Warning, /graphics/kst-plot/docbook/kst/plugins-chapter.docbook is written in an unsupported language. File is not indexed.
0001 <chapter id="pluginsandfilters"> 0002 <title>Plugins, Fits, and Filters</title> 0003 0004 <sect1> 0005 <title>Using Plugins, Fits, and Filters</title> 0006 <para> 0007 Many of the mathematical data operators in &kst;, including fits and filters, are implemented as plugins. Plugins are loaded at run time and use a stable API, so it is possible to write your own plugins and include them in your local installation without re-compiling &kst;. Fits and Filters are simply subsets of the set of plugins, and thus behave identically to generic plugins, with the exception of additional convenience dialog functionality when selected from the plot context menu. See <link linkend="fits">here</link> for a general description of the creation of fits and filters. 0008 </para> 0009 0010 <para> 0011 To date, there are more than 25 built-in plugins available in &kst; that perform functions from taking cross correlations of two vectors to producing periodograms of a data set. The following screenshot shows the settings window for a typical plugin, created by selecting the desired plugin from the <guimenu>Standard Plugin</guimenu>, <guimenu>Fit Plugin</guimenu> or <guimenu>Filter Plugin</guimenu> submenus in the <guimenu>Create</guimenu> toolbar menu. 0012 </para> 0013 0014 0015 <screenshot> 0016 <screeninfo>Plugins Window</screeninfo> 0017 <mediaobject> 0018 <imageobject> 0019 <imagedata fileref="Screenshot-kst-plugin.png" format="PNG" /> 0020 </imageobject> 0021 <textobject> 0022 <phrase>Plugins Windowpluginswindow</phrase> 0023 </textobject> 0024 </mediaobject> 0025 </screenshot> 0026 0027 <para> 0028 The following sections describe the purpose, key algorithms or formulas used to perform calculations, 0029 and inputs and outputs for each plugin. Note that fitting and filtering plugins are included in the following sections. 0030 </para> 0031 0032 0033 <!-- Begin the long plugins section. --> 0034 <sect2 id="plugin-autocorrelation"> 0035 <title>Autocorrelation</title> 0036 <para> 0037 The autocorrelation plugin calculates correlation values between a series (vector) and a lagged version 0038 of itself, using lag values from <literal>floor(-(N-1)/2)</literal> to <literal>floor((N-1)/2)</literal>, where <literal>N</literal> 0039 is the number of points in the data set. The time 0040 vector is not an input as it is assumed that the data is sampled at equal time intervals. The correlation 0041 value <literal>r</literal> at lag <literal>k</literal> is: 0042 </para> 0043 <para> 0044 <inlinemediaobject> 0045 <imageobject> 0046 <imagedata fileref="Formula-kst-autocorrelation.png" format="PNG" /> 0047 </imageobject> 0048 <textobject> 0049 <phrase>Autocorrelation formula</phrase> 0050 </textobject> 0051 </inlinemediaobject> 0052 </para> 0053 0054 <sect3 id="plugin-autocorrelation-inputs"> 0055 <title>Inputs</title> 0056 <variablelist> 0057 0058 <varlistentry> 0059 <term>X Array (vector)</term> 0060 <listitem> 0061 <para> 0062 The array <literal>x</literal> of values to calculate correlation values for. 0063 </para> 0064 </listitem> 0065 </varlistentry> 0066 0067 </variablelist> 0068 </sect3> 0069 0070 <sect3 id="plugin-autocorrelation-outputs"> 0071 <title>Outputs</title> 0072 <variablelist> 0073 0074 <varlistentry> 0075 <term>Step Number (vector)</term> 0076 <listitem> 0077 <para> 0078 The array of step, or lag values. 0079 </para> 0080 </listitem> 0081 </varlistentry> 0082 0083 <varlistentry> 0084 <term>Correlation Value (vector)</term> 0085 <listitem> 0086 <para> 0087 The array of correlation values calculated using the corresponding step number in the Step Number vector. 0088 </para> 0089 </listitem> 0090 </varlistentry> 0091 0092 </variablelist> 0093 </sect3> 0094 0095 </sect2> 0096 0097 <sect2 id="plugin-bin"> 0098 <title>Bin</title> 0099 <para> 0100 The bin plugin bins elements of a single data vector into bins of a specified size. The value of each bin is the mean 0101 of the elements belonging to the bin. For example, if the bin size is <literal>3</literal>, and the input vector is 0102 <literal>[9,2,7,3,4,74,5,322,444,2,1]</literal>, then the outputted bins would be 0103 <literal>[6,27,257]</literal>. Note that any elements remaining at the end of the input vector that do not form a complete 0104 bin (in this case, elements <literal>2</literal> and <literal>1</literal>), are simply discarded. 