELAXATION
7005 AB The general conditions for a sandpile system to evolve spontaneously
7006    into a critical state characterized by a power law distribution of
7007    avalanches or bursts are identified as:  a) the existence of a
7008    stationary state with a global conservation law; b) long-range
7009    correlations in the continuum limit (i.e. Laplacian diffusive field);
7010    c) the existence of a local rigidity for the microscopic dynamics. 
7011    These conditions permit a classification of the models that have been
7012    considered up to now and the identification of the local rigidity as a
7013    new basic parameter that can lead to various possible scenarios ranging
7014    continuously from SOC behaviour to standard diffusion.
7015 RP CAFIERO, R, UNIV ROMA I LA SAPIENZA,DIPARTIMENTO FIS,P A MORO 2,I-00185
7016    ROME,ITALY.
7017 CR BAK P, COMMUNICATION
7018    BAK P, 1987, PHYS REV LETT, V59, P381
7019    BAK P, 1988, PHYS REV A, V38, P364
7020    BAK P, 1990, PHYS LETT A, V147, P297
7021    BAK P, 1993, PHYS REV LETT, V71, P4083
7022    DIAZGUILERA A, 1994, EUROPHYS LETT, V26, P177
7023    DROSSEL B, 1992, PHYS REV LETT, V69, P1629
7024    ERZAN A, IN PRESS REV MOD PHY
7025    LORETO V, UNPUB PHYS REV LETT
7026    MA SK, 1976, MODERN THEORY CRITIC
7027    OLAMI Z, 1992, PHYS REV LETT, V68, P1244
7028    PARISI G, 1991, PHYSICA A, V179, P16
7029    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
7030    PIETRONERO L, 1990, PHYSICA A, V170, P81
7031    PIETRONERO L, 1991, PHYS REV LETT, V66, P2336
7032    PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
7033    VICKSEK T, 1989, FRACTAL GROWTH PHENO
7034    ZHANG YC, 1987, PHYS REV LETT, V63, P470
7035 NR 18
7036 TC 18
7037 PU EDITIONS PHYSIQUE
7038 PI LES ULIS CEDEX
7039 PA Z I DE COURTABOEUF AVE 7 AV DU HOGGAR, BP 112, 91944 LES ULIS CEDEX,
7040    FRANCE
7041 SN 0295-5075
7042 J9 EUROPHYS LETT
7043 JI Europhys. Lett.
7044 PD JAN 10
7045 PY 1995
7046 VL 29
7047 IS 2
7048 BP 111
7049 EP 116
7050 PG 6
7051 SC Physics, Multidisciplinary
7052 GA QC369
7053 UT ISI:A1995QC36900001
7054 ER
7055 
7056 PT J
7057 AU PETRI, A
7058    PAPARO, G
7059    VESPIGNANI, A
7060    ALIPPI, A
7061    COSTANTINI, M
7062 TI EXPERIMENTAL-EVIDENCE FOR CRITICAL-DYNAMICS IN MICROFRACTURING PROCESSES
7063 SO PHYSICAL REVIEW LETTERS
7064 LA English
7065 DT Article
7066 ID SELF-ORGANIZED CRITICALITY; ACOUSTIC-EMISSION; 1/F NOISE
7067 C1 UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,I-00185 ROME,ITALY.
7068    UNIV ROMA LA SAPIENZA,DIPARTIMENTO ENERGET,I-00161 ROME,ITALY.
7069 RP PETRI, A, CNR,IST ACUST OM CORBINO,VIA CASSIA 1216,I-00189 ROME,ITALY.
7070 CR BAK P, 1987, PHYS REV LETT, V59, P381
7071    BAK P, 1988, PHYS REV A, V38, P364
7072    BAK P, 1989, NETURE, V342, P7800
7073    BAK P, 1993, FRACTALS DISORDERED, V2
