Warning, /office/kbibtex-testset/isi/vanadium.isi is written in an unsupported language. File is not indexed.

0001 
0002 
0003 Notes: hydrazine and vanadium
0004 
0005 
0006 ============================================================
0007 FN ISI Export Format
0008 VR 1.0
0009 PT J
0010 AU Sarkar, A
0011    Pal, S
0012 AF Sarkar, Anindita
0013    Pal, Samudranil
0014 TI Some ternary complexes of oxovanadium(IV) with acetylacetone and
0015    N-(2-pyridyl)-N '-(salicylidene)hydrazine and its derivatives
0016 SO POLYHEDRON
0017 LA English
0018 DT Article
0019 DE oxovanadium(IV); ternary complexes; EPR spectra; crystal structures;
0020    self-assembly
0021 ID SCHIFF-BASE LIGAND; VANADIUM COMPLEXES; COORDINATION CHEMISTRY; VO2+
0022    COMPLEXES; REDOX
0023 AB The reactions of one equivalent each of [VO(acac)(2)] and
0024    N-(2-pyridyl)-N'-(5-R-salicylidene)hydrazines (HphsalR) (derived front
0025    2-hydrazinopyridine and 5-substituted salicylaldehydes) in boiling
0026    acetonitrile under aerobic conditions provide ternary complexes of
0027    oxovanadium(IV) having the general formula [VO(phsalR)(acac)]. The
0028    complexes have been characterized by analytical, magnetic and
0029    spectroscopic measurements. The structures of two representative
0030    complexes have been determined by X-ray crystallography. In each
0031    structure, the metal centre is in a distorted octahedral N2O4
0032    coordination sphere. The tridentate phsalR(-) coordinates the metal ion
0033    via the pyridine-N, the imine-N and the phenolate-O atoms in a
0034    meridional fashion. The remaining three coordinations sites are
0035    occupied by the bidentate O,O-donor acetylacetonate (acac(-)) and the
0036    oxo group. In the crystal lattice, the molecules of each of the two
0037    complexes assemble to form one-dimensional supramolecular structure via
0038    intermolecular N-H center dot center dot center dot O=V hydrogen bond
0039    interaction. Electronic spectra collected using dimethylsulfoxide
0040    solutions of the complexes display a weak absorption within 643-720 nm
0041    due to d-d transition and some strong absorptions in the range 510-262
0042    nm due to ligand-to-metal charge transfer and ligand centred
0043    transitions. The room temperature (298 K) effective magnetic moments of
0044    the complexes in the solid state are consistent with an S = 1/2 ground
0045    state of the metal ion in each complex. All the complexes display axial
0046    EPR spectra with well-resolved V-51 hyperfine structure characteristic
0047    of an axially compressed octahedral coordination geometry around the
0048    metal centre. (C) 2005 Elsevier Ltd. All rights reserved.
0049 C1 Univ Hyderabad, Sch Chem, Hyderabad 500046, Andhra Pradesh, India.
0050 RP Pal, S, Univ Hyderabad, Sch Chem, Hyderabad 500046, Andhra Pradesh,
0051    India.
0052 EM spsc@uohyd.ernet.in
0053 NR 26
0054 TC 0
0055 PU PERGAMON-ELSEVIER SCIENCE LTD
0056 PI OXFORD
0057 PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
0058 SN 0277-5387
0059 J9 POLYHEDRON
0060 JI Polyhedron
0061 PD MAY 8
0062 PY 2006
0063 VL 25
0064 IS 7
0065 BP 1689
0066 EP 1694
0067 PG 6
0068 SC Chemistry, Inorganic & Nuclear; Crystallography
0069 GA 045XJ
0070 UT ISI:000237775700028
0071 ER
0072 
0073 
0074 PT J
0075 AU Chu, WC
0076    Wu, CC
0077    Hsu, HF
0078 TI Catalytic reduction of hydrazine to ammonia by a vanadium thiolate
0079    complex
0080 SO INORGANIC CHEMISTRY
0081 LA English
0082 DT Article
0083 ID BIOLOGICAL NITROGEN-FIXATION; N-N BOND; DINITROGEN FIXATION; DIRECT
0084    INVOLVEMENT; POSSIBLE RELEVANCE; DIVALENT VANADIUM; LIGAND; CLEAVAGE;
0085    DISPROPORTIONATION; INTERMEDIATE
0086 AB Vanadium(III) thiolate complexes, [V(PS3")(Cl)]- [1a; PS3" =
0087    P(C6H3-3-(MeSi)-Si-3-2-S)(3)(3-)] and [V(PS3')(Cl)]- [1b; PS3' =
0088    P(C6H3-5-Me-2-S)3(3-)], were synthesized and characterized. Complex la
0089    serves as a precursor for the catalytic reduction of hydrazine to
0090    ammonia. The spectroscopic and electrochemical studies indicate that
0091    hydrazine is bound and activated in a V-II state.
0092 C1 Natl Cheng Kung Univ, Dept Chem, Tainan 701, Taiwan.
0093 RP Hsu, HF, Natl Cheng Kung Univ, Dept Chem, Tainan 701, Taiwan.
0094 EM konopka@mail.ncku.edu.tw
0095 NR 29
0096 TC 0
0097 PU AMER CHEMICAL SOC
0098 PI WASHINGTON
0099 PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
0100 SN 0020-1669
0101 J9 INORG CHEM
0102 JI Inorg. Chem.
0103 PD APR 17
0104 PY 2006
0105 VL 45
0106 IS 8
0107 BP 3164
0108 EP 3166
0109 PG 3
0110 SC Chemistry, Inorganic & Nuclear
0111 GA 034WJ
0112 UT ISI:000236961000009
0113 ER
0114 
0115 
0116 PT J
0117 AU Baunemann, A
0118    Kim, Y
0119    Winter, M
0120    Fischer, RA
0121 TI Mixed hydrazido amido/imido complexes of tantalum, hafnium and
0122    zirconium: potential precursors for metal nitride MOCVD
0123 SO DALTON TRANSACTIONS
0124 LA English
0125 DT Article
0126 ID CHEMICAL-VAPOR-DEPOSITION; SINGLE-SOURCE PRECURSORS; THIN-FILMS;
0127    ORGANOIMIDO COMPLEXES; GATE-ELECTRODE; NIOBIUM; TITANIUM; BEHAVIOR;
0128    VANADIUM; CRYSTAL
0129 AB The coordination chemistry of the hydrazine derivatives
0130    dimethylhydrazine (Hdmh) and N-trimethylsilyl-N'N'-dimethylhydrazine
0131    (Htdmh) at Ta, Zr and Hf was investigated aiming at volatile mixed
0132    ligand all-nitrogen coordinated compounds. The hydrazido ligands were
0133    introduced either by salt metathesis employing the Li salts of the
0134    hydrazines and the tetrachlorides MCl4 (M = Zr, Hf) or by amine
0135    substitution using M(NR2)(4) (R = Me, Et) and [(t-BuN)Ta(NR2)(3)]. The
0136    new complexes were fully characterised including H-1/C-13 NMR, mass
0137    spectrometry and a study of their thermal behaviour. The crystal
0138    structures of [ZrCl(tdmh)(3)] and the all-nitrogen coordinated complex
0139    [Ta(N-t-Bu)(NMe2)(2)-(tdmh)] are discussed as well as the structure of
0140    the by-product [Li(tdmh)(py)](2). Preliminary MOCVD experiments of the
0141    liquid compound [Ta(NEt2)(2)(N-t-Bu)(tdmh)] were performed and the
0142    deposited TaN(Si) films were analysed by RBS and SEM.
0143 C1 Ruhr Univ Bochum, Lehrstuhl Anorgan Chem Organomet & Mat Chem 2, D-4630 Bochum, Germany.
0144 RP Fischer, RA, Ruhr Univ Bochum, Lehrstuhl Anorgan Chem Organomet & Mat
0145    Chem 2, Univ Str 150, D-4630 Bochum, Germany.
0146 EM roland.fischer@ruhr-uni-bochum.de
0147 NR 34
0148 TC 1
0149 PU ROYAL SOC CHEMISTRY
0150 PI CAMBRIDGE
0151 PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
0152    ENGLAND
0153 SN 1477-9226
0154 J9 DALTON TRANS
0155 JI Dalton Trans.
0156 PY 2006
0157 IS 1
0158 BP 121
0159 EP 128
0160 PG 8
0161 SC Chemistry, Inorganic & Nuclear
0162 GA 993PU
0163 UT ISI:000233968200013
0164 ER
0165 
0166 
0167 PT J
0168 AU Tripathi, VS
0169    Manjanna, J
0170    Venkateswaran, G
0171    Gokhale, BK
0172    Balaji, V
0173 TI Electrolytic preparation of vanadium(II) formate in pilot-plant scale
0174    using stainless steel mesh electrodes: Dissolution of
0175    alpha-Fe2O3/Fe1.6Cr0.4O3 in an aqueous V-II-NTA complex
0176 SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
0177 LA English
0178 DT Article
0179 ID SUBSTITUTED IRON-OXIDES; CARBON-PASTE ELECTRODE; DECONTAMINATION; ION
0180 AB The chemical formulations containing strong reducing agents such as
0181    V(II) are kinetically effective for the reductive dissolution of iron
0182    oxides such as Fe3O4, Fe2O3, etc. To develop a methodology for
0183    large-scale synthesis of V(II), we report here the details of an
0184    electrolytic preparation on a pilot-plant scale (50 L). It is
0185    demonstrated that, by using stainless steel mesh cathode and anode in a
0186    poly(tetrafluoroethylene)-lined stainless steel tank, V(II) could be
0187    prepared. To minimize the electrolysis duration for the conversion of
0188    V(V) to V(II), laboratory studies are carried out for a preliminary
0189    reduction of V(V) to V(IV) with hydrazine or ascorbic acid and then
0190    employing V(IV) for electrolysis. Here, the use of hydrazine was
0191    advantageous (30% less time) over that of ascorbic acid. The V(II)
0192    obtained was complexed with nitrilotriacetic acid (NTA), and its
0193    stability and dissolution kinetics of Fe2O3 and Fe1.6Cr04O3 in the
0194    V-II-NTA formulation are reported.
0195 C1 Bhabha Atom Res Ctr, Div Appl Chem, Bombay 400085, Maharashtra, India.
0196 RP Venkateswaran, G, Bhabha Atom Res Ctr, Div Appl Chem, Bombay 400085,
0197    Maharashtra, India.
0198 EM gvenk@magnum.barc.ernet.in
0199 NR 24
0200 TC 1
0201 PU AMER CHEMICAL SOC
0202 PI WASHINGTON
0203 PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
0204 SN 0888-5885
0205 J9 IND ENG CHEM RES
0206 JI Ind. Eng. Chem. Res.
0207 PD SEP 15
0208 PY 2004
0209 VL 43
0210 IS 19
0211 BP 5989
0212 EP 5995
0213 PG 7
0214 SC Engineering, Chemical
0215 GA 853DT
0216 UT ISI:000223807400003
0217 ER
0218 
0219 
0220 PT J
0221 AU Tanaka, N
0222    Wever, R
0223 TI Inhibition of vanadium chloroperoxidase from the fungus Curvularia
0224    inaequalis by hydroxylamine, hydrazine and azide and inactivation by
0225    phosphate
0226 SO JOURNAL OF INORGANIC BIOCHEMISTRY
0227 LA English
0228 DT Article
0229 DE vanadium chloroperoxidase; peroxo intermediate; hydrogen peroxide;
0230    azide; hydrazine; hydroxylamine; phosphate; inhibition; inactivation
0231 ID CONTAINING ENZYME CHLOROPEROXIDASE; ACTIVE-SITE MUTANTS;
0232    ASCOPHYLLUM-NODOSUM; CRYSTAL-STRUCTURE; BROMOPEROXIDASE; VANADATE;
0233    STATE; BIS(N,N-DIMETHYLHYDROXAMIDO)HYDROXOOXOVANADATE; PEROXIDASES;
0234    MECHANISM
0235 AB The first detailed inhibition study of recombinant vanadium
0236    chloroperoxidase (rVCPO) using hydroxylamine, hydrazine and azide has
0237    been carried out. Hydroxylamine inhibits rVCPO both competitively and
0238    uncompetitively. The competitive inhibition constant K-ic and the
0239    uncompetitive inhibition constant K-iu are 40 and 80 muM, respectively.
0240    The kinetic data suggest that rVCPO may form a hydroxylamido complex,
0241    hydroxylamine also seems to react with the peroxovanadate complex
0242    during turnover. The kinetic data show that the type of inhibition for
0243    hydrazine and azide is uncompetitive with the uncompetitive inhibition
0244    constant K-iu of 350 muM and 50 nM, respectively, showing that in
0245    particular azide is a very potent inhibitor of this enzyme.
0246    Substitution of vanadate in the active site by phosphate also leads to
0247    inactivation of vanadium chloroperoxidase. However, the presence of
0248    H2O2 clearly prevents the inactivation of the enzyme by phosphate. This
0249    shows that pervanadate is bound much more strongly to the enzyme than
0250    vanadate. (C) 2004 Elsevier Inc. All rights reserved.
0251 C1 Univ Amsterdam, Inst Mol Chem, NL-1018 WS Amsterdam, Netherlands.
0252 RP Wever, R, Univ Amsterdam, Inst Mol Chem, Nieuwe Achtergracht 129,
0253    NL-1018 WS Amsterdam, Netherlands.
0254 EM rwever@science.uva.nl
0255 NR 26
0256 TC 1
0257 PU ELSEVIER SCIENCE INC
0258 PI NEW YORK
0259 PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
0260 SN 0162-0134
0261 J9 J INORG BIOCHEM
0262 JI J. Inorg. Biochem.
0263 PD APR
0264 PY 2004
0265 VL 98
0266 IS 4
0267 BP 625
0268 EP 631
0269 PG 7
0270 SC Biochemistry & Molecular Biology; Chemistry, Inorganic & Nuclear
0271 GA 811KB
0272 UT ISI:000220769700009
0273 ER
0274 
0275 
0276 PT J
0277 AU Jiang, Y
0278    Wu, Y
0279    Xie, B
0280    Zhang, SY
0281    Qian, YT
0282 TI Room temperature preparation of novel Cu2-xSe nanotubes in organic
0283    solvent
0284 SO NANOTECHNOLOGY
0285 LA English
0286 DT Article
0287 ID FULLERENE-LIKE STRUCTURES; THIN-FILMS; NANOCRYSTALLINE CU2-XSE; SILICA
0288    NANOTUBES; VANADIUM-OXIDE; GOLD NANOWIRES; SEMICONDUCTOR;
0289    NANOPARTICLES; MICROTUBES; CONVENIENT
0290 AB A compound with a non-layered structure composed of Cu2-xSe nanotubes
0291    was prepared in a room temperature redox reaction in ethylene diamine
0292    solution. The product was characterized by x-ray diffractometry,
0293    transmission electron microscopy, high resolution transmission electron
0294    microscopy, and x-ray photoelectron spectroscopy. Analysis shows that
0295    the nanotubes have a multiwall structure with (002) planes of
0296    face-centred cubic Cu2-xSe and open ends. The Cu2-xSe nanotubes have
0297    length 500 nm, with an inner diameter of 20 nm and an outer diameter of
0298    30 nm on average. Ethylene diamine's ability to achieve strong
0299    coordination and the presence of the reducing agent hydrazine hydrate
0300    aid the formation of Cu2-xSe nanotubes with mixed valence.
0301 C1 Hefei Univ Technol, Dept Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China.
0302    Univ Sci & Technol China, Dept Chem, Anhua 230026, Peoples R China.
0303    Univ Sci & Technol China, Struct Res Lab, Hefei 230009, Anhui, Peoples R China.
0304 RP Jiang, Y, Hefei Univ Technol, Dept Mat Sci & Engn, Hefei 230009, Anhui,
0305    Peoples R China.
0306 EM apjiang2002@yahoo.com
0307    ytqian@ustc.edu.cn
0308 NR 43
0309 TC 0
0310 PU IOP PUBLISHING LTD
0311 PI BRISTOL
0312 PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
0313 SN 0957-4484
0314 J9 NANOTECHNOL
0315 JI Nanotechnology
0316 PD MAR
0317 PY 2004
0318 VL 15
0319 IS 3
0320 BP 283
0321 EP 286
0322 PG 4
0323 SC Engineering, Multidisciplinary; Nanoscience & Nanotechnology; Materials
0324    Science, Multidisciplinary; Physics, Applied
0325 GA 807VW
0326 UT ISI:000220530000012
0327 ER
0328 
0329 
0330 PT J
0331 AU Kanna, PS
0332    Mahendrakumar, CB
0333    Chatterjee, M
0334    Hemalatha, P
0335    Datta, S
0336    Chakraborty, P
0337 TI Vanadium inhibits placental glutathione S-transferase (GST-P) positive
0338    foci in 1,2-dimethyl hydrazine induced rat colon carcinogenesis
0339 SO JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY
0340 LA English
0341 DT Article
0342 DE vanadium; 1,2-dimethyl hydrazine (1,2-DMH); glutathione S-Transferase
0343    (GST-P); aberrant crypt foci (ACF); super oxide dismutase (SOD)
0344 ID ABERRANT CRYPT FOCI; LIVER CARCINOGENESIS; SUPEROXIDE-DISMUTASE;
0345    CANCER; DIETHYLNITROSAMINE; CHEMOPREVENTION; PROSPECTS; ENZYMES
0346 AB Vanadium (V) has recently been found to possess potent anti-neoplastic
0347    Activity in rat colon carcinogenesis. In the present study attempts
0348    have been made to investigate the expression of the number and area of
0349    aberrant crypt foci positive for placental glutathione S-transferase
0350    (GST-P) during 1,2-dimethyl hydrazine (DMH)-induced rat colon
0351    carcinogenesis. Male Sprague Dawley rats were randomly divided into
0352    four groups. Rats in group A were designed as normal controls. Group B
0353    animals received DMH once a week (20 mg/kg body wt.) intraperitoneally
0354    for 16 weeks. Group C rats received the same treatment of DMH as in
0355    group B, along with 0.5-ppm vanadium as ammonium monovanadate ad
0356    libitum in drinking water throughout the experiment. Vanadium alone was
0357    given to Group D rats without any DMH. injection. The expression of the
0358    number and the area of aberrant crypt foci (ACF) positive for GST-P was
0359    maximum in DMH-treated group. Vanadium-treated rats significantly
0360    reduced (P < 0.001) the expression of GST-P positive ACF cells (by
0361    71.13%) for the entire period of the study, Moreover the
0362    histopathological examination also showed that vanadium action could
0363    minimize the aberrant crypt foci (P < 0.001). Furthermore, vanadium
0364    supplementation also elevated SOD activities in both liver and colon (P
0365    < 0.01, P < 0.02 and P < 0.01, P < 0.02 respectively) when compared to
0366    their carcinogen counterparts. Our results confirm that vanadium is
0367    particularly effective in limiting the action of the carcinogen,
0368    thereby establishing its anticarcinogenicity in chemically induced rat
0369    colon carcinogenesis. (C) 2003 Wiley Periodicals, Inc.