0105 </para> 0106 <sect3 id="plugin-bin-inputs"> 0107 <title>Inputs</title> 0108 <variablelist> 0109 0110 <varlistentry> 0111 <term>Input Vector (vector)</term> 0112 <listitem> 0113 <para> 0114 The vector to bin. 0115 </para> 0116 </listitem> 0117 </varlistentry> 0118 0119 <varlistentry> 0120 <term>Bin Size (scalar)</term> 0121 <listitem> 0122 <para> 0123 The size to use for each bin. 0124 </para> 0125 </listitem> 0126 </varlistentry> 0127 0128 </variablelist> 0129 </sect3> 0130 0131 <sect3 id="plugin-bin-outputs"> 0132 <title>Outputs</title> 0133 <variablelist> 0134 0135 <varlistentry> 0136 <term>Bins (vector)</term> 0137 <listitem> 0138 <para> 0139 The array of means for each bin. 0140 </para> 0141 </listitem> 0142 </varlistentry> 0143 </variablelist> 0144 </sect3> 0145 0146 </sect2> 0147 0148 <sect2 id="plugin-butterworth_bandpass"> 0149 <title>Butterworth band-pass</title> 0150 <para> 0151 The Butterworth band-pass plugin filters a set of data by calculating 0152 the Fourier transform of the data and recalculating the 0153 the frequency responses using the following formula 0154 </para> 0155 <para> 0156 <inlinemediaobject> 0157 <imageobject> 0158 <imagedata fileref="Formula-kst-bandpass.png" format="PNG" /> 0159 </imageobject> 0160 <textobject> 0161 <phrase>Autocorrelation formula</phrase> 0162 </textobject> 0163 </inlinemediaobject> 0164 </para> 0165 <para> 0166 where <literal>f</literal> is the frequency, <literal>f<subscript>c</subscript></literal> is 0167 the low frequency cutoff, <literal>b</literal> is the bandwidth of the band to pass, and 0168 <literal>n</literal> is the order of the Butterworth filter. The inverse Fourier transform 0169 is then calculated using the new filtered frequency responses. 0170 </para> 0171 0172 <sect3 id="plugin-butterworth_bandpass-inputs"> 0173 <title>Inputs</title> 0174 <variablelist> 0175 0176 <varlistentry> 0177 <term>X Array (vector)</term> 0178 <listitem> 0179 <para> 0180 The array of values to filter. 0181 </para> 0182 </listitem> 0183 </varlistentry> 0184 0185 <varlistentry> 0186 <term>Order (scalar)</term> 0187 <listitem> 0188 <para> 0189 The order of the Butterworth filter to use. 0190 </para> 0191 </listitem> 0192 </varlistentry> 0193 0194 <varlistentry> 0195 <term>Low cutoff frequency (scalar)</term> 0196 <listitem> 0197 <para> 0198 The low cutoff frequency of the Butterworth band pass filter. 0199 </para> 0200 </listitem> 0201 </varlistentry> 0202 0203 <varlistentry> 0204 <term>Band width (scalar)</term> 0205 <listitem> 0206 <para> 0207 The width of the band to pass. This should be the difference between the desired high 0208 cutoff frequency and the low cutoff frequency. 0209 </para> 0210 </listitem> 0211 </varlistentry> 0212 0213 </variablelist> 0214 </sect3> 0215 0216 <sect3 id="plugin-butterworth_bandpass-outputs"> 0217 <title>Outputs</title> 0218 <variablelist> 0219 0220 <varlistentry> 0221 <term>X Filtered (vector)</term> 0222 <listitem> 0223 <para> 0224 The array of filtered data values. 0225 </para> 0226 </listitem> 0227 </varlistentry> 0228 0229 </variablelist> 0230 </sect3> 0231 0232 </sect2> 0233 0234 <sect2 id="plugin-butterworth_bandstop"> 0235 <title>Butterworth band-stop</title> 0236 <para> 0237 The Butterworth band-stop plugin filters a set of data by calculating 0238 the Fourier transform of the data and recalculating the 0239 the frequency responses using the following formula 0240 </para> 0241 <para> 0242 <inlinemediaobject> 0243 <imageobject> 0244 <imagedata fileref="Formula-kst-bandstop.png" format="PNG" /> 0245 </imageobject> 0246 <textobject> 0247 <phrase>Autocorrelation formula</phrase> 0248 </textobject> 0249 </inlinemediaobject> 0250 </para> 0251 <para> 0252 where <literal>f</literal> is the frequency, <literal>f<subscript>c</subscript></literal> is 0253 the low frequency cutoff, <literal>b</literal> is the bandwidth of the band to stop, and 0254 <literal>n</literal> is the order of the Butterworth filter. The inverse Fourier transform 0255 is then calculated using the new filtered frequency responses. 0256 </para> 0257 <sect3 id="plugin-butterworth_bandstop-inputs"> 0258 <title>Inputs</title> 0259 <variablelist> 0260 0261 <varlistentry> 0262 <term>X Array (vector)</term> 0263 <listitem> 0264 <para> 0265 The array of values to filter. 0266 </para> 0267 </listitem> 0268 </varlistentry> 0269 0270 <varlistentry> 0271 <term>Order (scalar)</term> 0272 <listitem> 0273 <para> 0274 The order of the Butterworth filter to use. 0275 </para> 0276 </listitem> 0277 </varlistentry> 0278 0279 <varlistentry> 0280 <term>Low cutoff frequency (scalar)</term> 0281 <listitem> 0282 <para> 0283 The low cutoff frequency of the Butterworth band stop filter. 0284 </para> 0285 </listitem> 0286 </varlistentry> 0287 0288 <varlistentry> 0289 <term>Band width (scalar)</term> 0290 <listitem> 0291 <para> 0292 The width of the band to stop. This should be the difference between the desired high 0293 cutoff frequency and the low cutoff frequency. 0294 </para> 0295 </listitem> 0296 </varlistentry> 0297 0298 </variablelist> 0299 </sect3> 0300 0301 <sect3 id="plugin-butterworth_bandstop-outputs"> 0302 <title>Outputs</title> 0303 <variablelist> 0304 0305 <varlistentry> 0306 <term>X Filtered (vector)</term> 0307 <listitem> 0308 <para> 0309 The array of filtered data values. 