7074    CANNELLI G, 1993, PHYS REV LETT, V70, P3923
7075    CHRISTENSEN K, 1991, J STAT PHYS, V63, P653
7076    CHRISTENSEN K, 1992, PHYS REV LETT, V68, P2417
7077    DIODATI P, 1991, PHYS REV LETT, V67, P2239
7078    GUTENBERG B, 1956, ANN GEOFIS, V9, P1
7079    HIRATA T, 1987, J GEOPHYS RES-SOLID, V92, P6215
7080    HUANG J, 1988, EARTH PLANET SC LETT, V91, P223
7081    ISHIMOTO M, 1939, B EARTHQ RES I TOKYO, V17, P443
7082    KERTESZ J, 1990, J PHYS A, V23, L433
7083    LORD AE, 1981, PHYSICAL ACOUSTICS, V15
7084    MCDONALD DKC, 1962, NOISE FLUCTUATIONS
7085    MOGI K, 1962, B EARTHQ RES I TOKIO, V40, P815
7086    MOGI K, 1962, B EARTHQ RES I TOKYO, V40, P125
7087    MOGI K, 1962, B EARTHQ RES I TOKYO, V40, P831
7088    MOGI K, 1963, B EARTHQ RES I TOKYO, V41, P595
7089    MOGI K, 1967, TECTONOPHYSICS, V5, P35
7090    OMORI F, 1894, REP EARTH INV COMM, V2, P103
7091    OMORI F, 1969, TOKUJI UTSU, V3, P129
7092    PACZUSKI M, IN PRESS
7093    PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
7094    SORNETTE A, 1989, EUROPHYS LETT, V9, P197
7095 NR 25
7096 TC 99
7097 PU AMERICAN PHYSICAL SOC
7098 PI COLLEGE PK
7099 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
7100 SN 0031-9007
7101 J9 PHYS REV LETT
7102 JI Phys. Rev. Lett.
7103 PD DEC 19
7104 PY 1994
7105 VL 73
7106 IS 25
7107 BP 3423
7108 EP 3426
7109 PG 4
7110 SC Physics, Multidisciplinary
7111 GA PX387
7112 UT ISI:A1994PX38700024
7113 ER
7114 
7115 PT J
7116 AU CALDARELLI, G
7117    CASTELLANO, C
7118    VESPIGNANI, A
7119 TI FRACTAL AND TOPOLOGICAL PROPERTIES OF DIRECTED FRACTURES
7120 SO PHYSICAL REVIEW E
7121 LA English
7122 DT Article
7123 ID DIFFUSION-LIMITED AGGREGATION; DIELECTRIC-BREAKDOWN; ELASTIC NETWORKS;
7124    MODEL; GROWTH
7125 AB We use the Born model for the energy of elastic networks to simulate
7126    ''directed'' fracture growth. We define directed fractures as crack
7127    patterns showing a preferential evolution direction imposed by the type
7128    of stress and boundary conditions applied. This type of fracture allows
7129    a more realistic description of some kinds of experimental cracks and
7130    presents several advantages in order to distinguish between the various
7131    growth regimes. By choosing this growth geometry it is also possible to
7132    use without ambiguity the box-counting method to obtain the fractal
7133    dimension for different subsets of the patterns and for a wide range of
7134    the internal parameters of the model. We find a continuous dependence
7135    of the fractal dimension of the whole patterns and of their backbones
7136    on the ratio between the central- and noncentral-force contributions.
7137    For the chemical distance we find a one-dimensional behavior
7138    independent of the relevant parameters, which seems to be a common
7139    feature for fractal growth processes.