0370 C1 Jadavpur Univ, Dept Pharmaceut Technol, Div Biochem, Calcutta 700032, W Bengal, India.
0371 RP Chatterjee, M, Jadavpur Univ, Dept Pharmaceut Technol, Div Biochem,
0372    Calcutta 700032, W Bengal, India.
0373 NR 42
0374 TC 0
0375 PU JOHN WILEY & SONS INC
0376 PI HOBOKEN
0377 PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
0378 SN 1095-6670
0379 J9 J BIOCHEM MOL TOXICOL
0380 JI J. Biochem. Mol. Toxicol.
0381 PY 2003
0382 VL 17
0383 IS 6
0384 BP 357
0385 EP 365
0386 PG 9
0387 SC Biochemistry & Molecular Biology; Toxicology
0388 GA 758UJ
0389 UT ISI:000187668500007
0390 ER
0391 
0392 
0393 PT J
0394 AU Hsu, HF
0395    Chu, WC
0396    Hung, CH
0397    Liao, JH
0398 TI The first example of a seven-coordinate Vanadium(III) thiolate complex
0399    containing the hydrazine molecule, an intermediate of nitrogen fixation
0400 SO INORGANIC CHEMISTRY
0401 LA English
0402 DT Article
0403 ID CRYSTAL-STRUCTURE; V(III) COMPLEXES; LIGAND; DISULFIDE; RELEVANT
0404 AB The first example of a seven-coordinate vanadium(III) thiolate complex,
0405    [V(PS3")(N2H4)(3)] (1), where PS3" = [P(C6H3-3-Me3Si-2-S)(3)](3-), has
0406    been synthesized and characterized. Compound 1 contains a tetradentate
0407    ligand (PS3") and three hydrazine molecules, forming a capped
0408    octahedral geometry. A five-coordinate vanadium(III) complex,
0409    [V(PS3)(1-Me-lm)] (2), where PS3 = [P(C6H4-2-S)(3)](3-) and 1-Me-Im =
0410    1-methyl-imidazole, was also obtained. Compound 2 adopts a trigonal
0411    bipyramidal geometry, in which the vanadium is ligated by the title
0412    ligand, PS3, and one 1-Me-lm molecule.
0413 C1 Natl Cheng Kung Univ, Dept Chem, Tainan 701, Taiwan.
0414    Natl Changhua Univ Educ, Changhua, Taiwan.
0415    Natl Chung Cheng Univ, Chiayi 62117, Taiwan.
0416 RP Hsu, HF, Natl Cheng Kung Univ, Dept Chem, Tainan 701, Taiwan.
0417 NR 22
0418 TC 5
0419 PU AMER CHEMICAL SOC
0420 PI WASHINGTON
0421 PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
0422 SN 0020-1669
0423 J9 INORG CHEM
0424 JI Inorg. Chem.
0425 PD NOV 17
0426 PY 2003
0427 VL 42
0428 IS 23
0429 BP 7369
0430 EP 7371
0431 PG 3
0432 SC Chemistry, Inorganic & Nuclear
0433 GA 743FZ
0434 UT ISI:000186562900011
0435 ER
0436 
0437 
0438 PT J
0439 AU Kanna, PS
0440    Mahendrakumar, CB
0441    Chakraborty, T
0442    Hemalatha, P
0443    Banerjee, P
0444    Chatterjee, M
0445 TI Effect of vanadium on colonic aberrant crypt foci induced in rats by
0446    1,2 Dimethyl hydrazine
0447 SO WORLD JOURNAL OF GASTROENTEROLOGY
0448 LA English
0449 DT Article
0450 ID PUTATIVE PRENEOPLASTIC LESIONS; S-TRANSFERASE ACTIVITY;
0451    CELL-PROLIFERATION; DIETARY ANTIOXIDANTS; COLORECTAL-CANCER;
0452    CARCINOGENESIS; ENZYMES; EXPRESSION; 1,2-DIMETHYLHYDRAZINE; DETOXICATION
0453 AB AIM: To investigate the chemo preventive effects of vanadium on rat
0454    colorectal carcinogenesis induced by 1,2-dimethylhydrazine (DMH).
0455    METHODS: Male Sprague-Dawley Rats were randomly divided into four
0456    groups. Rats in Group A received saline vehicle alone for 16 weeks.
0457    Rats in Group B were given DMH injection once a week intraperitoneally
0458    for 16 weeks; rats in Group C, with the same DMH treatment as in the
0459    Group 13, but received 0.5-ppm vanadium in the form ammonium
0460    monovanadate ad libitum in drinking water. Rats in the Group D received
0461    vanadium alone as in the Group C without DMH injection.
0462    RESULTS: Aberrant crypt foci (ACF) were formed in animals in
0463    DMH-treated groups at the end of week 16. Compared to DMH group,
0464    vanadium treated group had less ACF (P<0.001). At the end of week 32,
0465    all rats in DMH group developed large intestinal tumors. Rats treated
0466    with vanadium contained significantly few colonic adenomas and
0467    carcinomas (P<0.05) compared to rats administered DMH only. In
0468    addition, a significant reduction (P<0.05) in colon tumor burden (sum
0469    of tumor sizes per animal) was also evident in animals of Group C when
0470    compared to those in rats of carcinogen control Group B. The results
0471    also showed that vanadium significantly lowered PCNA index in ACF
0472    (P<0.005). Furthermore, vanadium supplementation also elevated liver
0473    GST and Cyt P-450 activities (P<0.001 and P<0.02, respectively).
0474    CONCLUSION: Vanadium in the form of ammonium monovanadate supplemented
0475    in drinking water ad libitum has been found to be highly effective in
0476    reducing tumor incidence and preneoplastic foci on DMH-induced
0477    colorectal carcinogenesis. These findings suggest that vanadium
0478    administration can suppress colon carcinogenesis in rats.
0479 C1 Jadavpur Univ, Div Biochem, Dept Pharmaceut Technol, Calcutta 700032, W Bengal, India.
0480 RP Chatterjee, M, Jadavpur Univ, Div Biochem, Dept Pharmaceut Technol, PO
0481    17028, Calcutta 700032, W Bengal, India.
0482 NR 52
0483 TC 5
0484 PU W J G PRESS
0485 PI BEIJING
0486 PA PO BOX 2345, BEIJING 100023, PEOPLES R CHINA
0487 SN 1007-9327
0488 J9 WORLD J GASTROENTEROL
0489 JI World J. Gastroenterol.
0490 PD MAY
0491 PY 2003
0492 VL 9
0493 IS 5
0494 BP 1020
0495 EP 1027
0496 PG 8
0497 SC Gastroenterology & Hepatology
0498 GA 681ML
0499 UT ISI:000183039900026
0500 ER
0501 
0502 
0503 PT J
0504 AU Lisnard, L
0505    Mialane, P
0506    Dolbecq, A
0507    Marrot, J
0508    Secheresse, F
0509 TI A tetranuclear oxomolybdenum(V) complex with bridging squarate ligands,
0510    [(Mo4O8)-O-V(OH)(2)(H2O)(2)(C4O4)(2)](2-)
0511 SO INORGANIC CHEMISTRY COMMUNICATIONS
0512 LA English
0513 DT Article
0514 DE polyoxometalate; squarate ligands; crystal structure; molybdenum
0515 ID COORDINATION CHEMISTRY; POLYOXOMOLYBDATES; MOLYBDENUM; VANADIUM
0516 AB The new tetranuclear polyoxomolybdate(V) ion
0517    [(Mo4O8)-O-V(OH)(2)(H2O)(2)(C4O4)(2)](2-) has been obtained in one step
0518    by the reaction of sodium molybdate, hydrazine and squaric acid in
0519    water and crystallized as a potassium salt. The structure has been
0520    solved by single-crystal X-ray diffraction showing the location of the
0521    hydroxo and water molecule ligands. (C) 2003 Elsevier Science B.V. All
0522    rights reserved.
0523 C1 Univ Versailles St Quentin, IREM, Ins Lavoisier, UMR C 0173, F-78035 Versailles, France.
0524 RP Dolbecq, A, Univ Versailles St Quentin, IREM, Ins Lavoisier, UMR C
0525    0173, 45 Ave Etats Unis, F-78035 Versailles, France.
0526 NR 16
0527 TC 6
0528 PU ELSEVIER SCIENCE BV
0529 PI AMSTERDAM
0530 PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
0531 SN 1387-7003
0532 J9 INORG CHEM COMMUN
0533 JI Inorg. Chem. Commun.
0534 PD MAY
0535 PY 2003
0536 VL 6
0537 IS 5
0538 BP 503
0539 EP 505
0540 PG 3
0541 SC Chemistry, Inorganic & Nuclear
0542 GA 661BL
0543 UT ISI:000181871300018
0544 ER
0545 
0546 
0547 PT J
0548 AU Brayner, R
0549    Bozon-Verduraz, F
0550 TI Niobium pentoxide prepared by soft chemical routes: morphology,
0551    structure, defects and quantum size effect
0552 SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
0553 LA English
0554 DT Article
0555 ID VANADIUM-OXIDE CATALYSTS; RAMAN-SPECTRA; SURFACE-STRUCTURES;
0556    SPECTROSCOPY; OXIDATION; CDS; PHOTOCHEMISTRY; HYDROGENATION;
0557    SUSPENSIONS; REACTIVITY
0558 AB Niobium pentoxide (Nb2O5) is prepared by soft chemical routes
0559    (digestion either in ammonia or in hydrazine solutions) and is compared
0560    to a commercial sample. According to various characterization methods
0561    (XRD, HRTEM, DTA-TG, UV-visible diffuse reflectance, Raman and EPR
0562    spectroscopies), Nb2O5 shows particular bulk and surface properties.
0563    The phase transformation temperatures (amorphous --> pseudo-hexagonal,
0564    pseudo-hexagonal --> orthorhombic and orthorhombic --> monoclinic) for
0565    the synthetic Nb2O5 are about 100-150degreesC higher than for the
0566    commercial sample. The textural properties depend strongly on the
0567    preparation method. After calcination at 400degreesC, the sample
0568    prepared in ammonia has a larger pore volume (0.22 cm(3) g(-1)) and a
0569    better resistance to sintering at 600degreesC. The preparation in
0570    hydrazine gives the following advantages only if the gel is sonically
0571    redispersed in ethanol: low particle size, narrow size distribution,
0572    and higher resistance to sintering (140 m(2) g(-1) at 600degreesC).
0573    Preparation in ammonia or in hydrazine favors the formation of defects,
0574    characterized by a significant absorption in the visible range adjacent
0575    to the interband transition (3.4 eV, 360 nm). These defects, which
0576    disappear upon heating in oxygen, are identified as Nb4+ species and
0577    ionized oxygen vacancies as confirmed by EPR measurements. Finally, the
0578    nanoparticles obtained by sonication in ethanol (average particle size
0579    4.5 nm) shows a significant band gap increase ( from 3.4 eV to 4.2 eV)
0580    which is assigned to a quantum size effect.
0581 C1 Univ Paris 07, CNRS, Lab Chim Mat Divises & Catalyse, ITODYS,UMR 7086, F-75251 Paris 05, France.
0582 RP Bozon-Verduraz, F, Univ Paris 07, CNRS, Lab Chim Mat Divises &
0583    Catalyse, ITODYS,UMR 7086, Case 7090,Pl Jussieu, F-75251 Paris 05,
0584    France.
0585 NR 56
0586 TC 2
0587 PU ROYAL SOC CHEMISTRY
0588 PI CAMBRIDGE
0589 PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
0590    ENGLAND
0591 SN 1463-9076
0592 J9 PHYS CHEM CHEM PHYS
0593 JI Phys. Chem. Chem. Phys.
0594 PY 2003
0595 VL 5
0596 IS 7
0597 BP 1457
0598 EP 1466
0599 PG 10
0600 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
0601 GA 654YE
0602 UT ISI:000181523900018
0603 ER
0604 
0605 
0606 PT J
0607 AU Jiang, Y
0608    Xie, B
0609    Wu, J
0610    Yuan, SW
0611    Wu, Y
0612    Huang, H
0613    Qian, YT
0614 TI Room-temperature synthesis of copper and silver, nanocrystalline
0615    chalcogenides in mixed solvents
0616 SO JOURNAL OF SOLID STATE CHEMISTRY
0617 LA English
0618 DT Article
0619 ID FULLERENE-LIKE STRUCTURES; VANADIUM-OXIDE; METAL; MAGNETORESISTANCE;
0620    CONVENIENT; SELENIDES; NANOTUBES; FILMS; SE
0621 AB Copper and silver nanocrystalline chalcogenides, Cu2-xSe, Cu2Te, Ag2Se,
0622    and Ag2Te, have been successfully synthesized in a mixture of
0623    ethylenediamine and hydrazine hydrate as a solvent at room temperature.
0624    Products showed different morphologies, such as nanotubes, nanorods,
0625    and nanoparticles. The results indicated that the coordination and
0626    chelation abilities of ethylenediamine play an important role in the
0627    formation of one-dimensional nanocrystalline binary chalcogenides, and
0628    hydrazine hydrate is crucial to the electron transfer in the room
0629    temperature reactions. These transition-metal nanocrystalline
0630    chalcogenides as prepared were analyzed by X-ray powder diffraction,
0631    transmission electron microscopy, and X-ray photoelectron spectroscopy.
0632    The UV-Vis absorption properties of these nanocrystals were also
0633    measured. (C) 2002 Elsevier Science (USA).
0634 C1 Univ Sci & Technol China, Struct Res Lab, Hefei 230026, Anhui, Peoples R China.
0635    Univ Sci & Technol China, Dept Chem, Hefei 230026, Anhui, Peoples R China.
0636    Hefei Univ Technol, Inst Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China.
0637 RP Qian, YT, Univ Sci & Technol China, Struct Res Lab, Hefei 230026,
0638    Anhui, Peoples R China.
0639 NR 30
0640 TC 9
0641 PU ACADEMIC PRESS INC ELSEVIER SCIENCE
0642 PI SAN DIEGO
0643 PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
0644 SN 0022-4596
0645 J9 J SOLID STATE CHEM
0646 JI J. Solid State Chem.
0647 PD AUG
0648 PY 2002
0649 VL 167
0650 IS 1
0651 BP 28
0652 EP 33
0653 PG 6
0654 SC Chemistry, Inorganic & Nuclear; Chemistry, Physical
0655 GA 592BA
0656 UT ISI:000177915800004
0657 ER
0658 
0659 
0660 PT J
0661 AU Davies, SC
0662    Hughes, DL
0663    Konkol, M
0664    Richards, RL
0665    Sanders, JR
0666    Sobota, P
0667 TI Synthesis, structure and chemistry of vanadium(IV) and vanadium(V)
0668    compounds with substituted hydrazido(1-) and hydrazido(2-) ligands
0669 SO JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS
0670 LA English
0671 DT Article
0672 ID CRYSTAL-STRUCTURES; CO-LIGANDS; DINITROGEN COMPLEXES; TUNGSTEN;
0673    N(CH2CH2S)(3)(3-); MOLYBDENUM; HYDRAZINE; OXIDE
0674 AB The reaction of [V(NS3)O] [NS3 = N(CH2CH2S)(3\)] with methylhydrazine
0675    gives the hydrazido(1-) vanadium() complex [V(NS3)(NMeNH2)] 1, but
0676    reaction with various other compounds containing N-N groups results in
0677    formation of compounds containing substituted hydrazido(2-) ligands.
0678    Structures of 1, [V(NS3)(NNC5H10)] 2 and [V(NS3)(NNCPh2)] 3 are
0679    described.
0680 C1 John Innes Ctr Plant Sci Res, Dept Biol Chem, Norwich NR4 7UH, Norfolk, England.
0681    Univ Wroclaw, Fac Chem, PL-50138 Wroclaw, Poland.
0682    Univ Sussex, Sch Chem Phys & Environm Sci, Brighton BN1 9QJ, E Sussex, England.
0683 RP Davies, SC, John Innes Ctr Plant Sci Res, Dept Biol Chem, Norwich NR4
0684    7UH, Norfolk, England.
0685 NR 17
0686 TC 1
0687 PU ROYAL SOC CHEMISTRY
0688 PI CAMBRIDGE
0689 PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
0690    ENGLAND
0691 SN 1472-7773
0692 J9 J CHEM SOC DALTON TRANS
0693 JI J. Chem. Soc.-Dalton Trans.
0694 PY 2002
0695 IS 14
0696 BP 2811
0697 EP 2814
0698 PG 4
0699 SC Chemistry, Inorganic & Nuclear
0700 GA 573GY
0701 UT ISI:000176822000008
0702 ER
0703 
0704 
0705 PT J
0706 AU Zhang, HT
0707    Gui, Z
0708    Fan, R
0709    Chen, XH
0710 TI Hydrothermal synthesis and characterization of nanorods "LixV2-delta
0711    O4-delta center dot H2O"
0712 SO INORGANIC CHEMISTRY COMMUNICATIONS
0713 LA English
0714 DT Article
0715 DE hydrothermal synthesis; LixV2-delta O4-delta center dot H2O; nanorods;
0716    vanadium oxide
0717 ID RECHARGEABLE LITHIUM BATTERIES; CATHODE
0718 AB Nanorods "LixV2-deltaO4-delta . H2O" were hydrothermally synthesized
0719    with starting agents LiOH . H2O and V2O5, and reducing agent hydrazine
0720    monohydrate (NH2NH2 . H2O) under alkaline condition at 160 degreesC.
0721    The samples were characterizated by X-ray diffraction (XRD),
0722    transmission electron microscopy (TEM) and X-ray photoelectron
0723    spectroscopy (XPS). The nanorods obtained have diameters from 80 to 100
0724    nm with length up to several micrometers. Molecular coordination and
0725    assembly mechanism can be assumed to explain the formation of
0726    one-dimensional nanorods. (C) 2002 Elsevier Science B.V. All rights
0727    reserved.