0310 </para> 0311 </listitem> 0312 </varlistentry> 0313 0314 </variablelist> 0315 </sect3> 0316 0317 </sect2> 0318 0319 <sect2 id="plugin-butterworth_highpass"> 0320 <title>Butterworth high-pass</title> 0321 <para> 0322 The Butterworth high-pass plugin filters a set of data by calculating 0323 the Fourier transform of the data and recalculating the 0324 the frequency responses using the following formula 0325 </para> 0326 <para> 0327 <inlinemediaobject> 0328 <imageobject> 0329 <imagedata fileref="Formula-kst-highpass.png" format="PNG" /> 0330 </imageobject> 0331 <textobject> 0332 <phrase>Autocorrelation formula</phrase> 0333 </textobject> 0334 </inlinemediaobject> 0335 </para> 0336 <para> 0337 where <literal>f</literal> is the frequency, <literal>f<subscript>c</subscript></literal> is 0338 the high frequency cutoff, and 0339 <literal>n</literal> is the order of the Butterworth filter. The inverse Fourier transform 0340 is then calculated using the new filtered frequency responses. 0341 </para> 0342 <sect3 id="plugin-butterworth_highpass-inputs"> 0343 <title>Inputs</title> 0344 <variablelist> 0345 0346 <varlistentry> 0347 <term>X Array (vector)</term> 0348 <listitem> 0349 <para> 0350 The array of values to filter. 0351 </para> 0352 </listitem> 0353 </varlistentry> 0354 0355 <varlistentry> 0356 <term>Order (scalar)</term> 0357 <listitem> 0358 <para> 0359 The order of the Butterworth filter to use. 0360 </para> 0361 </listitem> 0362 </varlistentry> 0363 0364 <varlistentry> 0365 <term>Cutoff frequency (scalar)</term> 0366 <listitem> 0367 <para> 0368 The cutoff frequency of the Butterworth high pass filter. 0369 </para> 0370 </listitem> 0371 </varlistentry> 0372 0373 0374 </variablelist> 0375 </sect3> 0376 0377 <sect3 id="plugin-butterworth_highpass-outputs"> 0378 <title>Outputs</title> 0379 <variablelist> 0380 0381 <varlistentry> 0382 <term>X Filtered (vector)</term> 0383 <listitem> 0384 <para> 0385 The array of filtered data values. 0386 </para> 0387 </listitem> 0388 </varlistentry> 0389 0390 </variablelist> 0391 </sect3> 0392 0393 </sect2> 0394 0395 <sect2 id="plugin-butterworth_lowpass"> 0396 <title>Butterworth low-pass</title> 0397 <para> 0398 The Butterworth low-pass plugin filters a set of data by calculating 0399 the Fourier transform of the data and recalculating the 0400 the frequency responses using the following formula 0401 </para> 0402 <para> 0403 <inlinemediaobject> 0404 <imageobject> 0405 <imagedata fileref="Formula-kst-lowpass.png" format="PNG" /> 0406 </imageobject> 0407 <textobject> 0408 <phrase>Autocorrelation formula</phrase> 0409 </textobject> 0410 </inlinemediaobject> 0411 </para> 0412 <para> 0413 where <literal>f</literal> is the frequency, <literal>f<subscript>c</subscript></literal> is 0414 the low frequency cutoff, and 0415 <literal>n</literal> is the order of the Butterworth filter. The inverse Fourier transform 0416 is then calculated using the new filtered frequency responses. 0417 </para> 0418 <sect3 id="plugin-butterworth_lowpass-inputs"> 0419 <title>Inputs</title> 0420 <variablelist> 0421 0422 <varlistentry> 0423 <term>X Array (vector)</term> 0424 <listitem> 0425 <para> 0426 The array of values to filter. 0427 </para> 0428 </listitem> 0429 </varlistentry> 0430 0431 <varlistentry> 0432 <term>Order (scalar)</term> 0433 <listitem> 0434 <para> 0435 The order of the Butterworth filter to use. 0436 </para> 0437 </listitem> 0438 </varlistentry> 0439 0440 <varlistentry> 0441 <term>Cutoff frequency (scalar)</term> 0442 <listitem> 0443 <para> 0444 The cutoff frequency of the Butterworth low pass filter. 0445 </para> 0446 </listitem> 0447 </varlistentry> 0448 0449 </variablelist> 0450 </sect3> 0451 0452 <sect3 id="plugin-butterworth_lowpass-outputs"> 0453 <title>Outputs</title> 0454 <variablelist> 0455 0456 <varlistentry> 0457 <term>X Filtered (vector)</term> 0458 <listitem> 0459 <para> 0460 The array of filtered data values. 0461 </para> 0462 </listitem> 0463 </varlistentry> 0464 0465 </variablelist> 0466 </sect3> 0467 0468 </sect2> 0469 0470 0471 0472 0473 <sect2 id="plugin-chop"> 0474 <title>Chop</title> 0475 <para> 0476 The chop plugin takes an input vector and divides it into two vectors. Every second element in the 0477 input vector is placed in one output vector, while all other elements from the input vector are placed 0478 in another output vector. 0479 </para> 0480 0481 <sect3 id="plugin-chop-inputs"> 0482 <title>Inputs</title> 0483 <variablelist> 0484 0485 <varlistentry> 0486 <term>Array (vector)</term> 0487 <listitem> 0488 <para> 0489 The array of values to perform the chop on. 0490 </para> 0491 </listitem> 0492 </varlistentry> 0493 0494 </variablelist> 0495 </sect3> 0496 0497 <sect3 id="plugin-chop-outputs"> 0498 <title>Outputs</title> 0499 <variablelist> 0500 0501 <varlistentry> 0502 <term>Odd Array (vector)</term> 0503 <listitem> 0504 <para> 0505 The array containing the odd part of the input array (i.e. it contains the first element of the 0506 input array). 0507 </para> 0508 </listitem> 0509 </varlistentry> 0510 0511 <varlistentry> 0512 <term>Even Array (vector)</term> 0513 <listitem> 0514 <para> 0515 The array containing the even part of the input array (i.e. it does not contain the first element 0516 of the input array). 0517 </para> 0518 </listitem> 0519 </varlistentry> 0520 0521 <varlistentry> 0522 <term>Difference Array (vector)</term> 0523 <listitem> 0524 <para> 0525 The array containing the elements of the odd array minus the respective elements of the even array. 