7140 C1 UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,I-00185 ROME,ITALY.
7141    UNIV NAPLES,DIPARTIMENTO SCI FIS,I-80125 NAPLES,ITALY.
7142 RP CALDARELLI, G, SCUOLA INT SUPER STUDI AVANZATI,VIA BEIRUT 2-4,I-34014
7143    GRIGNANO,ITALY.
7144 CR EVERTSZ C, 1990, PHYS REV A, V41, P1830
7145    FENG S, 1984, PHYS REV LETT, V52, P216
7146    HERRMANN HJ, 1990, STATISTICAL MODELS F
7147    HERRMANN HJ, 1991, PHYS SCR T, V38, P13
7148    HORVATH VK, 1991, CHAOS SOLITON FRACT, V1, P395
7149    LANDAU LD, 1960, ELASTICITY
7150    LOUIS E, 1987, EUROPHYS LETT, V3, P871
7151    MEAKIN P, 1984, J PHYS A, V17, L975
7152    MEAKIN P, 1989, J PHYS A-MATH GEN, V22, P1393
7153    NIEMEYER L, 1984, PHYS REV LETT, V52, P1033
7154    OSSADNIK P, 1993, HLRZ10L9I REP
7155    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
7156    PIETRONERO L, 1988, PHYSICA A, V151, P207
7157    SEN PN, 1977, PHYS REV B, V15, P4030
7158    VICSEK T, 1992, FRACTAL GROWTH PHENO
7159    WITTEN TA, 1981, PHYS REV LETT, V47, P1400
7160    YAN H, 1989, EUROPHYS LETT, V10, P7
7161 NR 17
7162 TC 20
7163 PU AMERICAN PHYSICAL SOC
7164 PI COLLEGE PK
7165 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
7166 SN 1063-651X
7167 J9 PHYS REV E
7168 JI Phys. Rev. E
7169 PD APR
7170 PY 1994
7171 VL 49
7172 IS 4
7173 PN Part A
7174 BP 2673
7175 EP 2679
7176 PG 7
7177 SC Physics, Fluids & Plasmas; Physics, Mathematical
7178 GA NJ379
7179 UT ISI:A1994NJ37900027
7180 ER
7181 
7182 PT J
7183 AU PIETRONERO, L
7184    VESPIGNANI, A
7185    ZAPPERI, S
7186 TI RENORMALIZATION SCHEME FOR SELF-ORGANIZED CRITICALITY IN SANDPILE MODELS
7187 SO PHYSICAL REVIEW LETTERS
7188 LA English
7189 DT Article
7190 ID UNIVERSALITY
7191 AB We introduce a renormalization scheme of novel type that allows us to
7192    characterize the critical state and the scale invariant dynamics in
7193    sandpile models. The attractive fixed point clarifies the nature of
7194    self-organization in these systems. Universality classes can be
7195    identified and the critical exponents can be computed analytically. We
7196    obtain tau = 1.253 for the avalanche exponent and z = 1.234 for the
7197    dynamical exponent. These results are in good agreement with computer
7198    simulations. The method can be naturally extended to other problems
7199    with nonequilibrium stationary states.
7200 RP PIETRONERO, L, UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,PIAZZALE A MORO
7201    2,I-00185 ROME,ITALY.
7202 CR BAK P, BNL49030 REP
7203    BAK P, 1987, PHYS REV LETT, V59, P381
7204    BAK P, 1988, PHYS REV A, V38, P364
7205    BAK P, 1993, FRACTALS DISORDERED, V2
7206    CAFIERO R, 1993, PHYS REV LETT, V70, P3939
7207    CHRISTENSEN K, 1992, PHYS REV A, V46, P1829
7208    DHAR D, 1989, PHYS REV LETT, V63, P1659
7209    DHAR D, 1990, J PHYS A-MATH GEN, V23, P4333
7210    DHAR D, 1990, PHYS REV LETT, V64, P161
7211    ERZAN A, IN PRESS FIXED SCALE
7212    GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
7213    KADANOFF LP, 1989, PHYS REV A, V39, P6524
7214    KADANOFF LP, 1990, PHYSICA A, V163, P1
7215    KADANOFF LP, 1991, PHYS TODAY, V44, P9
7216    MANNA SS, 1990, J STAT PHYS, V59, P509
7217    MANNA SS, 1990, J STAT PHYS, V61, P923
7218    MANNA SS, 1991, J PHYS A, V24, L363
7219    MANNA SS, 1991, PHYSICA A, V179, P249
7220    OLAMI Z, 1992, PHYS REV LETT, V68, P1244
7221    PACZUSKI M, IN PRESS
7222    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
7223    PIETRONERO L, 1991, PHYS REV LETT, V66, P2336
7224    PIETRONERO L, 1991, PHYSICA A, V173, P22
7225    SORNETTE D, 1992, J PHYS I, V2, P2065
7226    VESPIGNANI A, IN PRESS
7227    VICSEK T, 1992, FRACTAL GROWTH PHENO
7228    ZHANG YC, 1989, PHYS REV LETT, V63, P470
7229 NR 27
7230 TC 103
7231 PU AMERICAN PHYSICAL SOC
7232 PI COLLEGE PK
7233 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
7234 SN 0031-9007
7235 J9 PHYS REV LETT
7236 JI Phys. Rev. Lett.
7237 PD MAR 14
7238 PY 1994
7239 VL 72
7240 IS 11
7241 BP 1690
7242 EP 1693
7243 PG 4
7244 SC Physics, Multidisciplinary
7245 GA NA492
7246 UT ISI:A1994NA49200030
7247 ER
7248 
7249 PT J
7250 AU DISTASIO, M
7251    PIETRONERO, L
7252    STELLA, A
7253    VESPIGNANI, A
7254 TI FIXED-SCALE TRANSFORMATION APPROACH TO LINEAR AND BRANCHED POLYMERS
7255 SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
7256 LA English
7257 DT Article
7258 ID DIFFUSION-LIMITED AGGREGATION; FRACTAL GROWTH; PERCOLATION;
7259    RENORMALIZATION; LATTICE
7260 AB The radius exponent of two- and three-dimensional self-avoiding walks
7261    and branched polymers are computed in the fixed-scale transformation
7262    framework. The method requires the knowledge of the critical fugacity
7263    k(c), but from this non-universal parameter it is possible to compute
7264    the universal critical exponent. The results obtained are within 1% of
7265    exact or numerical values. This confirms the versatility and
7266    quantitative power of this new theoretical approach and gives the
7267    opportunity to provide a discussion of the analogies and differences
7268    between the real space renormalization group and the fixed-scale
7269    transformation method.