0728 C1 Univ Sci & Technol China, Dept Phys, Struct Res Lab, Anhua 230026, Peoples R China.
0729    Univ Sci & Technol China, State Key Lab Fire Sci, Anhua 230026, Peoples R China.
0730 RP Chen, XH, Univ Sci & Technol China, Dept Phys, Struct Res Lab, Anhua
0731    230026, Peoples R China.
0732 NR 27
0733 TC 0
0734 PU ELSEVIER SCIENCE BV
0735 PI AMSTERDAM
0736 PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
0737 SN 1387-7003
0738 J9 INORG CHEM COMMUN
0739 JI Inorg. Chem. Commun.
0740 PD JUN
0741 PY 2002
0742 VL 5
0743 IS 6
0744 BP 399
0745 EP 402
0746 PG 4
0747 SC Chemistry, Inorganic & Nuclear
0748 GA 564FV
0749 UT ISI:000176305100007
0750 ER
0751 
0752 
0753 PT J
0754 AU Xu, W
0755    Xue, CH
0756 TI Catalytic performance of fluidized-bed catalyst for oxidation of
0757    n-butane to maleic anhydride
0758 SO CHINESE JOURNAL OF CATALYSIS
0759 LA English
0760 DT Article
0761 DE n -butane; maleic anhydride; selective oxidation; fluidized-bed
0762    catalyst; hydrazine hydrate; vanadium pentoxide
0763 ID PHOSPHORUS OXIDE CATALYSTS; VANADYL PYROPHOSPHATE; SELECTIVE OXIDATION;
0764    VPO CATALYSTS; ACTIVE PHASE; MECHANISM
0765 AB The experiments of precursor preparation have been performed to
0766    investigate the effects of N2H4 . H2O/V2O5 mole ratio on catalytic
0767    performance of VPO catalyst for oxidation of n -butane to maleic
0768    anhydride (MA). For the catalyst samples prepared at higher mole ratio
0769    of N2H4 . H2O/V2O5, the quantity of (VO)(2)P2O7 (V4+) phase is
0770    considerably large, and the n -butane conversion is quite high. With
0771    the decrease of N2H4 . H2O/ V2O5 mole ratio in precursor preparation,
0772    the relative amount of delta-VOPO4,(V5+) phase increases progressively.
0773    The increase of V5+ phase strengthens the oxidation of the intermediate
0774    olefins, and then promotes the dehydrogenation of n -butane. Thus, the
0775    selectivity for MA increases at beginning, whereas the n -butane
0776    conversion increases continuously. When the V5+ phase reaches a given
0777    quantity, the overoxidation takes place, and the selectivity for MA
0778    begins to decrease. The yield of MA goes through a Maximum value at the
0779    optimal N2H4 . H2O/ V2.O5 mole ratio during the change of N2H4 .
0780    H2O/V2O5 mole ratio in precursor preparation from high to low. The
0781    catalyst sample prepared at N2H4 . H2O/V2O5 Mole ratio of 0.34 gave the
0782    maximum MA yield of 49.74% under the conditions of n -butane
0783    concentration of 4.0%, space velocity of 500 h(-1) and temperature of
0784    420degreesC. The catalyst of fine particle bed in this study belongs to
0785    the particles of group A. The catalyst fluidizes easily and behaves a
0786    larger flexibility for operation.
0787 C1 Tianjin Univ, Sch Chem Engn, Tianjin 300072, Peoples R China.
0788 RP Xu, W, Tianjin Univ, Sch Chem Engn, Tianjin 300072, Peoples R China.
0789 NR 16
0790 TC 0
0791 PU SCIENCE CHINA PRESS
0792 PI BEIJING
0793 PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA
0794 SN 0253-9837
0795 J9 CHIN J CATAL
0796 JI Chin. J. Catal.
0797 PD MAY
0798 PY 2002
0799 VL 23
0800 IS 3
0801 BP 199
0802 EP 202
0803 PG 4
0804 SC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical
0805 GA 563CH
0806 UT ISI:000176236500003
0807 ER
0808 
0809 
0810 PT J
0811 AU Mohamed, AA
0812    Ahmed, SA
0813    El-Shahat, MF
0814 TI Catalytic spectrophotometric determination of molybdenum
0815 SO MONATSHEFTE FUR CHEMIE
0816 LA English
0817 DT Article
0818 DE molybdenum; catalytic determination; 2-aminophenol; hydrogen peroxide;
0819    redox reaction; natural and waste waters
0820 ID STRIPPING VOLTAMMETRIC DETERMINATION; ATOMIC-ABSORPTION SPECTROMETRY;
0821    HYDROGEN-PEROXIDE; HYDRAZINE DIHYDROCHLORIDE; TRACE AMOUNTS; TUNGSTEN;
0822    CHROMIUM; OXIDATION; VANADIUM; CHLORIDE
0823 AB A highly selective, sensitive, and simple catalytic method for the
0824    determination of molybdenum in natural and waste waters was developed.
0825    It is based on the catalytic effect of Mo(VI) on the oxidation of
0826    2-aminophenol with H2O2. The reaction is monitored
0827    spectrophotometrically,by tracing the oxidation product at 430 nm after
0828    10 min of mixing the reagents. Addition of 800 mug . cm(-3) EDTA
0829    conferred high selectivity; however, interfering effects of Au(III),
0830    Cr(III), Cr(VI), and Fe(III) had to be eliminated by a reduction and
0831    co-precipitation procedure with SnCl2 and Al(OH)(3). Mo(VI) shows a
0832    linear calibration graph up to 11.0 ng . cm(-3); the detection limit,
0833    based on the 3S(b)-criterion, is 0.10 ng . cm(-3). The unique
0834    selectivity and sensitivity of the new method allowed its direct
0835    application to the determination of Mo(VI) in natural and waste waters.
0836 C1 Ain Shams Univ, Fac Sci, Dept Chem, Cairo 11566, Egypt.
0837 RP Mohamed, AA, King Khalid Univ, Fac Sci, Dept Chem, Abha 9033, Saudi
0838    Arabia.
0839 NR 52
0840 TC 0
0841 PU SPRINGER-VERLAG WIEN
0842 PI VIENNA
0843 PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 VIENNA, AUSTRIA
0844 SN 0026-9247
0845 J9 MONATSH CHEM
0846 JI Mon. Chem.
0847 PD JAN
0848 PY 2002
0849 VL 133
0850 IS 1
0851 BP 31
0852 EP 40
0853 PG 10
0854 SC Chemistry, Multidisciplinary
0855 GA 514VJ
0856 UT ISI:000173461500004
0857 ER
0858 
0859 
0860 PT J
0861 AU Ramababu, G
0862    Rao, PVS
0863    Ramakrishna, K
0864    Syamala, P
0865    Satyanarayana, A
0866 TI Oxidation of hydrazine and hydroxylamine by vanadium(V) under the
0867    conditions where VO2+ and decavanadates coexist
0868 SO JOURNAL OF THE INDIAN CHEMICAL SOCIETY
0869 LA English
0870 DT Article
0871 ID SULFURIC-ACID MEDIUM
0872 AB The kinetics of oxidation of hydrazine and hydroxylamine have been
0873    investigated in the pH range 3.1-4.3. Both the oxidations obey first
0874    order kinetics with respect to the reductant, but the rate has very
0875    little dependence on [V-V](t). The reactions are accelerated by H+ ion
0876    but the dependence of rate on [H+] is less than that corresponding to
0877    first order dependence. Under these conditions, the species, VO2+ is in
0878    equilibrium with decavanadate ions and the equilibrium accounts for the
0879    different kinetic pattern observed in this pH range.
0880 C1 Andhra Univ, Sch Chem, Visakhapatnam 530003, Andhra Pradesh, India.
0881 RP Rao, PVS, Andhra Univ, Sch Chem, Visakhapatnam 530003, Andhra Pradesh,
0882    India.
0883 NR 19
0884 TC 4
0885 PU INDIAN CHEMICAL SOC
0886 PI CALCUTTA
0887 PA 92 ACHARYA PRAFULLA CHANDRA RD ATTN:DR INDRAJIT KAR/EXEC SEC, CALCUTTA
0888    700009, INDIA
0889 SN 0019-4522
0890 J9 J INDIAN CHEM SOC
0891 JI J. Indian Chem. Soc.
0892 PD MAY
0893 PY 2001
0894 VL 78
0895 IS 5
0896 BP 237
0897 EP 240
0898 PG 4
0899 SC Chemistry, Multidisciplinary
0900 GA 441WB
0901 UT ISI:000169251600005
0902 ER
0903 
0904 
0905 PT J
0906 AU Pal, S
0907    Pal, S
0908 TI A dimeric pervanadyl (VO2+) complex with a tridentate Schiff base ligand
0909 SO JOURNAL OF CHEMICAL CRYSTALLOGRAPHY
0910 LA English
0911 DT Article
0912 DE pervanadyl complex; Schiff base; di(mu-oxo)-bridged dimer; crystal
0913    structure
0914 ID CRYSTAL-STRUCTURE; VANADIUM(V); CHEMISTRY
0915 AB A di(mu -oxo)-bridged dinuclear complex, [VO2(pamh)](2) was isolated by
0916    reacting bis(acetylacetonato)vanadium(IV) and the Schiff base,
0917    N-(anisoyl)-N'-(picolinylidene)-hydrazine (Hpamh) in acetonitrile. The
0918    complex crystallizes in the space group P (1) over bar (#2) on
0919    crystallographic inversion center. Crystal data: a = 8.2202(12)
0920    Angstrom, b = 9.8389(19) Angstrom ,c = 10.1907(17) Angstrom, alpha =
0921    68.245(15)degrees, beta = 74.47(2)degrees, gamma = 66.710(19)degrees, V
0922    = 696.0(2) Angstrom (3), and Z = 1. The physical properties of the
0923    complex and the structural parameters are consistent with the +5
0924    oxidation state of the metal ions. The monomeric VO2(pamh) unit is
0925    square-pyramidal. The planar mononegative ligand (pamh(-)) coordinates
0926    the metal ion via the pyridine-N, the imine-N, and the amide-O atoms.
0927    One of the oxo groups completes the NNOO basal plane and also
0928    participates in the V-O-V bridge formation. The other oxo group
0929    satisfies the fifth apical coordination site. The molecular structure
0930    of the dimeric complex, [VO2(pamh)](2) can be described as two
0931    edge-shared distorted VO4N2 octahedra.
0932 C1 Univ Hyderabad, Sch Chem, Hyderabad 500046, Andhra Pradesh, India.
0933 RP Pal, S, Univ Hyderabad, Sch Chem, Hyderabad 500046, Andhra Pradesh,
0934    India.
0935 NR 22
0936 TC 6
0937 PU KLUWER ACADEMIC/PLENUM PUBL
0938 PI NEW YORK
0939 PA 233 SPRING ST, NEW YORK, NY 10013 USA
0940 SN 1074-1542
0941 J9 J CHEM CRYSTALLOGRAPHY
0942 JI J. Chem. Crystallogr.
0943 PD MAY
0944 PY 2000
0945 VL 30
0946 IS 5
0947 BP 329
0948 EP 333
0949 PG 5
0950 SC Crystallography; Spectroscopy
0951 GA 431CJ
0952 UT ISI:000168614100006
0953 ER
0954 
0955 
0956 PT J
0957 AU Davies, SC
0958    Hughes, DL
0959    Janas, Z
0960    Jerzykiewicz, LB
0961    Richards, RL
0962    Sanders, JR
0963    Silverston, JE
0964    Sobota, P
0965 TI Vanadium complexes of the N(CH2CH2S)(3)(3-) and O(CH2CH2S)(2)(2-)
0966    ligands with coligands relevant to nitrogen fixation processes
0967 SO INORGANIC CHEMISTRY
0968 LA English
0969 DT Article
0970 ID RAY CRYSTAL-STRUCTURES; MOLECULAR-STRUCTURE; DINITROGEN FIXATION;
0971    MOLYBDENUM; HYDRAZINE; CHEMISTRY; REDUCTION; IMIDO; TUNGSTEN; AMMONIA
0972 AB Vanadium(III) and vanadium(V) complexes derived from the
0973    tris(2-thiolatoethyl)amine ligand [(NS3)(3-)] and the
0974    bis(2-thiolatoethyl)ether ligand [(OS2)(2-)] have been synthesized with
0975    the aim of investigating the potential of these vanadium sites to bind
0976    dinitrogen and activate its reduction. Evidence is presented for the
0977    transient existence of {V(NS3)(N-2)V(NS3)}, and a series of mononuclear
0978    complexes containing hydrazine, hydrazide, imide, ammine, organic
0979    cyanide, and isocyanide ligands has been prepared and the chemistry of
0980    these complexes investigated. [V(NS3)O] (1) reacts with an excess of
0981    N2H4 to give, probably via the intermediates {V(NS3)(NNH2)} (2a) and
0982    {V(NS3)(N-2)V(NS3)} (3), the V-III adduct [{V(NS3)(N2H4)}] (4). If 1 is
0983    treated with 0.5 mol of N2H4, 0.5 mol of N-2 is evolved and green,
0984    insoluble [{V(NS3)}(n)] (5) results. Compound 4 is converted by
0985    disproportionation to [V(NS3)-(NH3)- (NH3)](6), but 4 does not act as a
0986    catalyst for disproportionation of N2H4 nor does it act as a catalyst
0987    for its reduction by Zn/HOC6H3Pr2i-2,6. Compound 1 reacts with
0988    (NR2NR22)-N-1 (R-1 = H or SiMe3; R-2(2) = Me-2, MePh, or HPh) to give
0989    the hydrazide complexes [V(NS3)(NNR22)] (R-2(2) = Me-2, 2b; R-2(2) =
0990    MePh, 2c; R-2(2) HPh, 2d), which are not protonated by anhydrous HBr
0991    nor are they reduced by Zn/HOC6H3Pri2-2,6. Compound 2b can also be
0992    prepared by reaction of [V(NNMe2)(dipp)(3)] (dipp = OC6H3Pr2i-2,6) with
0993    NS3H3. N2H4 is displaced quantitatively from 4 by anions to give the
0994    salts [NR43][V(NS3)X] (X = Cl, R-3 = Et, 7a; X = Cl. R-3 = Ph, 7b; X =
0995    Br, R-3 = Et, 7c; X = N-3, R-3 = Bu-n, 7d; X = N-3, R-3 = Et, 7e; X =
0996    CN, R-3 = Et, 7f). Compound 6 loses NH3 thermally to give 5, which can
0997    also be prepared from [VCl3(THF)(3)] and NS3H3/LiBun. Displacement of
0998    NH3 from 6 by ligands L gives the adducts [V(NS3)(L)] (L = MeCN, nu(CN)
0999    2264 cm(-1), 8a; L = (BuNC)-N-t, nu(NC) 2173 cm(-1), 8b; L = C6H11NC.
1000    nu(NC) 2173 cm(-1), 8c). Reaction of 4 with N3SiMe3 gives
1001    [V(NS3)(NSiMe3)] (9), which is converted to [V(NS3)(NH)] (10) by
1002    hydrolysis and to [V(NS3)(NCPh3)] (11) by reaction with ClCPh3.
1003    Compound 10 is converted into 1 by [NMe4]OH and to [V(NS3)NLi(THF)(2)]
1004    (12) by LiNPri in THF.
1005    A further range of imido complexes [V(NS3)(NR4)] (R-4 = C6H4Y-4, where
1006    Y = H (13a), OMe (13b), Me (13c), Cl (13d), Br (13e), NO2 (13f); R-4 =
1007    C6H4Y-3, where Y = OMe (13g); Cl (13h); R-4 = C6H3Y2-3,4, where Y = Me
1008    (13i); C1(13j); R-4 = C6H11 (13k)) has been prepared by reaction of 1
1009    with (RNCO)-N-4. The precursor complex [V(OS2)O(dipp)] (14) [OS22- =
1010    O(CH2CH2S)(2)(2-)] has been prepared from [VO(OPri)(3)], Hdipp, and
1011    OS2H2 It reacts with NH2NMe2 to give [V(OS2)(NH2Me2)(dipp)] (15) and
1012    with NsSiMe(3) to give [V(OS2)(NSiMe3)(dipp)] (16). A second oxide
1013    precursor, formulated as [V(OS2)(1.5)O] (17), has also been obtained,
1014    and it reacts with SiMe3NHNMe2 to give [V(OS2)(NNMe2)(OSiMe3)] (18).
1015    The X-ray crystal structures of the complexes 2b, 2c, 4, 6, 7a, 8a, 9,
1016    ill, 13d, 14, 15, 16, and 18 have been determined, and the V-51 NMR and
1017    other spectroscopic parameters of the complexes are discussed in terms
1018    of electronic effects.
1019 C1 John Innes Ctr Plant Sci Res, Nitrogen Fixat Lab, Norwich NR4 7UH, Norfolk, England.
1020    Univ Wroclaw, Fac Chem, PL-50383 Wroclaw, Poland.
1021 RP Sanders, JR, John Innes Ctr Plant Sci Res, Nitrogen Fixat Lab, Colney
1022    Lane, Norwich NR4 7UH, Norfolk, England.
1023 NR 49
1024 TC 17
1025 PU AMER CHEMICAL SOC
1026 PI WASHINGTON
1027 PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
1028 SN 0020-1669
1029 J9 INORG CHEM
1030 JI Inorg. Chem.
1031 PD AUG 7
1032 PY 2000
1033 VL 39
1034 IS 16
1035 BP 3485
1036 EP 3498
1037 PG 14
1038 SC Chemistry, Inorganic & Nuclear
1039 GA 343TN
1040 UT ISI:000088717900011
1041 ER
1042 
1043 
1044 PT J
1045 AU Safavi, A
1046    Sedghy, HR
1047    Shams, E
1048 TI Kinetic spectrophotometric determination of trace amounts of selenium
1049    and vanadium
1050 SO FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY
1051 LA English
1052 DT Article
1053 ID ANALYTICAL-CHEMISTRY; REDUCTION; SULFIDE
1054 AB A sensitive kinetic spectrophotometric method has been developed for
1055    the determination of Se(IV) over the range of 45 to 4000 ng in 10 mt of
1056    solution. The method is based on the catalytic effect of Se(TV)on the
1057    reduction reaction of bromate by hydrazinium dichloride, with
1058    subsequent reaction of Ponceau S with products of the above reaction
1059    (chlorine and bromine),causing color changing of Ponceau S. Method
1060    development includes optimization of time interval for measurement of
1061    slope, pH, reagents concentration, and temperature. The optimized
1062    conditions yielded a theoretical detection limit of 33 ng/10 mt of
1063    solution of Se(IV). The interfering effects were studied and removed.