0526 </para> 0527 </listitem> 0528 </varlistentry> 0529 0530 <varlistentry> 0531 <term>Index Array (vector)</term> 0532 <listitem> 0533 <para> 0534 An index array the same length as the other three output arrays. 0535 </para> 0536 </listitem> 0537 </varlistentry> 0538 0539 </variablelist> 0540 </sect3> 0541 </sect2> 0542 0543 <sect2 id="plugin-convolution"> 0544 <title>Convolution</title> 0545 <para> 0546 The convolution plugin generates the convolution of one vector with another. The convolution of two functions 0547 <literal>f</literal> and <literal>g</literal> is given by: 0548 </para> 0549 <para> 0550 <inlinemediaobject> 0551 <imageobject> 0552 <imagedata fileref="Formula-kst-convolution.png" format="PNG"/> 0553 </imageobject> 0554 </inlinemediaobject> 0555 </para> 0556 <para> 0557 The order of the vectors does not matter, since <literal>f*g=g*f</literal>. In addition, 0558 the vectors do not need to be of the same size, 0559 as the plugin will automatically extrapolate the smaller vector. 0560 </para> 0561 <sect3 id="plugin-convolution-inputs"> 0562 <title>Inputs</title> 0563 <variablelist> 0564 0565 <varlistentry> 0566 <term>Array One (vector)</term> 0567 <listitem> 0568 <para> 0569 One of the pair of arrays to take the convolution of. 0570 </para> 0571 </listitem> 0572 </varlistentry> 0573 0574 <varlistentry> 0575 <term>Array Two (vector)</term> 0576 <listitem> 0577 <para> 0578 One of the pair of arrays to take the convolution of. 0579 </para> 0580 </listitem> 0581 </varlistentry> 0582 0583 </variablelist> 0584 </sect3> 0585 0586 <sect3 id="plugin-convolution-outputs"> 0587 <title>Outputs</title> 0588 <variablelist> 0589 0590 <varlistentry> 0591 <term>Convolved (vector)</term> 0592 <listitem> 0593 <para> 0594 The convolution of the two input vectors. 0595 </para> 0596 </listitem> 0597 </varlistentry> 0598 </variablelist> 0599 </sect3> 0600 0601 </sect2> 0602 0603 0604 0605 0606 <sect2 id="plugin-crosscorrelation"> 0607 <title>Crosscorrelation</title> 0608 <para> 0609 The crosscorrelation plugin calculates correlation values between two series (vectors) <literal>x</literal> and 0610 <literal>y</literal>, 0611 using lag values from <literal>floor(-(N-1)/2)</literal> to <literal>floor((N-1)/2)</literal>, where <literal>N</literal> 0612 is the number of elements in the longer vector. The shorter vector is padded to the length of the 0613 longer vector using <literal>0</literal>s. The time 0614 vector is not an input as it is assumed that the data is sampled at equal time intervals. The correlation 0615 value <literal>r</literal> at lag <literal>k</literal> is: 0616 </para> 0617 <para> 0618 <inlinemediaobject> 0619 <imageobject> 0620 <imagedata fileref="Formula-kst-crosscorrelation.png" format="PNG" /> 0621 </imageobject> 0622 <textobject> 0623 <phrase>crosscorrelation formula</phrase> 0624 </textobject> 0625 </inlinemediaobject> 0626 </para> 0627 0628 <sect3 id="plugin-crosscorrelation-inputs"> 0629 <title>Inputs</title> 0630 <variablelist> 0631 0632 <varlistentry> 0633 <term>X Array (vector)</term> 0634 <listitem> 0635 <para> 0636 The array <literal>x</literal> used in the cross-correlation formula. 0637 </para> 0638 </listitem> 0639 </varlistentry> 0640 0641 <varlistentry> 0642 <term>Y Array (vector)</term> 0643 <listitem> 0644 <para> 0645 The array <literal>y</literal> used in the cross-correlation formula. 0646 </para> 0647 </listitem> 0648 </varlistentry> 0649 0650 </variablelist> 0651 </sect3> 0652 0653 <sect3 id="plugin-crosscorrelation-outputs"> 0654 <title>Outputs</title> 0655 <variablelist> 0656 0657 <varlistentry> 0658 <term>Step Number (vector)</term> 0659 <listitem> 0660 <para> 0661 The array of step, or lag values. 0662 </para> 0663 </listitem> 0664 </varlistentry> 0665 0666 <varlistentry> 0667 <term>Correlation Value (vector)</term> 0668 <listitem> 0669 <para> 0670 The array of correlation values calculated using the corresponding step number in the Step Number vector. 0671 </para> 0672 </listitem> 0673 </varlistentry> 0674 0675 </variablelist> 0676 </sect3> 0677 0678 </sect2> 0679 0680 0681 <sect2 id="plugin-deconvolution"> 0682 <title>Deconvolution</title> 0683 <para> 0684 The deconvolution plugin generates the deconvolution of one vector with another. Deconvolution is the inverse of 0685 convolution. Given the convolved vector <literal>h</literal> and another vector <literal>g</literal>, the deconvolution 0686 <literal>f</literal> is given by: 0687 </para> 0688 <para> 0689 <inlinemediaobject> 0690 <imageobject> 0691 <imagedata fileref="Formula-kst-deconvolution.png" format="PNG"/> 0692 </imageobject> 0693 </inlinemediaobject> 0694 </para> 0695 <para> 0696 The vectors do not need to be of the same size, 0697 as the plugin will automatically extrapolate the shorter vector. The shorter vector is assumed to be the 0698 response function <literal>g</literal>. 