7270 C1 UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,I-00185 ROME,ITALY.
7271    UNIV BOLOGNA,DIPARTIMENTO FIS,BOLOGNA,ITALY.
7272 RP DISTASIO, M, ISAS,SISSA,VIA BEIRUT 2,I-34100 MIRAMARE,ITALY.
7273 CR BURKHARDT TW, 1982, REAL SPACE RENORMALI
7274    DEGENNES PG, 1979, SCALING CONCEPTS POL
7275    DERRIDA B, 1985, J PHYS-PARIS, V46, P1623
7276    FAMILY F, 1980, J PHYS A, V13, L325
7277    FAMILY F, 1980, J PHYS A-MATH GEN, V13, L403
7278    FLORY PJ, 1971, PRINCIPLES POLYM CHE
7279    GUTTMANN AJ, 1978, J PHYS             A, V11, P949
7280    HERRMANN HJ, 1986, GROWTH FORM
7281    LEGUILLOU JC, 1980, PHYS REV B, V21, P3976
7282    NENHUIS B, 1982, PHYS REV LETT, V49, P1062
7283    NIEMEYER L, 1984, PHYS REV LETT, V52, P1038
7284    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
7285    PIETRONERO L, 1988, PHYSICA A, V151, P207
7286    PIETRONERO L, 1990, PHYSICA A, V170, P64
7287    PIETRONERO L, 1991, NONLINEAR PHENOMENA
7288    SYKES MF, 1972, J PHYS A, V5, P653
7289    VESPIGNANI A, 1991, PHYSICA A, V173, P21
7290    VICSEK T, 1989, FRACTAL GROWTH PHENO
7291    WATTS MG, 1975, J PHYS A, V8, P61
7292    WITTEN TA, 1981, PHYS REV LETT, V47, P1400
7293 NR 20
7294 TC 2
7295 PU IOP PUBLISHING LTD
7296 PI BRISTOL
7297 PA TECHNO HOUSE, REDCLIFFE WAY, BRISTOL, ENGLAND BS1 6NX
7298 SN 0305-4470
7299 J9 J PHYS-A-MATH GEN
7300 JI J. Phys. A-Math. Gen.
7301 PD JAN 21
7302 PY 1994
7303 VL 27
7304 IS 2
7305 BP 317
7306 EP 326
7307 PG 10
7308 SC Physics, Multidisciplinary; Physics, Mathematical
7309 GA MV126
7310 UT ISI:A1994MV12600016
7311 ER
7312 
7313 PT J
7314 AU CAFIERO, R
7315    PIETRONERO, L
7316    VESPIGNANI, A
7317 TI PERSISTENCE OF SCREENING AND SELF-CRITICALITY IN THE SCALE-INVARIANT
7318    DYNAMICS OF DIFFUSION-LIMITED AGGREGATION
7319 SO PHYSICAL REVIEW LETTERS
7320 LA English
7321 DT Article
7322 ID RENORMALIZATION-GROUP APPROACH; FRACTAL GROWTH; ANISOTROPY; PATTERNS
7323 AB The origin of fractal properties in diffusion limited aggregation is
7324    related to the persistence of screening in the scale invariant growth
7325    regime. This effect is described by the effective noise reduction
7326    parameter S spontaneously generated by the scale invariant dynamics.
7327    The renormalization of this parameter under scale transformation shows
7328    the following: (i) The fixed point is attractive, implying the
7329    self-critical nature of the process. (ii) The fixed point value S* is
7330    of the order of unity, showing that the small scale growth rules are
7331    already close to the scale invariant ones and that screening effects
7332    persist in the asymptotic regime.
7333 RP CAFIERO, R, UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,PIAZZALE A MORO
7334    2,I-00185 ROME,ITALY.