1064    The method was applied to the determination of selenium in spiked
1065    water, Kjeldahl tablet, selenium tablet, and shampoo. Vanadium(V) has
1066    an inhibition effect on the catalyzed reaction of bromate and hydrazine
1067    by selenium. Using this effect, V(V) can be determined in the range of
1068    70 to 2500 ng in 10 mt of solution. The optimization procedure includes
1069    pH and selenium concentration. An extraction method was used for
1070    interference removal. The method was applied to the determination of
1071    vanadium in petroleum.
1072 C1 Shiraz Univ, Fac Sci, Dept Chem, Shiraz, Iran.
1073 RP Safavi, A, Shiraz Univ, Fac Sci, Dept Chem, Shiraz, Iran.
1074 NR 30
1075 TC 2
1076 PU SPRINGER VERLAG
1077 PI NEW YORK
1078 PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
1079 SN 0937-0633
1080 J9 FRESENIUS J ANAL CHEM
1081 JI Fresenius J. Anal. Chem.
1082 PD NOV
1083 PY 1999
1084 VL 365
1085 IS 6
1086 BP 504
1087 EP 510
1088 PG 7
1089 SC Chemistry, Analytical
1090 GA 259KL
1091 UT ISI:000083893000006
1092 ER
1093 
1094 
1095 PT J
1096 AU Sangeetha, NR
1097    Pal, S
1098 TI Syntheses and structures of square-pyramidal acetonitrile coordinated
1099    copper(II) complexes with N-(aroyl)-N '(5-nitrosalicylidene)hydrazines
1100 SO JOURNAL OF CHEMICAL CRYSTALLOGRAPHY
1101 LA English
1102 DT Article
1103 DE X-ray structure; pentacoordinated copper(II); square-pyramid;
1104    acetonitrile coordination
1105 ID SCHIFF-BASE COMPLEXES; CRYSTAL-STRUCTURE; TRANSITION-METALS; AROYL
1106    HYDRAZONES; LIGANDS; VANADIUM(V); CHEMISTRY
1107 AB The syntheses and structures of two square-pyramidal acetonitrile
1108    coordinated copper(II) complexes, [Cu(HbhsNO(2))(CH3CN)(2)]ClO4 (1) and
1109    [Cu(HahsNO(2)) (CH3CN)(ClO4)] (2), are described. The mononegative
1110    ligands are obtained by deprotonation of the phenolic-OH of
1111    N-(benzoyl)-N'-(5-nitrosalicylidene)hydrazine (H(2)bhsNO(2)) and of
1112    N-(anisoyl)-N'-(5-nitrosalicylidene)hydrazine (H(2)ahsNO(2)). Crystal
1113    data for 1: monoclinic, P2(1)/c (#14), a = 9.7245(14), b = 20.23(4), c
1114    = 11.042(3) Angstrom, beta = 91.86(2)degrees, V = 2171.0(7)
1115    Angstrom(3), and Z = 4 and for 2: triclinic, P (1) over bar (#2), a =
1116    9.7710(19), b = 9.9687(15), c = 11.062(5) Angstrom, alpha = 73.10(3),
1117    beta = 88.77(3), gamma = 88.379(14)degrees, V = 1030.4(5) Angstrom(3),
1118    and Z = 2. In each complex the planar ligand binds the metal ion via
1119    phenolate-O, imine-N, and amide-O. The nitrogen of an acetonitrile
1120    molecule satisfies the fourth site of the square-plane containing the
1121    metal ion. In 1 the axial coordination is provided by the nitrogen of a
1122    second acetonitrile molecule, whereas in 2 one of the oxygen atoms of
1123    the perchlorate occupies the fifth axial site. The axial acetonitrile
1124    molecule of 1 is bound to the metal center in a bent mode. The other
1125    noticeable difference between the two structures is in the geometry at
1126    the metal center. A large displacement (0.23 Angstrom) of the metal ion
1127    from the ONON basal plane towards the axial coordinating atom is
1128    observed in 1. On the other hand, there is no displacement of the metal
1129    center from the same ONON basal plane in 2. The EPR and electronic
1130    spectral features in acetonitrile solutions are consistent with the
1131    solid state structures.
1132 C1 Univ Hyderabad, Sch Chem, Hyderabad 500046, Andhra Pradesh, India.
1133 RP Pal, S, Univ Hyderabad, Sch Chem, Hyderabad 500046, Andhra Pradesh,
1134    India.
1135 NR 44
1136 TC 6
1137 PU KLUWER ACADEMIC/PLENUM PUBL
1138 PI NEW YORK
1139 PA 233 SPRING ST, NEW YORK, NY 10013 USA
1140 SN 1074-1542
1141 J9 J CHEM CRYSTALLOGRAPHY
1142 JI J. Chem. Crystallogr.
1143 PD MAR
1144 PY 1999
1145 VL 29
1146 IS 3
1147 BP 287
1148 EP 293
1149 PG 7
1150 SC Crystallography; Spectroscopy
1151 GA 225ND
1152 UT ISI:000081966900005
1153 ER
1154 
1155 
1156 PT J
1157 AU Goodall, P
1158 TI Determination of total and extractable hydrogen peroxide in organic and
1159    aqueous solutions of uranyl nitrate
1160 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
1161 LA English
1162 DT Article
1163 ID FLOW-INJECTION ANALYSIS
1164 AB The development of a spectrophotometric method for the determination of
1165    hydrogen peroxide in uranyl nitrate solutions is reported. The method
1166    involves the measurement of the absorbance at 520 nm of a vanadyl
1167    peroxide species. This species was formed by the addition of a reagent
1168    consisting of vanadium (V) (50 mmol.dm(-3)) in dilute sulphuric acid (2
1169    mol.dm(-3) H2SO4) This reagent, after dilution, was also used as an
1170    extractant for organic phase samples. The method is simple and robust
1171    and tolerant of nitric acid and U(VI). Specificity and accuracy were
1172    improved by the application of solid phase extraction techniques to
1173    remove entrained organic solvents and Pu(IV). Reverse phase solid phase
1174    extraction was used to clean-up aqueous samples or extracts which were
1175    contaminated with entrained solvent. A solid phase extraction system
1176    based upon an extraction chromatography system was used to remove
1177    Pu(IV). Detection limits of 26 mu mol.dm(-3) (0.88 mu g.cm(-3)) or 7 mu
1178    mol.dm(-3) (0.24 mu g.cm(-3)) for, respectively, a 1 and 4 cm path
1179    length cell were obtained. Precisions of RSD = 1.4% and 19.5% were
1180    obtained at the extremes of the calibration curve (5 mmol.dm(-3) and 50
1181    mu mol.dm(-3) H2O2, 1 cm cell). The introduction of the extraction and
1182    clean-up stages had a negligible effect upon the precision of the
1183    determination. The stability of an organic phase sample was tested and
1184    no loss of analyte could be discerned over a period of at least 5 days.
1185    The presence of trace levels of reductants interfered with the
1186    determination, e.g., hydrazine (<2 mmol.dm(-3)), but this effect was
1187    ameliorated by increasing the concentration of the colormetric reagent.
1188 C1 BNFL, Seascale CA20 1PG, Cumbria, England.
1189 RP Goodall, P, BNFL, Bldg 229 Sellafield, Seascale CA20 1PG, Cumbria,
1190    England.
1191 NR 7
1192 TC 0
1193 PU ELSEVIER SCIENCE SA
1194 PI LAUSANNE
1195 PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
1196 SN 0236-5731
1197 J9 J RADIOANAL NUCL CHEM
1198 JI J. Radioanal. Nucl. Chem.
1199 PD APR
1200 PY 1999
1201 VL 240
1202 IS 1
1203 BP 5
1204 EP 13
1205 PG 9
1206 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
1207    & Technology
1208 GA 191NB
1209 UT ISI:000080027500002
1210 ER
1211 
1212 
1213 PT J
1214 AU Fahmi, N
1215    Singh, RV
1216 TI Synthetic, structural and biological studies of oxovanadium(V)
1217    complexes of azomethines
1218 SO INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL
1219    THEORETICAL & ANALYTICAL CHEMISTRY
1220 LA English
1221 DT Article
1222 ID BENZOTHIAZOLINES; MANGANESE(II); VANADIUM; VANADATE
1223 AB A few metal complexes of oxovanadium(V) with
1224    2-(2-fluorophenyl-methylene) hydrazine carbothioamide or -carboxamide
1225    and 2-[1-(2-fluorophenyl)ethylidene] hydrazine carbothioamide or
1226    -carboxamide have been synthesized and characterized by elemental
1227    analysis, molecular weight determinations, molar conductance, magnetic
1228    measurements, IR, H-1 NMR and F-19 NMR studies. The IR and NMR spectral
1229    data suggest the involvement of sulphur/oxygen and azomethine nitrogen
1230    in coordination to the central metal ion. The free ligands and their
1231    metal complexes have been tested in vitro against a number of
1232    microorganisms to assess their antimicrobial properties.
1233 C1 Univ Rajasthan, Dept Chem, Jaipur 302004, Rajasthan, India.
1234 RP Singh, RV, Univ Rajasthan, Dept Chem, Jaipur 302004, Rajasthan, India.
1235 NR 16
1236 TC 6
1237 PU NATL INST SCIENCE COMMUNICATION
1238 PI NEW DELHI
1239 PA DR K S KRISHNAN MARG, NEW DELHI 110 012, INDIA
1240 SN 0376-4710
1241 J9 INDIAN J CHEM SECT A
1242 JI Indian J. Chem. Sect A-Inorg. Bio-Inorg. Phys. Theor. Anal. Chem.
1243 PD DEC
1244 PY 1998
1245 VL 37
1246 IS 12
1247 BP 1126
1248 EP 1129
1249 PG 4
1250 SC Chemistry, Multidisciplinary
1251 GA 177VR
1252 UT ISI:000079232200019
1253 ER
1254 
1255 
1256 PT J
1257 AU Davies, SC
1258    Durrant, MC
1259    Hughes, DL
1260    Le Floc'h, C
1261    Pope, SJA
1262    Reid, G
1263    Richards, RL
1264    Sanders, JR
1265 TI Synthesis, spectroscopic and EXAFS studies of vanadium complexes of
1266    trithioether ligands and crystal structures of [VCl3([9]aneS(3))] and
1267    [VI2(thf)([9]aneS(3))] ([9]aneS(3) = 1,4,7-trithiacyclononane)
1268 SO JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS
1269 LA English
1270 DT Article
1271 ID THIOETHER; NITROGENASES; COORDINATION; REACTIVITY; CONVERSION;
1272    HYDRAZINE; CHEMISTRY; AMMONIA
1273 AB A series of vanadium-(II), -(III) and -(Iv) macrocyclic thioether
1274    complexes has been synthesized and characterised by analytical,
1275    magnetic and spectroscopic methods. The new complexes reported are
1276    [{V([9]aneS(3))}(2)(mu-Cl)(3)]Cl ([9]aneS(3) =
1277    1,4,7-trithiacyclononane), [VI2(thf)([9]aneS(3))], [VI2(ttob)] (ttob =
1278    2,5,8-trithia[9]-o-benzenophane), [VX3([9]aneS(3))] (X = Cl, Br or I),
1279    [VX3([10]aneS(3))] ([10]aneS(3) = 1,4,7-trithiacyclodecane),
1280    [VCl3(ttob)], [VCl3([16]aneS(4))] ([16]aneS(4) =
1281    1,5,9,13-tetrathiacyclohexadecane), [(VX3)(2)(mu-[18]aneS(6))] (X = Cl
1282    or Br [18]aneS(6) = 1,4,7,10,13,16-hexathiacyclooctadecane) and
1283    [VOCl2(ttob)]. The crystal structures of [VI2(thf)([9]aneS(3))] and
1284    [VCl3([9]aneS(3))] and EXAFS structural data for [VX3([9]aneS(3))] and
1285    [VX3([10]aneS(3))] are presented and discussed. The acyclic
1286    trithioether complexes [VX3{MeC(CH2SMe)(3)}] (X = Cl or Br) and the
1287    complex [VI2(py)(4)] are also reported.
1288 C1 Univ Southampton, Dept Chem, Southampton SO17 1BJ, Hants, England.
1289    John Innes Ctr Plant Sci Res, Nitrogen Fixat Lab, Norwich NR4 7UH, Norfolk, England.
1290 RP Reid, G, Univ Southampton, Dept Chem, Southampton SO17 1BJ, Hants,
1291    England.
1292 NR 45
1293 TC 7
1294 PU ROYAL SOC CHEMISTRY
1295 PI CAMBRIDGE
1296 PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE CB4 4WF,
1297    CAMBS, ENGLAND
1298 SN 0300-9246
1299 J9 J CHEM SOC DALTON TRANS
1300 JI J. Chem. Soc.-Dalton Trans.
1301 PD JUL 7
1302 PY 1998
1303 IS 13
1304 BP 2191
1305 EP 2198
1306 PG 8
1307 SC Chemistry, Inorganic & Nuclear
1308 GA 102KW
1309 UT ISI:000074924300013
1310 ER
1311 
1312 
1313 PT J
1314 AU Sun, CQ
1315    Liu, GJ
1316    Zhang, HA
1317 TI Fabrication of a self-assembling film electrode containing
1318    vanadium-oxygen phthalocyanine and its electrocatalytic oxidation for
1319    hydrazine
1320 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
1321 LA Chinese
1322 DT Article
1323 DE molecular deposition technique; self-assembling film; vanadium-oxygen
1324    phthalocyanine; hytrazine
1325 ID MOLECULAR ASSEMBLIES; GOLD; MONOLAYERS; SURFACES
1326 AB A monolayer containing vanadium-oxygen phthalocyanine on the surface of
1327    2-dimethylaminoethanethiol-modified gold electrode was achieved based
1328    on electrostatic interaction. The electrode exhibits a high catalytic
1329    activity toward the electrooxidation of hydrazine. The method is very
1330    useful in other fabrication of functional molecules.
1331 C1 Jilin Univ, Dept Chem, Changchun 130023, Peoples R China.
1332    China Inst Metrol, Dept Fine Chem Res, Hangzhou 310012, Peoples R China.
1333 RP Sun, CQ, Jilin Univ, Dept Chem, Changchun 130023, Peoples R China.
1334 NR 9
1335 TC 3
1336 PU HIGHER EDUCATION PRESS
1337 PI BEIJING
1338 PA SHATANHOU ST 55, BEIJING 100009, PEOPLES R CHINA
1339 SN 0251-0790
1340 J9 CHEM J CHINESE UNIV-CHINESE
1341 JI Chem. J. Chin. Univ.-Chin.
1342 PD MAR
1343 PY 1998
1344 VL 19
1345 IS 3
1346 BP 382
1347 EP 384
1348 PG 3
1349 SC Chemistry, Multidisciplinary
1350 GA ZD364
1351 UT ISI:000072677800012
1352 ER
1353 
1354 
1355 PT J
1356 AU Abou-Seif, MAM
1357 TI Vanadium-mediated oxidation of NADH is enhanced by aluminium and
1358    inhibited by vitamin E and some copper (II) complexes
1359 SO ANNALS OF CLINICAL BIOCHEMISTRY
1360 LA English
1361 DT Article
1362 DE vanadium salts; superoxide dismutase-like activity
1363 ID SUPEROXIDE-DISMUTASE; RENAL-FAILURE; ANTIOXIDANTS; MECHANISMS;
1364    TOXICITY; BRAIN; ASSAY
1365 AB The effect of aluminium on vanadium-mediated oxidation of NADH was
1366    examined. The oxidation of NADH was enhanced in the presence of
1367    aluminium. The effect was concentration dependent. Vitamin E and copper
1368    (II) complexes with superoxide dismutase (COD)-like activities
1369    containing isobutyric acid hydrazine were rested for their effect on
1370    the vanadium-mediated oxidation of NADH. The stimulatory effect of
1371    aluminium was decreased upon addition of different concentrations of
1372    vitamin E and copper (II) complexes. These results indicate that the
1373    biological toxicity of aluminium may be attributed to its enhancement
1374    of the production of superoxide radicals (O-2(.-)) in association with
1375    the accumulation of other trace elements such as vanadium.
1376 C1 Mansoura Univ, Fac Sci, Dept Chem, Div Biochem, Mansoura, Egypt.
1377 RP Abou-Seif, MAM, Mansoura Univ, Fac Sci, Dept Chem, Div Biochem,
1378    Mansoura, Egypt.
1379 NR 27
1380 TC 4
1381 PU ROYAL SOC MEDICINE PRESS LTD
1382 PI LONDON
1383 PA 1 WIMPOLE STREET, LONDON W1M 8AE, ENGLAND
1384 SN 0004-5632
1385 J9 ANN CLIN BIOCHEM
1386 JI Ann. Clin. Biochem.
1387 PD NOV
1388 PY 1997
1389 VL 34
1390 PN Part 6
1391 BP 645
1392 EP 650
1393 PG 6
1394 SC Medical Laboratory Technology
1395 GA YZ024
1396 UT ISI:000072212500008
1397 ER
1398 
1399 
1400 PT J
1401 AU Schrock, RR
1402 TI High oxidation state coordination chemistry with triamidoamine tungsten
1403    and molybdenum complexes
1404 SO PURE AND APPLIED CHEMISTRY
1405 LA English
1406 DT Article
1407 ID PHOSPHORUS TRIPLE BOND; DINITROGEN COMPLEXES; CATALYTIC REDUCTION;
1408    CRYSTAL-STRUCTURE; HYDRAZINE; NITROGENASE; CLEAVAGE; VANADIUM; LIGANDS;
1409    CONTAIN
1410 AB In this lecture I will focus on some recent developments in the
1411    chemistry of high oxidation state dinitrogen complexes with an emphasis
1412    on recent results involving triamidoamine molybdenum complexes.