0699 </para> 0700 <sect3 id="plugin-deconvolution-inputs"> 0701 <title>Inputs</title> 0702 <variablelist> 0703 0704 <varlistentry> 0705 <term>Array One (vector)</term> 0706 <listitem> 0707 <para> 0708 One of the pair of arrays to take the deconvolution of. 0709 </para> 0710 </listitem> 0711 </varlistentry> 0712 0713 <varlistentry> 0714 <term>Array Two (vector)</term> 0715 <listitem> 0716 <para> 0717 One of the pair of arrays to take the deconvolution of. 0718 </para> 0719 </listitem> 0720 </varlistentry> 0721 0722 </variablelist> 0723 </sect3> 0724 0725 <sect3 id="plugin-deconvolution-outputs"> 0726 <title>Outputs</title> 0727 <variablelist> 0728 0729 <varlistentry> 0730 <term>Deconvolved (vector)</term> 0731 <listitem> 0732 <para> 0733 The deconvolution of the two input vectors. 0734 </para> 0735 </listitem> 0736 </varlistentry> 0737 </variablelist> 0738 </sect3> 0739 0740 </sect2> 0741 0742 0743 <sect2 id="plugin-kstfit_exponential_weighted"> 0744 <title>Fit exponential weighted</title> 0745 <para> 0746 The Fit exponential weighted plugin performs a weighted non-linear least-squares fit 0747 to an exponential model: 0748 </para> 0749 <para> 0750 <inlinemediaobject> 0751 <imageobject> 0752 <imagedata fileref="Formula-kst-exponentialfitequation.png" format="PNG"/> 0753 </imageobject> 0754 </inlinemediaobject> 0755 </para> 0756 0757 0758 <para> 0759 An initial estimate of 0760 <literal>a=1.0</literal>, 0761 <inlinemediaobject> 0762 <imageobject> 0763 <imagedata fileref="Symbol-kst-lambda.png" format="PNG"/> 0764 </imageobject> 0765 </inlinemediaobject><literal>=0</literal>, and 0766 <literal>b=0</literal> is used. The plugin subsequently iterates to the solution 0767 until a precision of <literal>1.0e-4</literal> is reached or 500 iterations have been performed. 0768 </para> 0769 0770 <sect3 id="plugin-kstfit_exponential_weighted-inputs"> 0771 <title>Inputs</title> 0772 0773 <variablelist> 0774 0775 <varlistentry> 0776 <term>X Array (vector)</term> 0777 <listitem> 0778 <para> 0779 The array of x values for the data points to be fitted. 0780 </para> 0781 </listitem> 0782 </varlistentry> 0783 0784 <varlistentry> 0785 <term>Y Array (vector)</term> 0786 <listitem> 0787 <para> 0788 The array of y values for the data points to be fitted. 0789 </para> 0790 </listitem> 0791 </varlistentry> 0792 0793 <varlistentry> 0794 <term>Weights (vector)</term> 0795 <listitem> 0796 <para> 0797 The array of weights to use for the fit. 0798 </para> 0799 </listitem> 0800 </varlistentry> 0801 </variablelist> 0802 </sect3> 0803 0804 <sect3 id="plugin-kstfit_exponential_weighted-outputs"> 0805 <title>Outputs</title> 0806 0807 <variablelist> 0808 0809 <varlistentry> 0810 <term>Y Fitted (vector)</term> 0811 <listitem> 0812 <para> 0813 The array of fitted y values. 0814 </para> 0815 </listitem> 0816 </varlistentry> 0817 0818 <varlistentry> 0819 <term>Residuals (vector)</term> 0820 <listitem> 0821 <para> 0822 The array of residuals. 0823 </para> 0824 </listitem> 0825 </varlistentry> 0826 0827 <varlistentry> 0828 <term>Parameters (vector)</term> 0829 <listitem> 0830 <para> 0831 The best fit parameters <literal>a</literal>, 0832 <inlinemediaobject> 0833 <imageobject> 0834 <imagedata fileref="Symbol-kst-lambda.png" format="PNG"/> 0835 </imageobject> 0836 </inlinemediaobject>, and 0837 <literal>b</literal>. 0838 </para> 0839 </listitem> 0840 </varlistentry> 0841 0842 <varlistentry> 0843 <term>Covariance (vector)</term> 0844 <listitem> 0845 <para> 0846 The covariance matrix of the model parameters, returned row after row in the vector. 0847 </para> 0848 </listitem> 0849 </varlistentry> 0850 0851 <varlistentry> 0852 <term>chi^2/nu (scalar)</term> 0853 <listitem> 0854 <para> 0855 The weighted sum of squares of the residuals, divided by the degrees of freedom. 0856 </para> 0857 </listitem> 0858 </varlistentry> 0859 0860 </variablelist> 0861 </sect3> 0862 0863 </sect2> 0864 0865 <sect2 id="plugin-kstfit_exponential_unweighted"> 0866 <title>Fit exponential</title> 0867 <para> 0868 The Fit exponential plugin is identical in function to the 0869 <link linkend="plugin-kstfit_exponential_weighted">Fit exponential weighted</link> 0870 plugin with the exception that the weight value <literal>w<subscript>i</subscript></literal> 0871 is equal to <literal>1</literal> for all index values <literal>i</literal>. As a result, the 0872 Weights (vector) input does not exist. 0873 </para> 0874 </sect2> 0875 0876 <sect2 id="plugin-kstfit_gaussian_weighted"> 0877 <title>Fit gaussian weighted</title> 0878 <para> 0879 The Fit gaussian weighted plugin performs a weighted non-linear least-squares fit 0880 to a Gaussian model: 0881 </para> 0882 <para> 0883 <inlinemediaobject> 0884 <imageobject> 0885 <imagedata fileref="Formula-kst-gaussianfitequation.png" format="PNG"/> 0886 </imageobject> 0887 </inlinemediaobject> 0888 </para> 0889 0890 <para> 0891 An initial estimate of 0892 <literal>a=</literal>(maximum of the y values), 0893 <inlinemediaobject> 0894 <imageobject> 0895 <imagedata fileref="Symbol-kst-mu.png" format="PNG"/> 0896 </imageobject> 0897 </inlinemediaobject><literal>=</literal>(mean of the x values), and 0898 <inlinemediaobject> 0899 <imageobject> 0900 <imagedata fileref="Symbol-kst-sigma.png" format="PNG"/> 0901 </imageobject> 0902 </inlinemediaobject><literal>=</literal>(the midpoint of the x values) 0903 is used. The plugin subsequently iterates to the solution 0904 until a precision of <literal>1.0e-4</literal> is reached or 500 iterations have been performed. 