7335 CR AMAR MB, 1991, NATO ASI SER B, V276, P345
7336    BARKER PW, 1990, PHYS REV A, V42, P6289
7337    CAFIERO R, IN PRESS
7338    DEANGELIS R, 1991, EUROPHYS LETT, V16, P417
7339    ECKMANN JP, 1989, PHYS REV A, V39, P3185
7340    ECKMANN JP, 1990, PHYS REV LETT, V65, P52
7341    KERTESZ J, 1986, J PHYS A, V19, L257
7342    MOUKARZEL C, 1992, PHYSICA A, V188, P469
7343    NAGATANI T, 1987, J PHYS A, V20, L381
7344    NAGATANI T, 1987, PHYS REV A, V36, P5812
7345    NITTMANN J, 1986, NATURE, V321, P663
7346    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
7347    PIETRONERO L, 1988, PHYSICA A, V151, P207
7348    PIETRONERO L, 1990, PHYSICA A, V170, P64
7349    PIETRONERO L, 1992, PHYSICA A, V191, P85
7350    VICSEK T, 1992, FRACTAL GROWTH PHENO
7351    WANG XR, 1989, J PHYS A, V22, L507
7352    WANG XR, 1989, PHYS REV A, V39, P5974
7353    WANG XZ, 1992, PHYS REV A, V46, P5038
7354 NR 19
7355 TC 31
7356 PU AMERICAN PHYSICAL SOC
7357 PI COLLEGE PK
7358 PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
7359 SN 0031-9007
7360 J9 PHYS REV LETT
7361 JI Phys. Rev. Lett.
7362 PD JUN 21
7363 PY 1993
7364 VL 70
7365 IS 25
7366 BP 3939
7367 EP 3942
7368 PG 4
7369 SC Physics, Multidisciplinary
7370 GA LH554
7371 UT ISI:A1993LH55400026
7372 ER
7373 
7374 PT J
7375 AU VESPIGNANI, A
7376    CAFIERO, R
7377    PIETRONERO, L
7378 TI ASYMPTOTIC SCREENING IN THE SCALE INVARIANT GROWTH RULES FOR LAPLACIAN
7379    FRACTALS
7380 SO PHYSICA A
7381 LA English
7382 DT Article
7383 ID DIFFUSION-LIMITED AGGREGATION; ANISOTROPY; PATTERNS
7384 AB A key element in the fixed scale transformation approach to fractal
7385    growth is the use of the asymptotic scale invariant dynamics of the
7386    growth process. This is a non-universal element, analogous to the
7387    critical probability or temperature in percolation or Ising problems.
7388    The essential property to generate fractal structure is the persistence
7389    of screening effects in the asymptotic regime. To investigate this
7390    problem we use a renormalization procedure in which the noise reduction
7391    parameter is the critical one. The approach is based on the growth
7392    process itself and shows a non-trivial fixed point where the screening
7393    properties are preserved. This result guarantees the existence of the
7394    asymptotic fractal structure and clearly defines the basic elements of
7395    the growth rules used in the fixed scale transformation method.
7396 RP VESPIGNANI, A, UNIV ROME LA SAPIENZA,DIPARTIMENTO FIS,P A MORO
7397    2,I-00185 ROME,ITALY.
7398 CR BARKER PW, 1990, PHYS REV A, V42, P6289
7399    CAFIERO R, 1992, PREPRINT
7400    DEANGELIS R, 1991, EUROPHYS LETT, V16, P417
7401    DISTASIO M, 1992, PREPRINT
7402    ECKMANN JP, 1989, PHYS REV A, V39, P3185
7403    ERZAN A, 1991, J PHYS A, V24, P1875
7404    KERTESZ J, 1986, J PHYS A, V19, L257
7405    MEAKIN P, 1989, PHASE TRANSITIONS CR, V11
7406    MOUKARZEL C, 1992, HLRZ1692 PREPR
7407    NIEMEYER L, 1984, PHYS REV LETT, V52, P1038
7408    NITTMANN J, 1986, NATURE, V321, P663
7409    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
7410    PIETRONERO L, 1988, PHYSICA A, V151, P207
7411    PIETRONERO L, 1990, PHYSICA A, V170, P64
7412    SELINGER RLB, 1989, PREPRINT
7413    WITTEN TA, 1981, PHYS REV LETT, V47, P1400
7414 NR 16
7415 TC 0
7416 PU ELSEVIER SCIENCE BV
7417 PI AMSTERDAM
7418 PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
7419 SN 0378-4371
7420 J9 PHYSICA A
7421 JI Physica A
7422 PD DEC 15
7423 PY 1992
7424 VL 191
7425 IS 1-4
7426 BP 128
7427 EP 133
7428 PG 6
7429 SC Physics, Multidisciplinary
7430 GA KF666
7431 UT ISI:A1992KF66600021