1413 RP Schrock, RR, MIT,DEPT CHEM 6331,CAMBRIDGE,MA 02139.
1414 NR 34
1415 TC 26
1416 PU BLACKWELL SCIENCE LTD
1417 PI OXFORD
1418 PA P O BOX 88, OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0NE
1419 SN 0033-4545
1420 J9 PURE APPL CHEM
1421 JI Pure Appl. Chem.
1422 PD OCT
1423 PY 1997
1424 VL 69
1425 IS 10
1426 BP 2197
1427 EP 2203
1428 PG 7
1429 SC Chemistry, Multidisciplinary
1430 GA YB877
1431 UT ISI:A1997YB87700026
1432 ER
1433 
1434 
1435 PT J
1436 AU Richards, RL
1437 TI Metal-sulfur chemistry and catalytic processes
1438 SO NEW JOURNAL OF CHEMISTRY
1439 LA English
1440 DT Article
1441 DE molybdenum; catalysis; sulfur; nitrogenase; xanthine oxidase;
1442    hydrodesulfurization
1443 ID IRON-MOLYBDENUM COFACTOR; CRYSTAL-STRUCTURE; XANTHINE-OXIDASE;
1444    DINITROGEN COMPLEX; THIOLATE COMPLEXES; NITROGEN-FIXATION;
1445    HYDRODESULFURIZATION; BINDING; HYDRAZINE; AMMONIA
1446 AB A number of processes involve metal catalysts where the metal carries
1447    sulfur-donor ligands. Three are discussed where metal complexes with
1448    S-donor ligands are being used to elucidate potential reaction
1449    pathways. This primarily involves the reductase nitrogenase and the
1450    metals vanadium, molybdenum, and iron but aspects of molybdenum
1451    chemistry involved in the function of the hydroxylase xanthine oxidase
1452    and of hydrodesulfurization of feedstock gases are also considered.
1453 RP Richards, RL, JOHN INNES CTR,NITROGEN FIXAT LAB,COLNEY LANE,NORWICH NR4
1454    7UH,NORFOLK,ENGLAND.
1455 NR 72
1456 TC 5
1457 PU GAUTHIER-VILLARS
1458 PI PARIS
1459 PA 120 BLVD SAINT-GERMAIN, 75280 PARIS, FRANCE
1460 SN 1144-0546
1461 J9 NEW J CHEM
1462 JI New J. Chem.
1463 PD JUN-JUL
1464 PY 1997
1465 VL 21
1466 IS 6-7
1467 BP 727
1468 EP 732
1469 PG 6
1470 SC Chemistry, Multidisciplinary
1471 GA XN485
1472 UT ISI:A1997XN48500009
1473 ER
1474 
1475 
1476 PT J
1477 AU Davies, SC
1478    Hughes, DL
1479    Janas, Z
1480    Jerzykiewicz, L
1481    Richards, RL
1482    Sanders, JR
1483    Sobota, P
1484 TI Vanadium complexes of the N(CH2CH2S)(3)(3-)-ligand with co-ligands
1485    relevant to nitrogen fixation processes
1486 SO CHEMICAL COMMUNICATIONS
1487 LA English
1488 DT Article
1489 ID HYDRAZINE
1490 AB Vanadium(III) and vanadium(V) complexes of the
1491    tris(2-thiolatoethyl)amine ligand L3- containing hydrazine, hydrazide,
1492    imide, ammine, cyanide and isocyanide ligands are synthesised; the
1493    complexes [V(NH3)L] and [V(NNMe2)L] have been structurally
1494    characterised.
1495 C1 JOHN INNES CTR PLANT SCI RES,NITROGEN FIXAT LAB,NORWICH NR4 7UH,NORFOLK,ENGLAND.
1496    WROCLAW B BEIRUT UNIV,FAC CHEM,PL-50383 WROCLAW,POLAND.
1497 NR 13
1498 TC 15
1499 PU ROYAL SOC CHEMISTRY
1500 PI CAMBRIDGE
1501 PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE, CAMBS,
1502    ENGLAND CB4 4WF
1503 SN 1359-7345
1504 J9 CHEM COMMUN
1505 JI Chem. Commun.
1506 PD JUL 21
1507 PY 1997
1508 IS 14
1509 BP 1261
1510 EP 1262
1511 PG 2
1512 SC Chemistry, Multidisciplinary
1513 GA XL701
1514 UT ISI:A1997XL70100003
1515 ER
1516 
1517 
1518 PT S
1519 AU Coucouvanis, D
1520    Demadis, KD
1521    Malinak, SM
1522    Mosier, PE
1523    Tyson, MA
1524    Laughlin, LJ
1525 TI Catalytic multielectron reduction of hydrazine to ammonia and acetylene
1526    to ethylene with clusters that contain the MFe(3)S(4) cores (M=Mo, V)
1527 SO TRANSITION METAL SULFUR CHEMISTRY
1528 SE ACS SYMPOSIUM SERIES
1529 LA English
1530 DT Review
1531 ID IRON MOLYBDENUM COFACTOR; LIGAND SUBSTITUTION-REACTIONS; BIOLOGICAL
1532    NITROGEN-FIXATION; CUBANE-TYPE CLUSTERS; X-RAY ABSORPTION; STRUCTURAL
1533    CHARACTERIZATION; AZOTOBACTER-VINELANDII; KLEBSIELLA-PNEUMONIAE;
1534    VANADIUM NITROGENASE; POSSIBLE RELEVANCE
1535 AB Clusters with the [MFe(3)S(4)](n+) core, (M = Mo, n=3; M = V, n=2). are
1536    used as catalysts for the reduction of substrates relevant to
1537    nitrogenase function. Substrates such as hydrazine and acetylene, are
1538    catalytically reduced by (NEt(4))(2)[(Cl-4-cat)(CH3CN)MoFe3S4Cl3], I,
1539    to ammonia and ethylene respectively, in the presence of added protons
1540    and reducing equivalents. Hydrazine also is catalytically reduced by
1541    the (NEt(4))[(DMF)(3)VFe3S4Cl3] cubane under similar conditions.
1542    Catalysis in excess of 100 turnovers (for hydrazine reduction) and in
1543    excess of 15 turnovers (for acetylene reduction) has been observed over
1544    a period of 24 hours. Kinetic studies of the acetylene reduction
1545    reaction have been carried out. Considerable evidence has been amassed
1546    which directly implicates the Mo and V atoms as the primary catalytic
1547    sites. The reduction of hydrazine is accelerated in the presence of
1548    carboxylate ligands bound to the Mo atom in I and this effect is
1549    interpreted in terms of a proton delivery shuttle involving the
1550    carboxylate group and the substrate during reduction. The possible role
1551    of the homocitrate ligand in the nitrogen cofactor is analyzed in terms
1552    of these findings.
1553 RP Coucouvanis, D, UNIV MICHIGAN,DEPT CHEM,ANN ARBOR,MI 48109.
1554 NR 77
1555 TC 8
1556 PU AMER CHEMICAL SOC
1557 PI WASHINGTON
1558 PA 1155 SIXTEENTH ST NW, WASHINGTON, DC 20036
1559 SN 0097-6156
1560 J9 ACS SYMP SER
1561 PY 1996
1562 VL 653
1563 BP 117
1564 EP 134
1565 PG 18
1566 SC Chemistry, Multidisciplinary
1567 GA BG97E
1568 UT ISI:A1996BG97E00006
1569 ER
1570 
1571 
1572 PT J
1573 AU Kopka, K
1574    Mattes, R
1575 TI A dinuclear vanadium(V) complex with (eta(1))- and
1576    (mu-eta(2):eta(2))-bonded hydrazido(2-) ligands
1577 SO ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES
1578 LA German
1579 DT Article
1580 DE vanadium(V) compounds; hydrazido(2-) complexes; crystal structure
1581 ID CRYSTAL-STRUCTURES; MOLECULAR-STRUCTURES; DINITROGEN; HYDRAZINE;
1582    DERIVATIVES; MODEL
1583 AB The title complex was obtained by reaction of guanidinium
1584    dioxodipicolinatovanadate(V) and N-methyl-N-phenylhydrazine. According
1585    to the single crystal structure analysis the dinuclear anion
1586    [(mu-PhNNH)(mu-OCH3){(MePhNN(dipic)V)}(2)](-) with sevenfold
1587    coordinated metal centers contains two types of hydrazido ligands. The
1588    Ligand [MePhNN](2-) is terminally bonded, and the VNN unit is linear
1589    with extensive electron delocalisation. The V-N and N-N bond lengths
1590    are 167.9(5) and 131.9(6) pm, respectively. The bonding of the bridging
1591    ligand is of the hitherto unknown mu-eta(2):eta(2) type, with V-N and
1592    N-N bond lengths of 202.5(5) and 136.5(5) pm, respectively. The V(N-2)V
1593    moiety is not planar. The compound was also characterized by H-1 and
1594    V-51 NMR spectroscopy.
1595 C1 UNIV MUNSTER,INST ANORGAN CHEM,D-48149 MUNSTER,GERMANY.
1596 NR 29
1597 TC 1
1598 PU VERLAG Z NATURFORSCH
1599 PI TUBINGEN
1600 PA POSTFACH 2645, W-7400 TUBINGEN, GERMANY
1601 SN 0932-0776
1602 J9 Z NATURFORSCH SECT B
1603 JI Z.Naturforsch.(B)
1604 PD DEC
1605 PY 1996
1606 VL 51
1607 IS 12
1608 BP 1675
1609 EP 1678
1610 PG 4
1611 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
1612 GA WD024
1613 UT ISI:A1996WD02400002
1614 ER
1615 
1616 
1617 PT J
1618 AU Coucouvanis, D
1619 TI Functional analogs for the reduction of certain nitrogenase substrates.
1620    Are multiple sites within the Fe/Mo/S active center involved in the
1621    6e(-) reduction of N-2?
1622 SO JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY
1623 LA English
1624 DT Editorial Material
1625 DE nitrogenase; analogs; function; catalysis; reduction
1626 ID IRON-MOLYBDENUM COFACTOR; MERCAPTO-CARBOXYLATE LIGANDS; STRUCTURAL
1627    CHARACTERIZATION; DOUBLE CUBANES; AZOTOBACTER-VINELANDII; VANADIUM
1628    NITROGENASE; CATALYTIC REDUCTION; CLOSTRIDIUM-PASTEURIANUM;
1629    POLYCARBOXYLATE LIGANDS; KLEBSIELLA-PNEUMONIAE
1630 AB Reactivity studies of clusters that contain the MFe(3)S(4) cores (M =
1631    Mo, V) with catecholate, multicarboxylate (or DMF) ligands coordinated
1632    to the Mo (or V) atoms, and Cl ligands coordinated to the Fe atoms have
1633    been carried out. These studies show the M/Fe/S single cubane clusters
1634    to be effective catalysts in the reduction of nitrogenase substrates
1635    such as hydrazine, acetylene and protons to give ammonia, ethylene and
1636    dihydrogen respectively. The same molecules do not activate or catalyze
1637    the reduction of dinitrogen. The results indicate that the observed
1638    catalyses are occurring at the Mo (V) sites by a process that, in the
1639    case of hydrazine, involves substrate protonation prior to reduction.
1640    The facile catalytic reduction of hydrazine by clusters that contain
1641    coordinatively saturated polycarboxylate-bound Mo atoms is rationalized
1642    in terms of a possible protonation/proton delivery function of the
1643    coordinated polycarboxylate ligands. The reactivity characteristics of
1644    the M/Fe/S clusters (structurally quite similar to the nitrogenase
1645    cofactor) have led to the suggestion that the Mo (V) atoms may be
1646    involved in the reduction of hydrazine in the later stages of
1647    dinitrogen reduction.
1648 RP Coucouvanis, D, UNIV MICHIGAN,DEPT CHEM,ANN ARBOR,MI 48109.
1649 NR 60
1650 TC 37
1651 PU SPRINGER VERLAG
1652 PI NEW YORK
1653 PA 175 FIFTH AVE, NEW YORK, NY 10010
1654 SN 0949-8257
1655 J9 J BIOL INORG CHEM
1656 JI J. Biol. Inorg. Chem.
1657 PD DEC
1658 PY 1996
1659 VL 1
1660 IS 6
1661 BP 594
1662 EP 600
1663 PG 7
1664 SC Biochemistry & Molecular Biology; Chemistry, Inorganic & Nuclear
1665 GA WA565
1666 UT ISI:A1996WA56500017
1667 ER
1668 
1669 
1670 PT J
1671 AU Durrant, MC
1672    Davies, SC
1673    Hughes, DL
1674    LeFloch, C
1675    Richards, RL
1676    Sanders, JR
1677    Champness, NR
1678    Pope, SJ
1679    Reid, G
1680 TI Crown thioether complexes of vanadium(II), vanadium(III) and
1681    vanadium(IV): X-ray crystal structure of [VCl3([9]aneS(3))]
1682 SO INORGANICA CHIMICA ACTA
1683 LA English
1684 DT Article
1685 DE vanadium complexes; macrocyclic thioether complexes; crystal structures
1686 ID NITROGENASE; AZOTOBACTER; PROTONATION; DINITROGEN; HYDRAZINE; AMMONIA;
1687    CUBANES; MO
1688 AB The synthesis of macrocyclic thioether complexes of vanadium(II),
1689    vanadium(III) and vanadium(IV) and the X-ray structure of [VCl3 ([9]
1690    aneS(3))] are described.
1691 C1 JOHN INNES CTR PLANT SCI RES,NITROGEN FIXAT LAB,NORWICH NR4 7UH,NORFOLK,ENGLAND.
1692    UNIV SOUTHAMPTON,DEPT CHEM,SOUTHAMPTON S09 5NH,HANTS,ENGLAND.
1693 NR 19
1694 TC 8
1695 PU ELSEVIER SCIENCE SA LAUSANNE
1696 PI LAUSANNE 1
1697 PA PO BOX 564, 1001 LAUSANNE 1, SWITZERLAND
1698 SN 0020-1693
1699 J9 INORG CHIM ACTA
1700 JI Inorg. Chim. Acta
1701 PD OCT 1
1702 PY 1996
1703 VL 251
1704 IS 1-2
1705 BP 13
1706 EP 14
1707 PG 2
1708 SC Chemistry, Inorganic & Nuclear
1709 GA VX967
1710 UT ISI:A1996VX96700004
1711 ER
1712 
1713 
1714 PT J
1715 AU LeFloch, C
1716    Henderson, RA
1717    Hitchcock, PB
1718    Hughes, DL
1719    Janas, Z
1720    Richards, RL
1721    Sobota, P
1722    Szafert, S
1723 TI Reactions of substituted hydrazines with vanadium(III) compounds:
1724    Crystal structures of [NH(2)Me(2)](2)[(VCl3)(2)(mu-NNMe(2))(3)],
1725    [V(OC6H3Pr2i-2,6)(3)(NH(2)NMe(2))(2)] and
1726    [V(OC6H3Pr2i-2,6)(3)(NH(2)NMePh)2]
1727 SO JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS
1728 LA English
1729 DT Article
1730 ID MOLECULAR-STRUCTURE; COMPLEXES; DINITROGEN; BRIDGES; LIGANDS; GEOMETRY;
1731    AMMONIA; BONDS; ATOMS
1732 AB Reaction of Me(3)SiNHNMe(2) with [VCl3(PMePh(2))(2)] or [VCl3(thf)(3)]
1733    (thf = tetrahydrofuran) gave the triply hydrazide-bridged complex
1734    [NH(2)Me(2)](2)[(VCl3)(2)(mu-NNMe(2))(3)] 1 the crystal structure of
1735    which has been determined. Cyclic voltammetry shows 1 to have
1736    E(1/2)(ox) = 0.30 V (reversible at -35 degrees C) and E(2)(ox) = 1.35 V
1737    (vs. ferrocene-ferrocenium). Cation exchange gave
1738    [PPh(4)](2)[(VCl3)(2)(mu-NNMe(2))(3)] and reaction with
1739    Li(SC6H2Pr3i-2,4,6) gave
1740    [NH(2)Me(2)](2)[{V(SC6H2Pr3i-2,4,6)(3)}(2)(mu-NN(2)Me(2))(2)].
1741    Treatment of [V(OC6H3Pr2i-2,6)(4)Li(thf)] with NH(2)NMe(2) gave the
1742    low-melting compound [V(OC6H3Pr2i-2,6)(3)(NH(2)NMe(2))(2)], shown by
1743    astructure determination to be essentially trigonal bipyramidal, with
1744    axial hydrazine ligands. The analogue
1745    [V(OC6H3Pr2i-2,6)(3)(NH(2)NMePh)(2)] has also been prepared and shown
1746    to have a similar structure.
1747 C1 JOHN INNES CTR PLANT SCI RES,NITROGEN FIXAT LAB,NORWICH NR4 7UH,NORFOLK,ENGLAND.
1748    UNIV SUSSEX,SCH CHEM & MOLEC SCI,BRIGHTON BN1 9RQ,E SUSSEX,ENGLAND.
1749    WROCLAW B BEIRUT UNIV,INST CHEM,PL-50383 WROCLAW,POLAND.
1750 NR 32
1751 TC 13
1752 PU ROYAL SOC CHEMISTRY
1753 PI CAMBRIDGE
1754 PA THOMAS GRAHAM HOUSE, SCIENCE PARK MILTON ROAD, CAMBRIDGE, CAMBS,
1755    ENGLAND CB4 4WF
1756 SN 0300-9246
1757 J9 J CHEM SOC DALTON TRANS
1758 JI J. Chem. Soc.-Dalton Trans.
1759 PD JUL 7
1760 PY 1996
1761 IS 13
1762 BP 2755
1763 EP 2762
1764 PG 8
1765 SC Chemistry, Inorganic & Nuclear
1766 GA UW625
1767 UT ISI:A1996UW62500024
1768 ER
1769 
1770 
1771 PT J
1772 AU Ramis, G
1773    Yi, L
1774    Busca, G
1775    Turco, M
1776    Kotur, E
1777    Willey, RJ
1778 TI Adsorption, activation, and oxidation of ammonia over SCR catalysts
1779 SO JOURNAL OF CATALYSIS
1780 LA English
1781 DT Article
1782 ID VANADIUM-OXIDE CATALYSTS; NITRIC-OXIDE; FT-IR; SELECTIVE OXIDATION;
1783    TITANIA CATALYSTS; NITROGEN-DIOXIDE; CR2O3 CATALYSTS; REDUCTION;
1784    SURFACE; NH3
1785 AB The catalytic activity in the reduction of NO by ammonia in the
1786    presence of oxygen (SCR process) is reported for CuO-TiO2 and for
1787    different catalysts belonging to the MgO-Fe2O3 system. These materials
1788    show high activity even at relatively low temperatures, with a maximum
1789    NO conversion near 520 K (CuO-TiO2) and 600 K (MgO-Fe2O3). At higher
1790    temperatures, NO conversion is reduced because of the competitive NH3
1791    oxidation by O-2 to NOx and N-2. The adsorption and transformation of
1792    ammonia over these systems has been investigated by FT-IR spectroscopy
1793    in vacuum and in contact with oxygen and NO. In all cases ammonia is
1794    first coordinated over Lewis sites and later undergoes hydrogen
1795    abstraction giving rise either to NH2 amide species or to its dimeric
1796    form N2H4, hydrazine, detected over CuO-TiO2 and gamma-Fe2O3. Other
1797    species tentatively identified as imide NH, nitroxyl HNO, nitrogen
1798    anions N-2(-) and azide anions N-3(-) are produced further. In the
1799    presence of NO3- coordinated ammonia rapidly disappears, the above
1800    intermediates are not found, and water is produced, showing that the
1801    SCR reaction occurred. Ammonia protonation to ammonium ion is not
1802    detected at all over these systems. It seems consequently demonstrated
1803    that Bronsted acidity is not necessary for the appearance of SCR
1804    activity. A comparison with the previously-published data on
1805    V2O5-TiO2-based systems is done and mechanisms of ammonia oxidation by
1806    oxygen and by NO are proposed. (C) 1995 Academic Press, Inc.