0905 </para> 0906 0907 <sect3 id="plugin-kstfit_gaussian_weighted-inputs"> 0908 <title>Inputs</title> 0909 0910 <variablelist> 0911 0912 <varlistentry> 0913 <term>X Array (vector)</term> 0914 <listitem> 0915 <para> 0916 The array of x values for the data points to be fitted. 0917 </para> 0918 </listitem> 0919 </varlistentry> 0920 0921 <varlistentry> 0922 <term>Y Array (vector)</term> 0923 <listitem> 0924 <para> 0925 The array of y values for the data points to be fitted. 0926 </para> 0927 </listitem> 0928 </varlistentry> 0929 0930 <varlistentry> 0931 <term>Weights (vector)</term> 0932 <listitem> 0933 <para> 0934 The array of weights to use for the fit. 0935 </para> 0936 </listitem> 0937 </varlistentry> 0938 </variablelist> 0939 </sect3> 0940 0941 <sect3 id="plugin-kstfit_gaussian_weighted-outputs"> 0942 <title>Outputs</title> 0943 0944 <variablelist> 0945 0946 <varlistentry> 0947 <term>Y Fitted (vector)</term> 0948 <listitem> 0949 <para> 0950 The array of fitted y values. 0951 </para> 0952 </listitem> 0953 </varlistentry> 0954 0955 <varlistentry> 0956 <term>Residuals (vector)</term> 0957 <listitem> 0958 <para> 0959 The array of residuals. 0960 </para> 0961 </listitem> 0962 </varlistentry> 0963 0964 <varlistentry> 0965 <term>Parameters (vector)</term> 0966 <listitem> 0967 <para> 0968 The best fit parameters 0969 <inlinemediaobject> 0970 <imageobject> 0971 <imagedata fileref="Symbol-kst-mu.png" format="PNG"/> 0972 </imageobject> 0973 </inlinemediaobject>, 0974 <inlinemediaobject> 0975 <imageobject> 0976 <imagedata fileref="Symbol-kst-sigma.png" format="PNG"/> 0977 </imageobject> 0978 </inlinemediaobject>, and 0979 <literal>a</literal>. 0980 </para> 0981 </listitem> 0982 </varlistentry> 0983 0984 <varlistentry> 0985 <term>Covariance (vector)</term> 0986 <listitem> 0987 <para> 0988 The covariance matrix of the model parameters, returned row after row in the vector. 0989 </para> 0990 </listitem> 0991 </varlistentry> 0992 0993 <varlistentry> 0994 <term>chi^2/nu (scalar)</term> 0995 <listitem> 0996 <para> 0997 The weighted sum of squares of the residuals, divided by the degrees of freedom. 0998 </para> 0999 </listitem> 1000 </varlistentry> 1001 1002 </variablelist> 1003 </sect3> 1004 1005 </sect2> 1006 1007 <sect2 id="plugin-kstfit_gaussian_unweighted"> 1008 <title>Fit gaussian</title> 1009 <para> 1010 The Fit gaussian plugin is identical in function to the 1011 <link linkend="plugin-kstfit_gaussian_weighted">Fit gaussian weighted</link> 1012 plugin with the exception that the weight value <literal>w<subscript>i</subscript></literal> 1013 is equal to <literal>1</literal> for all index values <literal>i</literal>. As a result, the 1014 Weights (vector) input does not exist. 1015 </para> 1016 </sect2> 1017 1018 1019 <sect2 id="plugin-kstfit_gradient_weighted"> 1020 <title>Fit gradient weighted</title> 1021 <para> 1022 The gradient weighted plugin performs a weighted least-squares fit to a straight line 1023 model without a constant term: 1024 </para> 1025 <para> 1026 <inlinemediaobject> 1027 <imageobject> 1028 <imagedata fileref="Formula-kst-gradientequation.png" format="PNG"/> 1029 </imageobject> 1030 </inlinemediaobject> 1031 </para> 1032 <para> 1033 The best-fit is found by minimizing the weighted sum of squared residuals: 1034 </para> 1035 <para> 1036 <inlinemediaobject> 1037 <imageobject> 1038 <imagedata fileref="Formula-kst-gradientsumofsquares.png" format="PNG"/> 1039 </imageobject> 1040 </inlinemediaobject> 1041 </para> 1042 <para> 1043 for <literal>b</literal>, 1044 where <literal>w<subscript>i</subscript></literal> is the weight at index <literal>i</literal>. 1045 </para> 1046 <sect3 id="plugin-kstfit_gradient_weighted-inputs"> 1047 <title>Inputs</title> 1048 <variablelist> 1049 1050 <varlistentry> 1051 <term>X Array (vector)</term> 1052 <listitem> 1053 <para> 1054 The array of x values for the data points to be fitted. 1055 </para> 1056 </listitem> 1057 </varlistentry> 1058 1059 <varlistentry> 1060 <term>Y Array (vector)</term> 1061 <listitem> 1062 <para> 1063 The array of y values for the data points to be fitted. 1064 </para> 1065 </listitem> 1066 </varlistentry> 1067 1068 <varlistentry> 1069 <term>Weights (vector)</term> 1070 <listitem> 1071 <para> 1072 The array containing weights to be used for the fit. 1073 </para> 1074 </listitem> 1075 </varlistentry> 1076 1077 </variablelist> 1078 </sect3> 1079 1080 <sect3 id="plugin-kstfit_gradient_weighted-outputs"> 1081 <title>Outputs</title> 1082 <variablelist> 1083 <varlistentry> 1084 <term>Y Fitted (vector)</term> 1085 <listitem> 1086 <para> 1087 The array of y values for the points representing the best-fit line. 1088 </para> 1089 </listitem> 1090 </varlistentry> 1091 1092 <varlistentry> 1093 <term>Residuals (vector)</term> 1094 <listitem> 1095 <para> 1096 The array of residuals, or differences between the y values of the best-fit line and the y values 1097 of the data points. 