7432 ER
7433 
7434 PT J
7435 AU SIDORETTI, S
7436    VESPIGNANI, A
7437 TI FIXED SCALE TRANSFORMATION APPLIED TO CLUSTER CLUSTER AGGREGATION IN
7438    2-DIMENSIONS AND 3-DIMENSIONS
7439 SO PHYSICA A
7440 LA English
7441 DT Article
7442 ID DIFFUSION-LIMITED AGGREGATION
7443 AB Recently it has been introduced a new theoretical framework named fixed
7444    scale transformation (FST), which appears particularly suitable to
7445    study the growth of fractal structures.  This method allows the first
7446    study of the process of cluster-cluster aggregation (CCA). The FST
7447    approach can in fact be generalized in a natural and relatively simple
7448    way to the case of CCA. Here we present detailed results for the
7449    analytical calculation of the fractal dimension of the aggregates. For
7450    CCA in two dimensions the computed value is D = 1.39 and in three
7451    dimensions is D = 1.9, to be compared with the simulation results that
7452    are respectively D = 1.45 and D = 1.8. Furthermore the approximation
7453    scheme of the FST can be implemented in a systematic way to estimate
7454    quantitatively higher Order corrections and to study variation of the
7455    original model. This application is of particular relevance because CCA
7456    has eluded all the standard theoretical approach and in particular it
7457    cannot even be formulated from the point of view of renormalization
7458    group methods.
7459 RP SIDORETTI, S, UNIV ROME LA SAPIENZA,DIPARTIMENTO FIS,P LE A MORO
7460    2,I-00185 ROME,ITALY.
7461 CR ERNST MH, 1986, FRACTALS PHYSICS, P289
7462    ERZAN A, 1992, PHYSICA A, V185, P66
7463    KOLB M, 1983, PHYS REV LETT, V51, P1123
7464    LEYVRAZ F, 1986, GROWTH FORM, P136
7465    MEAKIN P, 1983, PHYS REV LETT, V51, P1119
7466    NIEMEYER L, 1984, PHYS REV LETT, V52, P1038
7467    PIETRONERO L, IN PRESS NONLINEAR P
7468    PIETRONERO L, PREPRINT
7469    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
7470    PIETRONERO L, 1988, PHYSICA A, V40, P5377
7471    SMOLUCHOWSKI MV, 1916, PHYS Z, V17, P585
7472    VESPIGNANI A, 1991, PHYSICA A, V173, P1
7473    VICSEK T, 1984, PHYS REV LETT, V52, P1669
7474    VICSEK T, 1985, PHYS REV A, V32, P1122
7475    VICSEK T, 1989, FRACTAL GROWTH PHENO
7476    WITTEN TA, 1981, PHYS REV LETT, V47, P1400
7477 NR 16
7478 TC 1
7479 PU ELSEVIER SCIENCE BV
7480 PI AMSTERDAM
7481 PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
7482 SN 0378-4371
7483 J9 PHYSICA A
7484 JI Physica A
7485 PD JUN 15
7486 PY 1992
7487 VL 185
7488 IS 1-4
7489 BP 202
7490 EP 210
7491 PG 9
7492 SC Physics, Multidisciplinary
7493 GA JC914
7494 UT ISI:A1992JC91400028
7495 ER
7496 
7497 PT J
7498 AU DEANGELIS, R
7499    MARSILI, M
7500    PIETRONERO, L
7501    VESPIGNANI, A
7502    WIESMANN, HJ
7503 TI UNIVERSALITY OF GROWTH RULES IN FRACTAL GROWTH
7504 SO EUROPHYSICS LETTERS
7505 LA English
7506 DT Article
7507 ID DIFFUSION-LIMITED AGGREGATION; DIELECTRIC-BREAKDOWN MODEL
7508 AB We consider the problem of the universality of growth rules in
7509    fractal-growth models and introduce a theoretical scheme that allows us
7510    to address this question.  In particular we show that growth defined
7511    per site and rules that include diagonal process renormalize
7512    asymptotically into effective growth rules of simple bond type. 
7513    Therefore, we identify the general nature of the asymptotic,
7514    scale-invariant growth dynamics for coarse-grained variables.
7515 C1 ASEA BROWN BOVERI CORP RES,CH-5405 BADEN,SWITZERLAND.
7516 RP DEANGELIS, R, UNIV ROME LA SAPIENZA,DIPARTMENTO FIS,PIAZZALE A MORO
7517    2,I-00185 ROME,ITALY.