1807 C1 UNIV GENOA,FAC INGN,IST CHIM,I-16129 GENOA,ITALY.
1808    UNIV NAPLES FEDERICO II,DIPARTIMENTO INGN CHIM,I-80125 NAPLES,ITALY.
1809    NORTHEASTERN UNIV,DEPT CHEM ENGN,BOSTON,MA 02115.
1810 NR 72
1811 TC 75
1812 PU ACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS
1813 PI SAN DIEGO
1814 PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495
1815 SN 0021-9517
1816 J9 J CATAL
1817 JI J. Catal.
1818 PD DEC
1819 PY 1995
1820 VL 157
1821 IS 2
1822 BP 523
1823 EP 535
1824 PG 13
1825 SC Chemistry, Physical; Engineering, Chemical
1826 GA TK598
1827 UT ISI:A1995TK59800026
1828 ER
1829 
1830 
1831 PT J
1832 AU KOPKA, K
1833    MATTES, R
1834 TI DERIVATIVES OF HYDRAZINE AS LIGANDS IN VANADIUM(IV) AND VANADIUM(V)
1835    COMPLEXES - SYNTHESIS AND CRYSTAL-STRUCTURES OF 3 DIMERIC COMPLEXES
1836    WITH HYDRAZIDO AND HYDRAZONATO LIGANDS
1837 SO ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES
1838 LA German
1839 DT Article
1840 ID OXOVANADIUM(IV)
1841 AB The complexes [(mu-PhCONNCOPh){VOCl(NHNHCOPh)(2)}]. 5 CH3CN, (1),
1842    [(mu-PhCONNCOPh)(V(dbh)}(2)]. 2 CH3CN, (2) and [(VO)(2)(tbh)], (3) have
1843    been prepared by reaction of VCl2(acac)(2), acac = acetylacetonato(1-),
1844    and VCl2(acpn), acpn = propylendiimino-bis(acetylacetonato(2-)), with
1845    benzoylhydrazine. The structures of the centrosymmetric dimeric
1846    molecules 1-3 have been determined by single crystal X-ray diffraction.
1847    1 and 2 contain both doubly deprotonated N,N'-dibenzoylhydrazine as
1848    bridging, doubly N,O chelating ligand. In 1 the two remaining
1849    coordination sites at the VOCl group are occupied by the hydrazido(1-)
1850    ligand [NHNHCOPh](-). 2 is a non-ore vanadium(IV) complex. The
1851    coordination geometry is approximately trigonal prismatic. The pi-back
1852    donating effect of the oxo function is substituted by back donation
1853    from three negatively charged enolic oxygen atoms. The V-O bond lengths
1854    range from 192.0(2) to 193.7(2) pm. 3 contains a unique highly
1855    symmetrical octadentate ligand, formed during the synthesis. It is
1856    coordinated to two oxovanadin(IV) centers by N,O chelation. The
1857    coordination geometry is square pyramidal.
1858 C1 UNIV MUNSTER,INST ANORGAN CHEM,D-48149 MUNSTER,GERMANY.
1859 NR 19
1860 TC 3
1861 PU VERLAG Z NATURFORSCH
1862 PI TUBINGEN
1863 PA POSTFACH 2645, W-7400 TUBINGEN, GERMANY
1864 SN 0932-0776
1865 J9 Z NATURFORSCH SECT B
1866 JI Z.Naturforsch.(B)
1867 PD SEP
1868 PY 1995
1869 VL 50
1870 IS 9
1871 BP 1281
1872 EP 1286
1873 PG 6
1874 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
1875 GA RX010
1876 UT ISI:A1995RX01000001
1877 ER
1878 
1879 
1880 PT J
1881 AU REDDY, CK
1882    KAKKAR, LR
1883 TI DETERMINATION OF VANADIUM BY EXTRACTION OF V(IV)-THIOCYANATE INTO ETHYL
1884    METHYL KETONE
1885 SO NATIONAL ACADEMY SCIENCE LETTERS-INDIA
1886 LA English
1887 DT Article
1888 DE VANADIUM; THIOCYANATE; ETHYL METHYL KETONE; SPECTROPHTOMETRIC
1889    DETERMINATION
1890 AB A simple and rapid method for the determination of vanadium has been
1891    worked out. In presence of hydrazine sulphate, vanadium forms a green
1892    coloured complex with thiocyanate in HCl solution, whose absorbance was
1893    measured at lambda(max) 675 nm, after extraction into ethyl methyl
1894    ketone. The method is free from the interference of several ions of
1895    analytical importance and can analyse satisfactorily samples df varying
1896    complexity. Vanadium and thiocyanate were present in the ratio of 1:2
1897    in the extracted species.
1898 RP REDDY, CK, KURUKSHETRA UNIV,DEPT CHEM,KURUKSHETRA 132119,HARYANA,INDIA.
1899 NR 0
1900 TC 2
1901 PU NATL ACAD SCIENCES INDIA
1902 PI ALLAHABAD
1903 PA 5 LAJPATRAI RD, ALLAHABAD 211002, INDIA
1904 SN 0250-541X
1905 J9 NATL ACAD SCI LETT
1906 JI Natl. Acad. Sci. Lett.-India
1907 PD SEP-OCT
1908 PY 1994
1909 VL 17
1910 IS 9-10
1911 BP 189
1912 EP 190
1913 PG 2
1914 SC Multidisciplinary Sciences
1915 GA QT344
1916 UT ISI:A1994QT34400007
1917 ER
1918 
1919 
1920 PT J
1921 AU MALINAK, SM
1922    DEMADIS, KD
1923    COUCOUVANIS, D
1924 TI CATALYTIC REDUCTION OF HYDRAZINE TO AMMONIA BY THE VFE3S4 CUBANES -
1925    FURTHER EVIDENCE FOR THE DIRECT INVOLVEMENT OF THE HETEROMETAL IN THE
1926    REDUCTION OF NITROGENASE SUBSTRATES AND POSSIBLE RELEVANCE TO THE
1927    VANADIUM NITROGENASES
1928 SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
1929 LA English
1930 DT Article
1931 ID IRON-SULFUR CLUSTERS; BRIDGED DOUBLE CUBANES; STRUCTURAL
1932    CHARACTERIZATION; AZOTOBACTER-CHROOCOCCUM; ELECTRONIC-PROPERTIES;
1933    STEPWISE SYNTHESIS; <MOFE3S4>3+ CORES; PROTEIN; <VFE3S4>2+; COFACTOR
1934 AB The catalytic behavior of synthetic Fe/V/S clusters that structurally
1935    resemble the Fe/V/S site of nitrogenase is reported. The
1936    [(L)(L')(L'')VFe3S4Cl3](n-) clusters (L, L', L'' = DMF, n = 1; L =
1937    PEt(3), L', L'' = DMF, n = 1; L, L' = 2,2'-bipyridyl, L'' = DMF, n = 1)
1938    that contain the [VFe3S4](2-) cuboidal core are effective catalysts in
1939    the reduction of hydrazine (a nitrogenase substrate) to ammonia in the
1940    presence of cobaltocene and 2,6-lutidine hydrochloride as sources of
1941    electrons and protons, respectively. Reactivity studies show that
1942    V-coordinated terminal ligands have a profound effect on the relative
1943    rates of hydrazine reduction. Specifically, as the number of labile
1944    solvent molecules coordinated to the V atom decreases, the relative
1945    rate of hydrazine reduction decreases. The behavior also is observed
1946    with the [(HBpz3)VFe3S4Cl3](2-) cubane (L, L', L'' =
1947    hydrotris(pyrazolyl)borate, n = 2), where all coordination sites on the
1948    V atom are ''blocked''. The latter shows no catalytic or stoichiometric
1949    hydrazine reduction and its structure has been determined. To
1950    investigate the role of the Fe sites in the [VFe3S4](2+) cubanes during
1951    catalysis, a series of cubanes [(DMF)(3)VFe(3)S(4)X(3)](-) (X = Cl-,
1952    Br-, or I-) was synthesized. Relative rates of hydrazine reduction with
1953    each catalyst were virtually identical, indicating little or no
1954    involvement of the Fe atoms during catalysis. The result's of this
1955    study strongly implicate the heterometal (V) as the site directly
1956    involved in the binding and activation of hydrazine. Additionally,
1957    reduction of phenylhydrazine to ammonia and aniline is observed in
1958    these systems. Importantly, the single cubane
1959    (Me(4)N)[(PhHNNH(2))(bpy)VFe3S4Cl3] has been synthesized, indicating
1960    the ability of a hydrazine-like substrate molecule to interact directly
1961    with the V atom. These reactivity studies are compared to those
1962    communicated previously for the reduction of hydrazine by the
1963    [MoFe3S4](3+) cuboidal core. Additionally, a plausible reaction pathway
1964    for the reduction of hydrazine-like substrates by the [VFe3S4](2+) core
1965    is presented. Implications regarding the function of the Fe/M/S (M = V,
1966    Mo) center in nitrogenase are discussed.
1967 C1 UNIV MICHIGAN,DEPT CHEM,ANN ARBOR,MI 48109.
1968 NR 45
1969 TC 53
1970 PU AMER CHEMICAL SOC
1971 PI WASHINGTON
1972 PA PO BOX 57136, WASHINGTON, DC 20037-0136
1973 SN 0002-7863
1974 J9 J AMER CHEM SOC
1975 JI J. Am. Chem. Soc.
1976 PD MAR 22
1977 PY 1995
1978 VL 117
1979 IS 11
1980 BP 3126
1981 EP 3133
1982 PG 8
1983 SC Chemistry, Multidisciplinary
1984 GA QN458
1985 UT ISI:A1995QN45800017
1986 ER
1987 
1988 
1989 PT J
1990 AU DENISOV, NT
1991    SHUVALOVA, NI
1992    SHILOV, AE
1993 TI A KINETIC-STUDY OF A VANADIUM(II)-MAGNESIUM HYDROXIDE SYSTEM
1994 SO KINETICS AND CATALYSIS
1995 LA English
1996 DT Article
1997 ID REDUCTION; NITROGEN
1998 AB The kinetics of the molecular nitrogen reduction of hydrazine by
1999    vanadium(II)-magnesium hydroxide is studied at P(N)2 = 0.506 - 3.54 MPa
2000    and 258 - 284 K.  The heat (-DELTAH = 17 kJ/mol) and entropy of the
2001    formation of the nitrogen complex (-DELTAS = 32 J mol-1 K-1) and the
2002    activation energy of the N2H4 formation (35 kJ/mol) are determined. 
2003    The conclusion is made that the reaction occurs with the participation
2004    of a tetranuclear cluster of V2+ ions in the cationic layer of the
2005    primary particle of the mixed hydroxide Mg(OH)2-V(OH)2.
2006 RP DENISOV, NT, RUSSIAN ACAD SCI,INST CHEM PHYS,CHERNO 142432,RUSSIA.
2007 NR 16
2008 TC 6
2009 PU MAIK NAUKA/INTERPERIODICA
2010 PI NEW YORK
2011 PA C/O PLENUM/CONSULTANTS BUREAU 233 SPRING ST, NEW YORK, NY 10013
2012 SN 0023-1584
2013 J9 KINET CATAL-ENGL TR
2014 JI Kinet. Catal.
2015 PD SEP-OCT
2016 PY 1994
2017 VL 35
2018 IS 5
2019 BP 700
2020 EP 704
2021 PG 5
2022 SC Chemistry, Physical
2023 GA PR892
2024 UT ISI:A1994PR89200016
2025 ER
2026 
2027 
2028 PT J
2029 AU HWANG, JS
2030    ALTURABI, MOH
2031    ELSAYED, L
2032 TI EPR AND SPECTROSCOPIC STUDIES OF
2033    BIS(S-METHYL-3-ISOPROPYLIDENEHYDRAZINECARBODITHIOATO)-OXOVANADIUM(IV)
2034    AS MODEL-COMPOUND FOR VANADIUM BOUND TO NITROGEN AND SULFUR HETEROATOMS
2035 SO ENERGY & FUELS
2036 LA English
2037 DT Article
2038 ID COORDINATION-COMPOUNDS; HYDRAZINE DERIVATIVES; TRANSITION-METALS;
2039    RESONANCE; COMPLEXES; ACID
2040 AB The synthesis and spectroscopic and EPR characterization of a vanadyl
2041    complex with acetone Schiff base,
2042    bis(S-methyl-3-isopropylidenehydrazinecarbodithioato)oxovanadium(IV),
2043    are described. The magnetic moment of 1.75 mu(B) at room temperature is
2044    close to the spin only magnetic moment (1.73 mu(B)). The experimental
2045    values of g(parallel-to) = 1.960 and g(perpendicular-to) = 1.988 and
2046    the normal occurence of nu(V=O) vibration suggest a monomeric
2047    five-coordinate square pyramical structure of the complex. A
2048    correlation was found between g(parallel-to) and A(parallel-to) of the
2049    title compound when compared with other model compounds of the vanadyl
2050    complexes in which possible combinations of four ligands may include
2051    all nitrogen (N4) and all sulfur (S4). This information could be useful
2052    in characterizing aqueous pyridine cuts of asphaltenes with molecular
2053    weights less than 400 found in some heavy crude oils.
2054 C1 ALEXANDRIA UNIV,FAC SCI,DEPT CHEM,ALEXANDRIA 21321,EGYPT.
2055 RP HWANG, JS, KING FAHD UNIV PETR & MINERALS,DEPT CHEM,DHAHRAN 31261,SAUDI
2056    ARABIA.
2057 NR 24
2058 TC 3
2059 PU AMER CHEMICAL SOC
2060 PI WASHINGTON
2061 PA 1155 16TH ST, NW, WASHINGTON, DC 20036
2062 SN 0887-0624
2063 J9 ENERG FUEL
2064 JI Energy Fuels
2065 PD MAY-JUN
2066 PY 1994
2067 VL 8
2068 IS 3
2069 BP 793
2070 EP 797
2071 PG 5
2072 SC Energy & Fuels; Engineering, Chemical
2073 GA NN798
2074 UT ISI:A1994NN79800039
2075 ER
2076 
2077 
2078 PT J
2079 AU SUNDHEIM, A
2080    THEERS, C
2081    MATTES, R
2082 TI SUBSTITUTED HYDRAZINES AS LIGANDS IN VANADIUM(III), VANADIUM(IV) AND
2083    VANADIUM(V) COMPLEXES - SYNTHESIS AND CHARACTERIZATION OF
2084    [V(DIPIC)(NH(2)NHCOPH)(H2O)][VO(DIPIC)(NHNCOPH)]CENTER-DOT-2H(2)O,
2085    [VO(DIPIC)(NHNHCO(2)ME)],
2086    [VO(DIPIC)(NH(2)NHCO(2)ME)],[VO(DIPIC)(NHNHCSPH)] AND
2087    [VO(ONO)(NHNHCOPH)]CENTER-DOT-2H(2)O
2088 SO ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES
2089 LA German
2090 DT Article
2091 DE BENZOLHYDRAZINE COMPLEXES OF VANADIUM(III) AND -(V); METHYLCARBAZATE
2092    COMPLEXES OF VANADIUM(IV) AND -(V); THIOBENZOYLHYDRAZINE COMPLEXES OF
2093    VANADIUM(V); CRYSTAL STRUCTURE
2094 ID DIAZENIDO COMPLEXES; DIOXOMOLYBDENUM(VI) COMPLEXES;
2095    MOLECULAR-STRUCTURES; METHYLTHIOCARBAZATE; MOLYBDENUM; CRYSTAL; OXO
2096 AB The reaction of [VO(dipic)(H2O)(2)].2H(2)O with benzoylhydrazine,
2097    thiobenzoylhydrazine and O-methylcarbazate yields
2098    [V(dipic)(NH(2)NHCOPh)(H2O)(2)][VO(dipic)(NHNCOPh). 2H(2)O (1),
2099    [VO(dipic)(NHNHCO(2)Me)] (2), [VO(dipic)(NH(2)NHCO(2)Me)] (3) and
2100    [VO(dipic)(NHNHCSPh)] (4). 1 is probably formed in solution by redox
2101    disproportionation. The reactions giving 2, 3 and 4 also involve redox
2102    processes with atmospheric oxygen as oxidant and the respective
2103    hydrazine as reductant. [VO('ONO')(NHNHCOPh)].H2O (5) was formed using
2104    aqua-oxo-salicylaldehyde-L-alaninato-vanadium(IV) as precursor. The
2105    structures of 1,2, 3 and 5 have been determined by single crystal X-ray
2106    crystallography.
2107    The cation of 1 has a seven-coordinated vanadium(III) center with the
2108    two H2O molecules at the apices of a pentagonal bipyramide, the anion
2109    contains the doubly deprotonated hydrazido(2-) ligand NHNCOPh(2-) as
2110    N,O-chelate. 2 and 3 have very similar structures, but differ in the
2111    oxidation state of the vanadium atom and in the degree of deprotonation
2112    of the hydrazine. In 3 neutral NH(2)NHCOOMe and in 2 the single
2113    deprotonated hydrazido(1-) ligand NHNHCOOMe- are bound as N,O-chelates,
2114    with the O-donor in trans-position to the VO group. The remaining
2115    coordination sites are occupied by the ONO-donating dinegative dipic
2116    ligand. 5, where dipic is replaced by the three-dentate
2117    salicylaldehyde-benzoyl-hydrazone, has a very similar structure to 2. 4
2118    with a VO3N2S coordination sphere is the first vanadium(V) complex
2119    containing the N,S-donating hydrazido(1-) ligand NHNHCSPh(-). The
2120    following parameters are characteristic for the bonding of the NHNHR(-)
2121    and NHNR(2-) ligands in 1, 2 and 5: V-N 189 +/- 1 pm, N-N 134 +/- 1 pm
2122    and V-N-N 122 +/- 2 degrees.