1098 </para> 1099 </listitem> 1100 </varlistentry> 1101 1102 <varlistentry> 1103 <term>Parameters (vector)</term> 1104 <listitem> 1105 <para> 1106 The parameter <literal>b</literal> of the best-fit. 1107 </para> 1108 </listitem> 1109 </varlistentry> 1110 1111 <varlistentry> 1112 <term>Covariance (vector)</term> 1113 <listitem> 1114 <para> 1115 The estimated covariance matrix, returned row after row, starting with row 0. 1116 </para> 1117 </listitem> 1118 </varlistentry> 1119 1120 <varlistentry> 1121 <term>Y Lo (vector)</term> 1122 <listitem> 1123 <para> 1124 The corresponding value in Y Fitted minus the standard deviation of the best-fit function at 1125 the corresponding x value. 1126 </para> 1127 </listitem> 1128 </varlistentry> 1129 1130 <varlistentry> 1131 <term>Y Hi (vector)</term> 1132 <listitem> 1133 <para> 1134 The corresponding value in Y Fitted plus the standard deviation of the best-fit function at 1135 the corresponding x value. 1136 </para> 1137 </listitem> 1138 </varlistentry> 1139 1140 <varlistentry> 1141 <term>chi^2/nu (scalar)</term> 1142 <listitem> 1143 <para> 1144 The value of the sum of squares of the residuals, divided by the degrees of freedom. 1145 </para> 1146 </listitem> 1147 </varlistentry> 1148 1149 1150 </variablelist> 1151 </sect3> 1152 </sect2> 1153 1154 <sect2 id="plugin-kstfit_gradient_unweighted"> 1155 <title>Fit gradient</title> 1156 <para> 1157 The Fit linear plugin is identical in function to the 1158 <link linkend="plugin-kstfit_gradient_weighted">Fit gradient weighted</link> 1159 plugin with the exception that the weight value <literal>w<subscript>i</subscript></literal> 1160 is equal to <literal>1</literal> for all index values <literal>i</literal>. As a result, the 1161 Weights (vector) input does not exist. 1162 </para> 1163 </sect2> 1164 1165 1166 1167 <sect2 id="plugin-kstfit_linear_weighted"> 1168 <title>Fit linear weighted</title> 1169 <para> 1170 The Fit linear weighted plugin performs a weighted least-squares fit to a straight line model: 1171 </para> 1172 <para> 1173 <inlinemediaobject> 1174 <imageobject> 1175 <imagedata fileref="Formula-kst-linefitequation.png" format="PNG"/> 1176 </imageobject> 1177 </inlinemediaobject> 1178 </para> 1179 <para> 1180 The best-fit is found by minimizing the weighted sum of squared residuals: 1181 </para> 1182 <para> 1183 <inlinemediaobject> 1184 <imageobject> 1185 <imagedata fileref="Formula-kst-linefitsumofsquaredresiduals.png" format="PNG"/> 1186 </imageobject> 1187 </inlinemediaobject> 1188 </para> 1189 <para> 1190 for <literal>a</literal> and <literal>b</literal>, 1191 where <literal>w<subscript>i</subscript></literal> is the weight at index <literal>i</literal>. 1192 </para> 1193 <sect3 id="plugin-kstfit_linear_weighted-inputs"> 1194 <title>Inputs</title> 1195 <variablelist> 1196 1197 <varlistentry> 1198 <term>X Array (vector)</term> 1199 <listitem> 1200 <para> 1201 The array of x values for the data points to be fitted. 1202 </para> 1203 </listitem> 1204 </varlistentry> 1205 1206 <varlistentry> 1207 <term>Y Array (vector)</term> 1208 <listitem> 1209 <para> 1210 The array of y values for the data points to be fitted. 1211 </para> 1212 </listitem> 1213 </varlistentry> 1214 1215 <varlistentry> 1216 <term>Weights (vector)</term> 1217 <listitem> 1218 <para> 1219 The array containing weights to be used for the fit. 1220 </para> 1221 </listitem> 1222 </varlistentry> 1223 1224 </variablelist> 1225 </sect3> 1226 1227 <sect3 id="plugin-kstfit_linear_weighted-outputs"> 1228 <title>Outputs</title> 1229 <variablelist> 1230 1231 <varlistentry> 1232 <term>Y Fitted (vector)</term> 1233 <listitem> 1234 <para> 1235 The array of y values for the points representing the best-fit line. 1236 </para> 1237 </listitem> 1238 </varlistentry> 1239 1240 <varlistentry> 1241 <term>Residuals (vector)</term> 1242 <listitem> 1243 <para> 1244 The array of residuals, or differences between the y values of the best-fit line and the y values 1245 of the data points. 1246 </para> 1247 </listitem> 1248 </varlistentry> 1249 1250 <varlistentry> 1251 <term>Parameters (vector)</term> 1252 <listitem> 1253 <para> 1254 The parameters <literal>a</literal> and <literal>b</literal> of the best-fit. 1255 </para> 1256 </listitem> 1257 </varlistentry> 1258 1259 <varlistentry> 1260 <term>Covariance (vector)</term> 1261 <listitem> 1262 <para> 1263 The estimated covariance matrix, returned row after row, starting with row 0. 1264 </para> 1265 </listitem> 1266 </varlistentry> 1267 1268 <varlistentry> 1269 <term>Y Lo (vector)</term> 1270 <listitem> 1271 <para> 1272 The corresponding value in Y Fitted minus the standard deviation of the best-fit function at 1273 the corresponding x value. 1274 </para> 1275 </listitem> 1276 </varlistentry> 1277 1278 <varlistentry> 1279 <term>Y Hi (vector)</term> 1280 <listitem> 1281 <para> 1282 The corresponding value in Y Fitted plus the standard deviation of the best-fit function at 1283 the corresponding x value. 1284 </para> 1285 </listitem> 1286 </varlistentry> 1287 1288 <varlistentry> 1289 <term>chi^2/nu (scalar)</term> 1290 <listitem> 1291 <para> 1292 The value of the sum of squares of the residuals, divided by the degrees of freedom. 