7518 CR DEANGELIS R, PREPRINT
7519    ERZAN A, 1991, J PHYS A, V24, P1875
7520    EVERTSZ C, 1990, PHYS REV A, V41, P1830
7521    MEAKIN P, 1989, FRACTALS PHYSICAL OR, P137
7522    NAGATANI T, 1987, PHYS REV A, V36, P5812
7523    NIEMEYER L, 1984, PHYS REV LETT, V52, P1033
7524    PIETRONERO L, PREPRINT
7525    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
7526    PIETRONERO L, 1988, PHYSICA A, V151, P207
7527    PIETRONERO L, 1990, PHYS REV A, V42, P7496
7528    WITTEN TA, 1981, PHYS REV LETT, V47, P1400
7529 NR 11
7530 TC 13
7531 PU EDITIONS PHYSIQUE
7532 PI LES ULIS CEDEX
7533 PA Z I DE COURTABOEUF AVE 7 AV DU HOGGAR, BP 112, 91944 LES ULIS CEDEX,
7534    FRANCE
7535 SN 0295-5075
7536 J9 EUROPHYS LETT
7537 JI Europhys. Lett.
7538 PD OCT 1
7539 PY 1991
7540 VL 16
7541 IS 5
7542 BP 417
7543 EP 422
7544 PG 6
7545 SC Physics, Multidisciplinary
7546 GA GJ340
7547 UT ISI:A1991GJ34000001
7548 ER
7549 
7550 PT J
7551 AU VERGASSOLA, M
7552    VESPIGNANI, A
7553 TI NONCONSERVATIVE CHARACTER OF THE INTERSECTION OF SELF-SIMILAR CASCADES
7554 SO PHYSICA A
7555 LA English
7556 DT Article
7557 ID FULLY-DEVELOPED TURBULENCE; MODEL
7558 AB When a self-similar cascade is interested, the resulting cascade
7559    process generating the intersection set is in general non-conservative,
7560    i.e. in the fragmentation process the related measure is not conserved.
7561     It is shown that the non-conservative character of a cascade
7562    invalidates the experimental analysis of the process.  In particular it
7563    is possible to have self-similar cascades which do not show any fractal
7564    or multifractal behaviour when the box-counting analysis is performed. 
7565    In the case of fractals the most relevant example is provided by
7566    processes having negative dimensions.  With respect to multifractals,
7567    our results show that a strict interpretation of dissipation in a fully
7568    developed turbulent fluid as a result of a self-similar cascade is
7569    untenable.
7570 C1 OBSERV NICE,CNRS,F-06003 NICE,FRANCE.
7571 RP VERGASSOLA, M, UNIV ROME LA SAPIENZA,DIPARTMENTO FIS,P MORO 2,I-00185
7572    ROME,ITALY.
7573 CR BENZI R, 1984, J PHYS A-MATH GEN, V17, P3521
7574    EVERSTSZ C, 1989, THESIS U GRONINGEN
7575    FRISCH U, 1978, J FLUID MECH, V87, P719
7576    JENSEN MH, 1991, PHYS REV A, V43, P798
7577    MANDELBROT B, 1976, LECT NOTES MATH, V565, P127
7578    MANDELBROT B, 1989, FRACTALS PHYSICAL OR
7579    MANDELBROT BB, 1974, J FLUID MECH, V62, P331
7580    MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT
7581    MENEVEAU C, 1987, NUCL PHYS B        S, V2, P49
7582    PALADIN G, 1987, PHYS REP, V156, P147
7583    PARISI G, 1985, TURBULENCE PREDICTAB
7584    PIETRONERO L, 1987, PHYSICA A, V144, P257
7585    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
7586    PIETRONERO L, 1988, PHYSICA A, V151, P207
7587    SCHERTZER D, 1990, FRACTALS PHYSICAL OR
7588    SIEBESMA AP, 1989, THESIS U GRONINGEN
7589 NR 16
7590 TC 1
7591 PU ELSEVIER SCIENCE BV
7592 PI AMSTERDAM
7593 PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
7594 SN 0378-4371
7595 J9 PHYSICA A
7596 JI Physica A
7597 PD JUN 1
7598 PY 1991
7599 VL 174
7600 IS 2-3
7601 BP 425
7602 EP 437
7603 PG 13
7604 SC Physics, Multidisciplinary
7605 GA FU466
7606 UT ISI:A1991FU46600013
7607 ER
7608 
7609 PT J
7610 AU VESPIGNANI, A
7611    PIETRONERO, L
7612 TI FIXED SCALE TRANSFORMATION APPLIED TO DIFFUSION LIMITED AGGREGATION AND
7613    DIELECTRIC-BREAKDOWN MODEL IN 3-DIMENSIONS
7614 SO PHYSICA A
7615 LA English
7616 DT Article
7617 ID FRACTAL GROWTH
7618 AB We extend the method of the fixed scale transformation (FST) to the
7619    case of fractal growth in three dimensions and apply it to diffusion
7620    limited aggregation and to the dielectric breakdown model for different
7621    values of the parameter eta.  The scheme is formally similar to the
7622    two-dimensional case with the following technical complications:  (i)
7623    The basis configurations for the fine graining process are five
7624    (instead of two) and consist of 2 x 2 cells.  (ii) The treatment of the
7625    fluctuations of boundary conditions is far more complex and requires
7626    new schemes of approximations.  In order to test the convergency of the
7627    theoretical results we consider three different schemes of increasing
7628    complexity.  For DBM in three dimensions the computed values of the
7629    fractal dimension for eta = 1, 2 and 3 result to be in very good
7630    agreement with corresponding values obtained by computer simulations. 