2123 C1 WESTFAL WILHELMS UNIV,INST ANORGAN CHEM,D-48149 MUNSTER,GERMANY.
2124 NR 18
2125 TC 5
2126 PU VERLAG Z NATURFORSCH
2127 PI TUBINGEN
2128 PA POSTFACH 2645, W-7400 TUBINGEN, GERMANY
2129 SN 0932-0776
2130 J9 Z NATURFORSCH SECT B
2131 JI Z.Naturforsch.(B)
2132 PD FEB
2133 PY 1994
2134 VL 49
2135 IS 2
2136 BP 176
2137 EP 185
2138 PG 10
2139 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
2140 GA MY481
2141 UT ISI:A1994MY48100004
2142 ER
2143 
2144 
2145 PT J
2146 AU GUZMAN, R
2147    MORALES, J
2148    TIRADO, JL
2149 TI LITHIUM SOLVATION BY N-ALKYLAMINES IN THE INTERLAYER SPACE OF VANADIUM
2150    DISELENIDE
2151 SO SOLID STATE IONICS
2152 LA English
2153 DT Article
2154 ID TRANSITION-METAL DICHALCOGENIDES; INTERCALATION COMPLEXES; DISULFIDE;
2155    VSE2; TRANSPORT; HYDRAZINE; SULFIDES; TIS2
2156 AB Lithium and n-alkylamine molecules containing 1-16 carbon atoms were
2157    intercalated into layered vanadium diselenide. The reaction with amines
2158    is favoured by prior lithium intercalation. Alkylamines form double
2159    layers in the interlayer space between consecutive VSe2 slabs. Also,
2160    lithium is not exchanged with alkylammonium ions, but is largely
2161    retained in the form of solvated ions. The angle between the amine
2162    molecules and the host lattice layers is constant for the solvated ions
2163    but increases gradually with the size of the organic molecules in the
2164    alkylamine intercalates.
2165 RP GUZMAN, R, UNIV CORDOBA,FAC CIENCIAS,DEPT QIUM INORGAN & INGN QUIM,SAN
2166    ALBEROT MAGNO S-N,E-14004 CORDOBA,SPAIN.
2167 NR 33
2168 TC 0
2169 PU ELSEVIER SCIENCE BV
2170 PI AMSTERDAM
2171 PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
2172 SN 0167-2738
2173 J9 SOLID STATE IONICS
2174 JI Solid State Ion.
2175 PD DEC
2176 PY 1993
2177 VL 67
2178 IS 1-2
2179 BP 107
2180 EP 113
2181 PG 7
2182 SC Chemistry, Physical; Physics, Condensed Matter
2183 GA MR295
2184 UT ISI:A1993MR29500015
2185 ER
2186 
2187 
2188 PT J
2189 AU TSAGKALIDIS, W
2190    WOITHA, C
2191    REHDER, D
2192 TI HYDRAZINE COMPLEXES OF VANADIUM(II AND III)
2193 SO INORGANICA CHIMICA ACTA
2194 LA English
2195 DT Article
2196 ID AZOTOBACTER-CHROOCOCCUM; CRYSTAL-STRUCTURE; VFE-PROTEIN; NITROGENASE;
2197    DINITROGEN; FIXATION; SPECTRUM; CHLORIDE; LIGANDS; ENZYME
2198 AB The reaction of VCl3(thf)3 (1) with NN-dimethylhydrazine yields
2199    VCl3(thf)2(H2NNMe2) (2) or, with excess hydrazine,   VCl3(NH2NMe2)2    
2200     (4).   In   the   presence    of   1,2-bis(dimethylphosphino)ethane   
2201      (dmpe), VCl3(dmpe)(NH2NMe2).0.5thf (7) is obtained. As 1 is reacted
2202    with tris(3-dimethylphosphinopropyl)phosphine (tdmp) and lithium
2203    hydrazide, the V(II) species VCl2(tdmp)(NH2NMe2) (10) and VC]2(tdmp)
2204    (11) are formed. While H2NNMe2 coordinates end-on via its NH2 group in
2205    the case of 2, 7 and 10, 4 probably contains the two hydrazine ligands
2206    in a side-on bonding mode. The compounds were characterized by
2207    elemental analyses, IR, H-1 NMR and susceptibility measurements. The
2208    NH2 Protons are deshielded with respect to the free hydrazine by 3.8 to
2209    5.6 ppm. For comparison, the complexes VCl3(amine)x(thf), (amine =
2210    ethylenediamine, x and y = l, 5; tetramethylethylenediamine, x = 2, y =
2211    0, 6; N-aminopiperidine, x = 1, y = 2, 3) have also been prepared.
2212 C1 UNIV HAMBURG,DEPT CHEM,W-2000 HAMBURG 13,GERMANY.
2213 NR 21
2214 TC 15
2215 PU ELSEVIER SCIENCE SA LAUSANNE
2216 PI LAUSANNE 1
2217 PA PO BOX 564, 1001 LAUSANNE 1, SWITZERLAND
2218 SN 0020-1693
2219 J9 INORG CHIM ACTA
2220 JI Inorg. Chim. Acta
2221 PD MAR 15
2222 PY 1993
2223 VL 205
2224 IS 2
2225 BP 239
2226 EP 243
2227 PG 5
2228 SC Chemistry, Inorganic & Nuclear
2229 GA KV971
2230 UT ISI:A1993KV97100017
2231 ER
2232 
2233 
2234 PT J
2235 AU DILWORTH, MJ
2236    ELDRIDGE, ME
2237    EADY, RR
2238 TI THE MOLYBDENUM AND VANADIUM NITROGENASES OF AZOTOBACTER-CHROOCOCCUM -
2239    EFFECT OF ELEVATED-TEMPERATURE ON N2 REDUCTION
2240 SO BIOCHEMICAL JOURNAL
2241 LA English
2242 DT Article
2243 ID KLEBSIELLA-PNEUMONIAE; COMPONENT PROTEINS; PURIFICATION; COFACTOR;
2244    EVOLUTION; HYDRAZINE; HYDROGEN; ETHYLENE; PRODUCT; COMPLEX
2245 AB During the reduction of N, by V-nitrogenase at 30-degrees-C, some
2246    hydrazine (N2H4) is formed as a product in addition to NH3 [Dilworth
2247    and Eady (I 99 1) Biochem. J. 277, 465-468]. We show here the
2248    following. (1) That over the temperature range 30-45-degrees-C the
2249    apparent K(m) for the reduction of N2 to yield these products is the
2250    same, but increases from 30 to 58 kPa of N2. On increasing the
2251    temperature from 45-degrees-C to 50-degrees-C, little change occurred
2252    in the rate of reduction of protons to H-2; the rate of N2H4 production
2253    increased, but the rate of NH3 formation decreased 7-fold. (2)
2254    Temperature-shift experiments from 42 to 50-degrees-C or from 50 to
2255    42-degrees-C showed that this selective loss of the ability to reduce
2256    N2 to NH3 was reversible. The effects we observe are consistent with
2257    the existence of different conformers of the VFe-protein at the two
2258    temperatures, that predominating at 50-degrees-C being largely unable
2259    to reduce N2 to ammonia. (3) Measurement of the ratio between H-2
2260    evolution and N2 reduced to NH3 at N2 pressures up to 339 kPa for both
2261    Mo- and V-nitrogenases gave limiting H-2/N2 values of 1.13 +/- 0.13 for
2262    Mo-nitrogenase and 3.50 +/- 0.03 for V-nitrogenase. Since for
2263    Mo-nitrogenase our measured value for the ratio at 339 kPa is the same
2264    as that derived by Simpson and Buff is [(l 984) Science 224, 1095-1097]
2265    at 5650 kPa, there appears to be little or no divergence from the
2266    predictions based on the apparent K(m) for N2. These data then suggest
2267    that there may be a fundamentally different mechanism for N2 binding to
2268    V-nitrogenase compared with Mo-nitrogenase. (4) We did not detect any
2269    N2H4 as a product of N2 reduction by Mo-nitrogenase over the
2270    temperature range investigated; however, at 50-degrees-C this system
2271    reduced acetylene (C2H2) to yield some ethane (C2H6), in addition to
2272    ethylene (C2H4), a reaction normally associated with Mo-independent
2273    nitrogenases.
2274 C1 UNIV SUSSEX,AFRC,IPSR,NITROGEN FIXAT LAB,BRIGHTON BN1 9RQ,E SUSSEX,ENGLAND.
2275 RP DILWORTH, MJ, MURDOCH UNIV,SCH BIOL & ENVIRONM SCI,MURDOCH,WA
2276    6150,AUSTRALIA.
2277 NR 27
2278 TC 18
2279 PU PORTLAND PRESS
2280 PI LONDON
2281 PA 59 PORTLAND PLACE, LONDON, ENGLAND W1N 3AJ
2282 SN 0264-6021
2283 J9 BIOCHEM J
2284 JI Biochem. J.
2285 PD JAN 15
2286 PY 1993
2287 VL 289
2288 PN Part 2
2289 BP 395
2290 EP 400
2291 PG 6
2292 SC Biochemistry & Molecular Biology
2293 GA KJ143
2294 UT ISI:A1993KJ14300011
2295 ER
2296 
2297 
2298 PT J
2299 AU MAZZANTI, M
2300    KADKHODAYAN, M
2301    ARMSTRONG, WH
2302 TI CLEAVAGE OF THE HYDRAZINE N-N BOND BY VANADIUM(II) COMPLEXES
2303 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
2304 LA English
2305 DT Meeting Abstract
2306 C1 UNIV CALIF BERKELEY,DEPT CHEM,BERKELEY,CA 94720.
2307 NR 0
2308 TC 0
2309 PU AMER CHEMICAL SOC
2310 PI WASHINGTON
2311 PA 1155 16TH ST, NW, WASHINGTON, DC 20036
2312 SN 0065-7727
2313 J9 ABSTR PAP AMER CHEM SOC
2314 JI Abstr. Pap. Am. Chem. Soc.
2315 PD APR 5
2316 PY 1992
2317 VL 203
2318 PN Part 2
2319 BP 461
2320 EP INOR
2321 PG 0
2322 SC Chemistry, Multidisciplinary
2323 GA HK162
2324 UT ISI:A1992HK16200870
2325 ER
2326 
2327 
2328 PT J
2329 AU DILWORTH, MJ
2330    EADY, RR
2331 TI HYDRAZINE IS A PRODUCT OF DINITROGEN REDUCTION BY THE
2332    VANADIUM-NITROGENASE FROM AZOTOBACTER-CHROOCOCCUM
2333 SO BIOCHEMICAL JOURNAL
2334 LA English
2335 DT Article
2336 ID X-RAY ABSORPTION; VFE PROTEIN; COFACTOR; PURIFICATION; MOLYBDENUM;
2337    CONTAINS; ENZYME
2338 AB During the enzymic reduction of N2 to NH3 by Mo-nitrogenase, free
2339    hydrazine (N2H4) is not detectable, but an enzyme-bound intermediate
2340    can be made to yield N2H4 by quenching the enzyme during turnover
2341    [Thorneley, Eady & Lowe (1978) Nature (London) 272, 557-558].  In
2342    contrast, we show here that the V-nitrogenase of Azotobacter
2343    chroococcum produces a small but significant amount of free N2H4 (up to
2344    0.5% of the electron flux resulting in N2 reduction) as a product of
2345    the reduction of N2.  The amount of N2H4 formed increased 15-fold on
2346    increasing the assay temperature from 20-degrees-C to 40-degrees-C. 
2347    Activity cross-reactions between nitrogenase components of Mo- and
2348    V-nitrogenases showed that the formation of free N2H4 was associated
2349    with the VFe protein.  These data provide the first direct evidence for
2350    an enzyme intermediate at the four-electron-reduced level during the
2351    reduction of N2 by V-nitrogenase.
2352 C1 UNIV SUSSEX,AFRC,INST PLANT SCI RES,NITROGEN FIXAT LAB,BRIGHTON BN1 9RQ,E SUSSEX,ENGLAND.
2353    MURDOCH UNIV,SCH BIOL & ENVIRONM SCI,MURDOCH,WA 6150,AUSTRALIA.
2354 NR 23
2355 TC 35
2356 PU PORTLAND PRESS
2357 PI LONDON
2358 PA 59 PORTLAND PLACE, LONDON, ENGLAND W1N 3AJ
2359 SN 0264-6021
2360 J9 BIOCHEM J
2361 JI Biochem. J.
2362 PD JUL 15
2363 PY 1991
2364 VL 277
2365 PN Part 2
2366 BP 465
2367 EP 468
2368 PG 4
2369 SC Biochemistry & Molecular Biology
2370 GA FX928
2371 UT ISI:A1991FX92800026
2372 ER
2373 
2374 
2375 PT J
2376 AU HILLS, A
2377    HUGHES, DL
2378    LEIGH, GJ
2379    SANDERS, JR
2380 TI REACTIONS OF VANADIUM(IV) HALIDE-COMPLEXES CONTAINING SCHIFF-BASE
2381    LIGANDS WITH HYDRAZINES - PREPARATION AND STRUCTURE OF
2382    [N,N'-ETHYLENEBIS(SALICYLIDENEIMINATO)]BIS-(PHENYLHYDRAZINE)VANADIUM(III
2383    ) IODIDE
2384 SO JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS
2385 LA English
2386 DT Article
2387 ID MOLECULAR-STRUCTURE; CRYSTAL
2388 AB The complexes [VX2L] [L = N,N' -ethylenebis(salicylideneiminate)
2389    (salen) or N,N' -1,2-phenylenebis-(salicylideneiminate)(salphen), X =
2390    Cl or Br] have been prepared by established routes, but attempts to
2391    prepare the iodo-analogue led to other products, including
2392    [(salen)V(mu-m-O)VO(salen)][l(5)].  It is not possible to prepare
2393    hydrazine or hydrazide complexes directly from the dihalides, but
2394    [V(NH2NHPh)2-(salen)]\ was synthesised by an indirect route, and its
2395    structure determined by X-ray analysis.  The phenylhydrazines are bound
2396    end-on.  Several other new vanadium-(lll) and (lV) species are
2397    described.
