File indexing completed on 2025-02-23 04:27:36
0001 /* Parts Copyright 2004 David Hammerton <crazney@crazney.net> 0002 * Parts found in the public domain with no copyright claim. 0003 * 0004 * see rfc1321 0005 * 0006 * Permission is hereby granted, free of charge, to any person 0007 * obtaining a copy of this software and associated documentation 0008 * files (the "Software"), to deal in the Software without 0009 * restriction, including without limitation the rights to use, 0010 * copy, modify, merge, publish, distribute, sublicense, and/or 0011 * sell copies of the Software, and to permit persons to whom the 0012 * Software is furnished to do so, subject to the following conditions: 0013 * 0014 * The above copyright notice and this permission notice shall be 0015 * included in all copies or substantial portions of the Software. 0016 * 0017 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 0018 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES 0019 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 0020 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT 0021 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, 0022 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 0023 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 0024 * OTHER DEALINGS IN THE SOFTWARE. 0025 * 0026 */ 0027 0028 #include <string.h> 0029 #include "md5.h" 0030 0031 /* 0032 * This code implements the MD5 message-digest algorithm. 0033 * The algorithm is due to Ron Rivest. This code was 0034 * written by Colin Plumb in 1993, no copyright is claimed. 0035 * This code is in the public domain; do with it what you wish. 0036 * 0037 * Equivalent code is available from RSA Data Security, Inc. 0038 * This code has been tested against that, and is equivalent, 0039 * except that you don't need to include two pages of legalese 0040 * with every copy. 0041 * 0042 * To compute the message digest of a chunk of bytes, declare an MD5Context 0043 * structure, pass it to OpenDaap_MD5Init, call OpenDaap_MD5Update as needed 0044 * on buffers full of bytes, and then call OpenDaap_MD5Final, which will fill 0045 * a supplied 16-byte array with the digest. 0046 */ 0047 static void MD5Transform(uint32_t buf[4], uint32_t const in[16], int apple_ver); 0048 /* for some reason we still have to reverse bytes on bigendian machines 0049 * I don't really know why... but otherwise it fails.. 0050 * Any MD5 gurus out there know why??? 0051 */ 0052 #if 0 /*ndef WORDS_BIGENDIAN was: HIGHFIRST */ 0053 #define byteReverse(buf, len) /* Nothing */ 0054 #else 0055 static void byteReverse(unsigned char *buf, unsigned longs); 0056 0057 #ifndef ASM_MD5 0058 /* 0059 * Note: this code is harmless on little-endian machines. 0060 */ 0061 static void byteReverse(unsigned char *buf, unsigned longs) 0062 { 0063 uint32_t t; 0064 do { 0065 t = (uint32_t) ((unsigned) buf[3] << 8 | buf[2]) << 16 | 0066 ((unsigned) buf[1] << 8 | buf[0]); 0067 *(uint32_t *) buf = t; 0068 buf += 4; 0069 } while (--longs); 0070 } 0071 #endif 0072 #endif 0073 0074 0075 void OpenDaap_MD5Init(MD5_CTX *ctx, int apple_ver) 0076 { 0077 memset(ctx, 0, sizeof(*ctx)); 0078 ctx->buf[0] = 0x67452301; 0079 ctx->buf[1] = 0xefcdab89; 0080 ctx->buf[2] = 0x98badcfe; 0081 ctx->buf[3] = 0x10325476; 0082 0083 ctx->bits[0] = 0; 0084 ctx->bits[1] = 0; 0085 0086 ctx->apple_ver = apple_ver; 0087 } 0088 0089 void OpenDaap_MD5Update(MD5_CTX *ctx, unsigned char const *buf, unsigned int len) 0090 { 0091 uint32_t t; 0092 0093 /* Update bitcount */ 0094 0095 t = ctx->bits[0]; 0096 if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t) 0097 ctx->bits[1]++; /* Carry from low to high */ 0098 ctx->bits[1] += len >> 29; 0099 0100 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ 0101 0102 /* Handle any leading odd-sized chunks */ 0103 0104 if (t) { 0105 unsigned char *p = (unsigned char *) ctx->in + t; 0106 0107 t = 64 - t; 0108 if (len < t) { 0109 memcpy(p, buf, len); 0110 return; 0111 } 0112 memcpy(p, buf, t); 0113 byteReverse(ctx->in, 16); 0114 MD5Transform(ctx->buf, (uint32_t *) ctx->in, ctx->apple_ver); 0115 buf += t; 0116 len -= t; 0117 } 0118 /* Process data in 64-byte chunks */ 0119 0120 while (len >= 64) { 0121 memcpy(ctx->in, buf, 64); 0122 byteReverse(ctx->in, 16); 0123 MD5Transform(ctx->buf, (uint32_t *) ctx->in, ctx->apple_ver); 0124 buf += 64; 0125 len -= 64; 0126 } 0127 0128 /* Handle any remaining bytes of data. */ 0129 0130 memcpy(ctx->in, buf, len); 0131 0132 } 0133 0134 void OpenDaap_MD5Final(MD5_CTX *ctx, unsigned char digest[16]) 0135 { 0136 unsigned count; 0137 unsigned char *p; 0138 0139 /* Compute number of bytes mod 64 */ 0140 count = (ctx->bits[0] >> 3) & 0x3F; 0141 0142 /* Set the first char of padding to 0x80. This is safe since there is 0143 always at least one byte free */ 0144 p = ctx->in + count; 0145 *p++ = 0x80; 0146 0147 /* Bytes of padding needed to make 64 bytes */ 0148 count = 64 - 1 - count; 0149 0150 /* Pad out to 56 mod 64 */ 0151 if (count < 8) { 0152 /* Two lots of padding: Pad the first block to 64 bytes */ 0153 memset(p, 0, count); 0154 byteReverse(ctx->in, 16); 0155 MD5Transform(ctx->buf, (uint32_t *) ctx->in, ctx->apple_ver); 0156 0157 /* Now fill the next block with 56 bytes */ 0158 memset(ctx->in, 0, 56); 0159 } else { 0160 /* Pad block to 56 bytes */ 0161 memset(p, 0, count - 8); 0162 } 0163 byteReverse(ctx->in, 14); 0164 0165 /* Append length in bits and