7631    These results provide an important test for the FST method as a new
7632    theoretical tool to study irreversible fractal growth.
7633 RP VESPIGNANI, A, UNIV ROME LA SAPIENZA,DIPARTMENTO FIS,PIAZZALE A MORO
7634    2,I-00185 ROME,ITALY.
7635 CR DEANGELIS R, IN PRESS
7636    ERZAN A, 1991, IN PRESS J PHYS A
7637    EVERTSZ C, 1990, PHYS REV A, V41, P1830
7638    MEAKIN P, 1989, FRACTALS PHYSICAL OR
7639    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
7640    PIETRONERO L, 1988, PHYSICA A, V151, P207
7641    PIETRONERO L, 1990, PHYSICA A, V170, P64
7642    PIETRONERO L, 1990, PHYSICA A, V170, P81
7643    TOLMAN S, 1989, PHYSICA A, V158, P801
7644    TREMBLAY RR, 1989, PHYS REV A, V40, P5377
7645    VESPIGNANI A, 1990, PHYSICA A, V168, P723
7646 NR 11
7647 TC 11
7648 PU ELSEVIER SCIENCE BV
7649 PI AMSTERDAM
7650 PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
7651 SN 0378-4371
7652 J9 PHYSICA A
7653 JI Physica A
7654 PD APR 15
7655 PY 1991
7656 VL 173
7657 IS 1-2
7658 BP 1
7659 EP 21
7660 PG 21
7661 SC Physics, Multidisciplinary
7662 GA FL190
7663 UT ISI:A1991FL19000001
7664 ER
7665 
7666 PT J
7667 AU VESPIGNANI, A
7668    PIETRONERO, L
7669 TI EFFECT OF EMPTY CONFIGURATIONS IN THE FIXED SCALE TRANSFORMATION THEORY
7670    OF FRACTAL GROWTH
7671 SO PHYSICA A
7672 LA English
7673 DT Article
7674 RP VESPIGNANI, A, UNIV ROME LA SAPIENZA,DEPARTIMENTO FIS,PIAZZALE A MORO
7675    2,I-00185 ROME,ITALY.
7676 CR DEANGELIS R, PREPRINT
7677    MARSILI M, UNPUB PHYSICA A
7678    NIEMEYER L, 1984, PHYS REV LETT, V52, P1033
7679    PIETRONERO L, UNPUB PHYS REV LETT
7680    PIETRONERO L, 1988, PHYS REV LETT, V61, P861
7681    PIETRONERO L, 1988, PHYSICA A, V151, P207
7682    VESPIGNANI A, UNPUB
7683    WITTEN TA, 1981, PHYS REV LETT, V47, P1400
7684 NR 8
7685 TC 9
7686 PU ELSEVIER SCIENCE BV
7687 PI AMSTERDAM
7688 PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
7689 SN 0378-4371
7690 J9 PHYSICA A
7691 JI Physica A
7692 PD OCT 1
7693 PY 1990
7694 VL 168
7695 IS 2
7696 BP 723
7697 EP 735
7698 PG 13
7699 SC Physics, Multidisciplinary
7700 GA EH667
7701 UT ISI:A1990EH66700005
7702 ER
7703 
7704 EF