2398 RP HILLS, A, UNIV SUSSEX,AFRC,INST PLANT SCI RES,NITROGEN FIXAT
2399    LAB,BRIGHTON BN1 9RQ,E SUSSEX,ENGLAND.
2400 NR 13
2401 TC 19
2402 PU ROYAL SOC CHEMISTRY
2403 PI CAMBRIDGE
2404 PA THOMAS GRAHAM HOUSE, SCIENCE PARK MILTON ROAD, CAMBRIDGE, CAMBS,
2405    ENGLAND CB4 4WF
2406 SN 0300-9246
2407 J9 J CHEM SOC DALTON TRANS
2408 JI J. Chem. Soc.-Dalton Trans.
2409 PD FEB
2410 PY 1991
2411 IS 2
2412 BP 325
2413 EP 329
2414 PG 5
2415 SC Chemistry, Inorganic & Nuclear
2416 GA EX664
2417 UT ISI:A1991EX66400022
2418 ER
2419 
2420 
2421 PT J
2422 AU BULTITUDE, J
2423    LARKWORTHY, LF
2424    POVEY, DC
2425    SMITH, GW
2426    DILWORTH, JR
2427    LEIGHT, GJ
2428 TI THE CRYSTAL AND MOLECULAR-STRUCTURE OF
2429    BIS(1-METHYL-1-PHENYLHYDRAZINE)DICHLORO-(1-METHYL-1-PHENYLHYDRAZIDO(2-))
2430    VANADIUM(V) CHLORIDE, A COMPLEX CONTAINING 2 SIDE-ON-CO-ORDINATED
2431    HYDRAZINE MOLECULES
2432 SO JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS
2433 LA English
2434 DT Article
2435 C1 UNIV SURREY,DEPT CHEM,GUILDFORD GU2 5XH,SURREY,ENGLAND.
2436    UNIV SUSSEX,AFRC,NITROGEN FIXAT UNIT,BRIGHTON BN1 9RQ,E SUSSEX,ENGLAND.
2437 NR 10
2438 TC 32
2439 PU ROYAL SOC CHEMISTRY
2440 PI CAMBRIDGE
2441 PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE, CAMBS,
2442    ENGLAND CB4 4WF
2443 SN 0022-4936
2444 J9 J CHEM SOC CHEM COMMUN
2445 JI J. Chem. Soc.-Chem. Commun.
2446 PD DEC 15
2447 PY 1986
2448 IS 24
2449 BP 1748
2450 EP 1750
2451 PG 3
2452 SC Chemistry, Multidisciplinary
2453 GA F5082
2454 UT ISI:A1986F508200003
2455 ER
2456 
2457 
2458 PT J
2459 AU RAMBABU, C
2460    RAO, RS
2461    RAO, PVK
2462 TI TITRIMETRIC METHOD FOR THE DETERMINATION OF NICOTINOYL HYDRAZINE WITH
2463    VANADIUM(V)
2464 SO CURRENT SCIENCE
2465 LA English
2466 DT Note
2467 C1 ANDHRA UNIV,POSTGRAD EXTENS CTR,DEPT CHEM,NUZVID 521201,INDIA.
2468 RP RAMBABU, C, ANDHRA UNIV,DEPT CHEM,WALTAIR 530003,ANDHRA PRADESH,INDIA.
2469 NR 15
2470 TC 1
2471 PU CURRENT SCIENCE ASSN
2472 PI BANGALORE
2473 PA C V RAMAN AVENUE, PO BOX 8005, BANGALORE 560 080, INDIA
2474 SN 0011-3891
2475 J9 CURR SCI
2476 JI Curr. Sci.
2477 PY 1984
2478 VL 53
2479 IS 10
2480 BP 527
2481 EP 528
2482 PG 2
2483 SC Multidisciplinary Sciences
2484 GA ST303
2485 UT ISI:A1984ST30300006
2486 ER
2487 
2488 
2489 PT J
2490 AU RAO, PVK
2491    RAMABABU, C
2492    RAO, RS
2493 TI PHOTOMETRIC TITRATION OF NICOTINOYL HYDRAZINE WITH QUINQUIVALENT
2494    VANADIUM
2495 SO NATIONAL ACADEMY SCIENCE LETTERS-INDIA
2496 LA English
2497 DT Article
2498 RP RAO, PVK, ANDHRA UNIV,DEPT CHEM,WALTAIR 530003,ANDHRA PRADESH,INDIA.
2499 NR 7
2500 TC 0
2501 PU NATL ACAD SCIENCES INDIA
2502 PI ALLAHABAD
2503 PA 5 LAJPATRAI RD, ALLAHABAD 211002, INDIA
2504 SN 0250-541X
2505 J9 NATL ACAD SCI LETT
2506 JI Natl. Acad. Sci. Lett.-India
2507 PY 1980
2508 VL 3
2509 IS 5
2510 BP 150
2511 EP 152
2512 PG 3
2513 SC Multidisciplinary Sciences
2514 GA LH199
2515 UT ISI:A1980LH19900006
2516 ER
2517 
2518 
2519 PT J
2520 AU SHAROV, VA
2521    POVAROVA, NV
2522    KRYLOV, EI
2523 TI MECHANISM OF THERMAL-DECOMPOSITION OF TITANIUM, VANADIUM AND CHROMIUM
2524    OXALATES AND THEIR COMPLEXES WITH HYDRAZINE
2525 SO ZHURNAL NEORGANICHESKOI KHIMII
2526 LA Russian
2527 DT Article
2528 RP SHAROV, VA, NIZHNI TAGIL STATE TEACHERS INST,NIZHNI TAGIL,USSR.
2529 NR 21
2530 TC 2
2531 PU INST OBS NEORG KHIMII
2532 PI MOSCOW
2533 PA IM N S KURNAKOVA LENINSKI PROSPEKT 31, 71 MOSCOW, RUSSIA
2534 SN 0044-457X
2535 J9 ZH NEORG KHIM
2536 JI Zhurnal Neorg. Khimii
2537 PY 1980
2538 VL 25
2539 IS 8
2540 BP 2153
2541 EP 2157
2542 PG 5
2543 SC Chemistry, Inorganic & Nuclear
2544 GA KE082
2545 UT ISI:A1980KE08200025
2546 ER
2547 
2548 
2549 PT J
2550 AU STUKLOVA, MS
2551    PECHUROVA, NI
2552    SPITSYN, VI
2553 TI REACTION OF VANADIUM(V) WITH HYDRAZINE SULFATE IN THE PRESENCE OF
2554    CERTAIN COMPLEXONES
2555 SO BULLETIN OF THE ACADEMY OF SCIENCES OF THE USSR DIVISION OF CHEMICAL
2556    SCIENCE
2557 LA English
2558 DT Article
2559 RP STUKLOVA, MS, MV LOMONOSOV STATE UNIV,MOSCOW 117234,USSR.
2560 NR 9
2561 TC 1
2562 PU PLENUM PUBL CORP
2563 PI NEW YORK
2564 PA CONSULTANTS BUREAU, 233 SPRING ST, NEW YORK, NY 10013
2565 SN 0568-5230
2566 J9 BULL ACAD SCI USSR D CHEM SCI
2567 PY 1979
2568 VL 28
2569 IS 9
2570 BP 1791
2571 EP 1794
2572 PG 4
2573 SC Chemistry, Multidisciplinary
2574 GA JV726
2575 UT ISI:A1979JV72600002
2576 ER
2577 
2578 
2579 PT J
2580 AU SHEETS, RW
2581    BLYHOLDER, G
2582 TI ISOCYANATE FORMATION FROM ADSORBED CARBON-MONOXIDE AND AMMONIA OR
2583    HYDRAZINE ON VANADIUM, IRON, AND NICKEL
2584 SO JOURNAL OF PHYSICAL CHEMISTRY
2585 LA English
2586 DT Article
2587 C1 SW MISSOURI STATE UNIV,DEPT CHEM,SPRINGFIELD,MO 65802.
2588 NR 12
2589 TC 8
2590 PU AMER CHEMICAL SOC
2591 PI WASHINGTON
2592 PA 1155 16TH ST, NW, WASHINGTON, DC 20036
2593 SN 0022-3654
2594 J9 J PHYS CHEM
2595 JI J. Phys. Chem.
2596 PY 1975
2597 VL 79
2598 IS 15
2599 BP 1572
2600 EP 1573
2601 PG 2
2602 SC Chemistry, Physical
2603 GA AJ594
2604 UT ISI:A1975AJ59400020
2605 ER
2606 
2607 
2608 PT J
2609 AU WAHREN, M
2610 TI INFLUENCE OF ANIONS ON REDUCTION OF N2 TO HYDRAZINE USING
2611    VANADIUM(II)-MAGNESIUM(II) IN AQUEOUS-SOLUTION
2612 SO ZEITSCHRIFT FUR CHEMIE
2613 LA German
2614 DT Note
2615 C1 DAWB,ZENT INST ISOTOPEN & STRAHLENFORSCH,PERMOSER STR 15,705 LEIPZIG,GER DEM REP.
2616 NR 12
2617 TC 1
2618 PU DEUTSCHER VERLAG FUR GRUNDSTOFFINDUSTRIE
2619 PI LEIPZIG
2620 PA KARL HEINE STR 27B, 04229 LEIPZIG, GERMANY
2621 SN 0044-2402
2622 J9 Z CHEM
2623 PY 1975
2624 VL 15
2625 IS 6
2626 BP 242
2627 EP 243
2628 PG 2
2629 SC Chemistry, Multidisciplinary
2630 GA AJ208
2631 UT ISI:A1975AJ20800026
2632 ER
2633 
2634 
2635 PT J
2636 AU ROMANOV, VF
2637 TI EFFECT OF ETHANOL ON CATALYTIC PROPERTIES OF VANADIUM(V) COMPOUNDS IN
2638    REACTION OF HYDRAZINE OXIDATION BY CERIUM(IV) SULFATE
2639 SO UKRAINSKII KHIMICHESKII ZHURNAL
2640 LA Russian
2641 DT Article
2642 C1 LV PISARZHEVSKII PHYS CHEM INST,KIEV,UKSSR.
2643 NR 14
2644 TC 0
2645 PU ACADEMY SCIENCE UKRAINE
2646 PI KIEV 22
2647 PA PROSPECT SCIENCE 46,MSP, KIEV 22, UKRAINE 252650
2648 SN 0041-6045
2649 J9 UKR KHIM ZH
2650 PY 1975
2651 VL 41
2652 IS 2
2653 BP 115
2654 EP 119
2655 PG 5
2656 SC Chemistry, Multidisciplinary
2657 GA V7077
2658 UT ISI:A1975V707700001
2659 ER
2660 
2661 
2662 PT J
2663 AU SINGH, HM
2664    GYANI, BP
2665 TI OXIDATION OF PHENYL HYDRAZINE BY VANADIUM (V) IN AQUEOUS SULFURIC-ACID
2666    MEDIUM
2667 SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION
2668    A-PHYSICAL SCIENCES
2669 LA English
2670 DT Article
2671 C1 RANCHI UNIV,DEPT CHEM,RANCHI 8,INDIA.
2672 NR 10
2673 TC 0
2674 PU NATL ACAD SCIENCES INDIA
2675 PI ALLAHABAD
2676 PA 5 LAJPATRAI RD, ALLAHABAD 211002, INDIA
2677 J9 PROC NAT ACAD SCI INDIA A
2678 PY 1971
2679 VL 41
2680 BP 225
2681 EP 229
2682 PG 5
2683 SC Physics, Multidisciplinary
2684 GA U2605
2685 UT ISI:A1971U260500014
2686 ER
2687 
2688 
2689 PT J
2690 AU DOLGOREV, AV
2691    LUKACHIN.VV
2692    KARPOVA, OI
2693 TI USE OF HYDRAZINE DERIVATIVES IN ANALYTICAL-CHEMISTRY - REACTION OF
2694    VANADIUM WITH ANTHRANILIC ACID ACETONEHYDRAZIDE
2695 SO ZHURNAL ANALITICHESKOI KHIMII
2696 LA Russian
2697 DT Article
2698 C1 MOSCOW MINEROL GEOCHEM & RARE ELEMENT CRYST INST,MOSCOW,USSR.
2699 NR 11
2700 TC 0
2701 SN 0044-4502
2702 J9 ZH ANAL KHIM
2703 PY 1974
2704 VL 29
2705 IS 4
2706 BP 721
2707 EP 725
2708 PG 5
2709 SC Chemistry, Analytical
2710 GA S8267
2711 UT ISI:A1974S826700015
2712 ER
2713 
2714 
2715 PT J
2716 AU RAO, PVK
2717    RAO, GG
2718 TI POTENTIOMETRIC AND PHOTOMETRIC TITRATION OF VANADIUM(V) AND
2719    CHROMIUM(VI) WITH HYDRAZINE SULFATE
2720 SO INDIAN JOURNAL OF CHEMISTRY
2721 LA English
2722 DT Article
2723 C1 ANDHRA UNIV,DEPT CHEM,WALTAIR,INDIA.
2724 NR 20
2725 TC 1
2726 PU COUNCIL SCIENTIFIC INDUSTRIAL RESEARCH
2727 PI NEW DELHI
2728 PA PUBL & INFO DIRECTORATE, NEW DELHI 110012, INDIA
2729 J9 INDIAN J CHEM
2730 PY 1973
2731 VL 11
2732 IS 12
2733 BP 1309
2734 EP 1311
2735 PG 3
2736 SC Chemistry, Multidisciplinary
2737 GA S5887
2738 UT ISI:A1973S588700031
2739 ER
2740 
2741 
2742 PT J
2743 AU SOKOLSKI.DV
2744    DORFMAN, YA
2745    SHINDLER, YM
2746    EMELYANO.VS
2747 TI EFFECT OF ZINC(II) ON MAGNESIUM REDUCTION OF NITROGEN TO HYDRAZINE IN
2748    PRESENCE OF VANADIUM COMPOUNDS
2749 SO ZHURNAL NEORGANICHESKOI KHIMII
2750 LA Russian
2751 DT Note
2752 C1 ACAD SCI KASSR,ORG CATALYSIS & ELECTROCHEM INST,ALMA ATA,KASSR.
2753 NR 7
2754 TC 0
2755 PU INST OBS NEORG KHIMII
2756 PI MOSCOW
2757 PA IM N S KURNAKOVA LENINSKI PROSPEKT 31, 71 MOSCOW, RUSSIA
2758 SN 0044-457X
2759 J9 ZH NEORG KHIM
2760 JI Zhurnal Neorg. Khimii
2761 PY 1973
2762 VL 18
2763 IS 11
2764 BP 3135
2765 EP 3136
2766 PG 2
2767 SC Chemistry, Inorganic & Nuclear
2768 GA R2647
2769 UT ISI:A1973R264700058
2770 ER
2771 
2772 
2773 PT J
2774 AU RAO, PVK
2775    RAO, GG
2776 TI HYDRAZINE SULFATE AS REAGENT FOR TITRIMETRIC DETERMINATION OF
2777    VANADIUM(V) AND CHROMIUM(VI)
2778 SO TALANTA
2779 LA English
2780 DT Note
2781 C1 ANDHRA UNIV,DEPT CHEM,WALTAIR 530003,INDIA.
2782 NR 18
2783 TC 3
2784 PU ELSEVIER SCIENCE BV
2785 PI AMSTERDAM
2786 PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
2787 SN 0039-9140
2788 J9 TALANTA
2789 JI Talanta
2790 PY 1973
2791 VL 20
2792 IS 9
2793 BP 907
2794 EP 910
2795 PG 4
2796 SC Chemistry, Analytical
2797 GA Q6495
2798 UT ISI:A1973Q649500017
2799 ER
2800 
2801 
2802 PT J
2803 AU RAO, GG
2804    RAO, PVK
2805 TI TITRIMETRIC DETERMINATION OF VANADIUM(V) AND CHROMIUM(VI) ALONE AND IN
2806    MIXTURES WITH HYDRAZINE SULFATE IN PHOSPHORIC-ACID MEDIA
2807 SO ANALYTICA CHIMICA ACTA
2808 LA English
2809 DT Article
2810 C1 ANDHRA UNIV,DEPT CHEM,WALTAIR,INDIA.
2811 NR 21
2812 TC 5
2813 PU ELSEVIER SCIENCE BV
2814 PI AMSTERDAM
2815 PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
2816 SN 0003-2670
2817 J9 ANAL CHIM ACTA
2818 JI Anal. Chim. Acta
2819 PY 1973
2820 VL 65
2821 IS 2
2822 BP 347
2823 EP 356
2824 PG 10
2825 SC Chemistry, Analytical
2826 GA Q2066
2827 UT ISI:A1973Q206600012
2828 ER
2829 
2830 
2831 PT J
2832 AU ROMANOV, VF
2833    KONISHEV.GA
2834    YATSIMIR.KB
2835 TI CATALYTIC PROPERTIES OF OSMIUM COMPOUNDS - OXIDATION OF VANADIUM SODIUM
2836    HYDRAZINE
2837 SO ZHURNAL NEORGANICHESKOI KHIMII
2838 LA Russian
2839 DT Article
2840 C1 LV PISARZHEVSKII PHYS CHEM INST,KIEV,UKSSR.
2841 NR 19
2842 TC 3
2843 PU INST OBS NEORG KHIMII
2844 PI MOSCOW
2845 PA IM N S KURNAKOVA LENINSKI PROSPEKT 31, 71 MOSCOW, RUSSIA
2846 SN 0044-457X
2847 J9 ZH NEORG KHIM
2848 JI Zhurnal Neorg. Khimii
2849 PY 1972
2850 VL 17
2851 IS 12
2852 BP 3300
2853 EP 3305
2854 PG 6
2855 SC Chemistry, Inorganic & Nuclear
2856 GA O1922
2857 UT ISI:A1972O192200028
2858 ER
2859 
2860 
2861 PT J
2862 AU PRASAD, RK
2863    KUMAR, A
2864 TI OXIDATION OF HYDRAZINE BY VANADIUM
2865 SO JOURNAL OF THE INDIAN CHEMICAL SOCIETY
2866 LA English
2867 DT Note
2868 NR 5
2869 TC 4
2870 PU INDIAN CHEMICAL SOC
2871 PI CALCUTTA
2872 PA 92 ACHARYA PRAFULLA CHANDRA RD ATTN:DR INDRAJIT KAR/EXEC SEC, CALCUTTA
2873    700009, INDIA
2874 SN 0019-4522
2875 J9 J INDIAN CHEM SOC
2876 JI J. Indian Chem. Soc.
2877 PY 1972
2878 VL 49
2879 IS 8
2880 BP 819
2881 EP &
2882 PG 0
2883 SC Chemistry, Multidisciplinary
2884 GA N6271
2885 UT ISI:A1972N627100018
2886 ER
2887 
2888 
2889 PT J
2890 AU SOKOLSKI.DV
2891    SAPOVA, RG
2892    SHINDLER, YM
2893    DORFMAN, YA
2894    NOGERBEK.BY
2895 TI NITROGEN REDUCTION TO HYDRAZINE BY ZINC IN PRESENCE OF VANADIUM AND
2896    MAGNESIUM COMPOUNDS
2897 SO ZHURNAL OBSHCHEI KHIMII
2898 LA Russian
2899 DT Article
2900 NR 9
2901 TC 5
2902 PU MEZHDUNARODNAYA KNIGA
2903 PI MOSCOW
2904 PA 39 DIMITROVA UL., 113095 MOSCOW, RUSSIA
2905 SN 0044-460X
2906 J9 ZH OBSHCH KHIM
2907 JI Zhurnal Obshchei Khimii
2908 PY 1972
2909 VL 42
2910 IS 7
2911 BP 1425
2912 EP &
2913 PG 0
2914 SC Chemistry, Multidisciplinary
2915 GA N0660
2916 UT ISI:A1972N066000001
2917 ER
2918 
2919 
2920 PT J
2921 AU ROMANOV, VF
2922 TI CATALYTIC PROPERTIES OF VANADIUM(V) COMPOUNDS IN REACTION OF HYDRAZINE
2923    OXIDATION WITH CERIUM(V) SULFATE
2924 SO UKRAINSKII KHIMICHESKII ZHURNAL
2925 LA Russian
2926 DT Article
2927 NR 17
2928 TC 1
2929 PU ACADEMY SCIENCE UKRAINE
2930 PI KIEV 22
2931 PA PROSPECT SCIENCE 46,MSP, KIEV 22 252650, UKRAINE
2932 SN 0041-6045
2933 J9 UKR KHIM ZH
2934 PY 1972
2935 VL 38
2936 IS 2
2937 BP 132
2938 EP &
2939 PG 0
2940 SC Chemistry, Multidisciplinary
2941 GA L9303
2942 UT ISI:A1972L930300006
2943 ER
2944 
2945 
2946 PT J
2947 AU BENGTSSO.G
2948 TI KINETIC STUDY OF REDUCTION OF VANADIUM(V) BY HYDRAZINE IN STRONGLY ACID
2949    AQUEOUS SOLUTIONS
2950 SO ACTA CHEMICA SCANDINAVICA
2951 LA English
2952 DT Article
2953 NR 6
2954 TC 9
2955 PU MUNKSGAARD INT PUBL LTD
2956 PI COPENHAGEN
2957 PA 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK
2958 SN 0904-213X
2959 J9 ACTA CHEM SCAND
2960 JI Acta Chem. Scand.
2961 PY 1971
2962 VL 25
2963 IS 8
2964 BP 2989
2965 EP &
2966 PG 0
2967 SC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary
2968 GA L2221
2969 UT ISI:A1971L222100021
2970 ER
2971 
2972 
2973 PT J
2974 AU DESHMUKH, GS
2975    BAPAT, MG
2976 TI BROMOMETRIC DETERMINATION OF VANADIUM(V) BY HYDRAZINE
2977 SO ANALYTICA CHIMICA ACTA
2978 LA English
2979 DT Article
2980 NR 7
2981 TC 4
2982 PU ELSEVIER SCIENCE BV
2983 PI AMSTERDAM
2984 PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
2985 SN 0003-2670
2986 J9 ANAL CHIM ACTA
2987 JI Anal. Chim. Acta
2988 PY 1956
2989 VL 14
2990 IS 3
2991 BP 225
2992 EP 227
2993 PG 3
2994 SC Chemistry, Analytical
2995 GA WM047
2996 UT ISI:A1956WM04700005
2997 ER
2998 
2999 
3000 EF