transform */ 0166 ((uint32_t *) ctx->in)[14] = ctx->bits[0]; 0167 ((uint32_t *) ctx->in)[15] = ctx->bits[1]; 0168 0169 MD5Transform(ctx->buf, (uint32_t *) ctx->in, ctx->apple_ver); 0170 byteReverse((unsigned char *) ctx->buf, 4); 0171 memcpy(digest, ctx->buf, 16); 0172 memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ 0173 } 0174 0175 #ifndef ASM_MD5 0176 0177 /* The four core functions - F1 is optimized somewhat */ 0178 0179 /* #define F1(x, y, z) (x & y | ~x & z) */ 0180 #define F1(x, y, z) (z ^ (x & (y ^ z))) 0181 #define F2(x, y, z) F1(z, x, y) 0182 #define F3(x, y, z) (x ^ y ^ z) 0183 #define F4(x, y, z) (y ^ (x | ~z)) 0184 0185 /* This is the central step in the MD5 algorithm. */ 0186 #define MD5STEP(f, w, x, y, z, data, s) \ 0187 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) 0188 0189 /* 0190 * The core of the MD5 algorithm, this alters an existing MD5 hash to reflect 0191 * the addition of 16 longwords of new data. OpenDaap_MD5Update blocks the 0192 * data and converts bytes into longwords for this routine. 0193 */ 0194 static void MD5Transform(uint32_t buf[4], uint32_t const in[16], int apple_ver) 0195 { 0196 uint32_t a, b, c, d; 0197 0198 a = buf[0]; 0199 b = buf[1]; 0200 c = buf[2]; 0201 d = buf[3]; 0202 0203 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); 0204 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); 0205 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); 0206 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); 0207 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); 0208 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); 0209 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); 0210 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); 0211 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); 0212 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); 0213 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); 0214 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); 0215 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); 0216 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); 0217 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); 0218 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); 0219 0220 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); 0221 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); 0222 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); 0223 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); 0224 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); 0225 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); 0226 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); 0227 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); 0228 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); 0229 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); 0230 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); 0231 0232 if (apple_ver == 1) 0233 { 0234 MD5STEP(F2, b, c, d, a, in[8] + 0x445a14ed, 20); 0235 } 0236 else 0237 { 0238 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); 0239 } 0240 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); 0241 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); 0242 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); 0243 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); 0244 0245 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); 0246 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); 0247 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); 0248 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); 0249 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); 0250 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); 0251 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); 0252 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); 0253 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); 0254 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); 0255 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); 0256 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); 0257 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); 0258 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); 0259 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); 0260 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); 0261 0262 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); 0263 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); 0264 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); 0265 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); 0266 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); 0267 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); 0268 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); 0269 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); 0270 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); 0271 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); 0272 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); 0273 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); 0274 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); 0275 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); 0276 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); 0277 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); 0278 0279 buf[0] += a; 0280 buf[1] += b; 0281 buf[2] += c; 0282 buf[3] += d; 0283 } 0284 0285 #endif 0286 0287 0288