1293 </para> 1294 </listitem> 1295 </varlistentry> 1296 1297 1298 </variablelist> 1299 </sect3> 1300 </sect2> 1301 1302 <sect2 id="plugin-kstfit_linear_unweighted"> 1303 <title>Fit linear</title> 1304 <para> 1305 The Fit linear plugin is identical in function to the 1306 <link linkend="plugin-kstfit_linear_weighted">Fit linear weighted</link> 1307 plugin with the exception that the weight value <literal>w<subscript>i</subscript></literal> 1308 is equal to <literal>1</literal> for all index values <literal>i</literal>. As a result, the 1309 Weights (vector) input does not exist. 1310 </para> 1311 </sect2> 1312 1313 1314 <sect2 id="plugin-kstfit_lorentzian_weighted"> 1315 <title>Fit lorentzian weighted</title> 1316 <para> 1317 The Fit lorentzian weighted plugin performs a weighted non-linear least-squares fit 1318 to a Lorentzian model: 1319 </para> 1320 <para> 1321 <inlinemediaobject> 1322 <imageobject> 1323 <imagedata fileref="Formula-kst-lorentzianfitequation.png" format="PNG"/> 1324 </imageobject> 1325 </inlinemediaobject> 1326 </para> 1327 1328 <para> 1329 An initial estimate of 1330 <literal>a=</literal>(maximum of the y values), 1331 <literal>x<subscript>0</subscript>=</literal>(mean of the x values), and 1332 <inlinemediaobject> 1333 <imageobject> 1334 <imagedata fileref="Symbol-kst-Gamma.png" format="PNG"/> 1335 </imageobject> 1336 </inlinemediaobject><literal>=</literal>(the midpoint of the x values) 1337 is used. The plugin subsequently iterates to the solution 1338 until a precision of <literal>1.0e-4</literal> is reached or 500 iterations have been performed. 1339 </para> 1340 1341 <sect3 id="plugin-kstfit_lorentzian_weighted-inputs"> 1342 <title>Inputs</title> 1343 1344 <variablelist> 1345 1346 <varlistentry> 1347 <term>X Array (vector)</term> 1348 <listitem> 1349 <para> 1350 The array of x values for the data points to be fitted. 1351 </para> 1352 </listitem> 1353 </varlistentry> 1354 1355 <varlistentry> 1356 <term>Y Array (vector)</term> 1357 <listitem> 1358 <para> 1359 The array of y values for the data points to be fitted. 1360 </para> 1361 </listitem> 1362 </varlistentry> 1363 1364 <varlistentry> 1365 <term>Weights (vector)</term> 1366 <listitem> 1367 <para> 1368 The array of weights to use for the fit. 1369 </para> 1370 </listitem> 1371 </varlistentry> 1372 </variablelist> 1373 </sect3> 1374 1375 <sect3 id="plugin-kstfit_lorentzian_weighted-outputs"> 1376 <title>Outputs</title> 1377 1378 <variablelist> 1379 1380 <varlistentry> 1381 <term>Y Fitted (vector)</term> 1382 <listitem> 1383 <para> 1384 The array of fitted y values. 1385 </para> 1386 </listitem> 1387 </varlistentry> 1388 1389 <varlistentry> 1390 <term>Residuals (vector)</term> 1391 <listitem> 1392 <para> 1393 The array of residuals. 1394 </para> 1395 </listitem> 1396 </varlistentry> 1397 1398 <varlistentry> 1399 <term>Parameters (vector)</term> 1400 <listitem> 1401 <para> 1402 The best fit parameters 1403 <literal>x<subscript>0</subscript></literal>, 1404 <inlinemediaobject> 1405 <imageobject> 1406 <imagedata fileref="Symbol-kst-Gamma.png" format="PNG"/> 1407 </imageobject> 1408 </inlinemediaobject>, and 1409 <literal>a</literal>. 1410 </para> 1411 </listitem> 1412 </varlistentry> 1413 1414 <varlistentry> 1415 <term>Covariance (vector)</term> 1416 <listitem> 1417 <para> 1418 The covariance matrix of the model parameters, returned row after row in the vector. 1419 </para> 1420 </listitem> 1421 </varlistentry> 1422 1423 <varlistentry> 1424 <term>chi^2/nu (scalar)</term> 1425 <listitem> 1426 <para> 1427 The weighted sum of squares of the residuals, divided by the degrees of freedom. 1428 </para> 1429 </listitem> 1430 </varlistentry> 1431 1432 </variablelist> 1433 </sect3> 1434 1435 </sect2> 1436 1437 <sect2 id="plugin-kstfit_lorentzian_unweighted"> 1438 <title>Fit lorentzian</title> 1439 <para> 1440 The Fit lorentzian plugin is identical in function to the 1441 <link linkend="plugin-kstfit_lorentzian_weighted">Fit lorentzian weighted</link> 1442 plugin with the exception that the weight value <literal>w<subscript>i</subscript></literal> 1443 is equal to <literal>1</literal> for all index values <literal>i</literal>. As a result, the 1444 Weights (vector) input does not exist. 1445 </para> 1446 </sect2> 1447 1448 1449 <sect2 id="plugin-kstfit_polynomial_weighted"> 1450 <title>Fit polynomial weighted</title> 1451 <para> 1452 The Fit polynomial weighted plugin performs a weighted least-squares fit to a polynomial model: 1453 </para> 1454 <para> 1455 <inlinemediaobject> 1456 <imageobject> 1457 <imagedata fileref="Formula-kst-polynomialfitequation.png" format="PNG"/> 1458 </imageobject> 1459 </inlinemediaobject> 1460 </para> 1461 <para> 1462 where <literal>n</literal> is the degree of the polynomial model. 1463 </para> 1464 1465 <sect3 id="plugin-kstfit_polynomial_weighted-inputs"> 1466 <title>Inputs</title> 1467 1468 <variablelist> 1469 1470 <varlistentry> 1471 <term>X Array (vector)</term> 1472 <listitem> 1473 <para> 1474 The array of x values for the data points to be fitted. 1475 </para> 1476 </listitem> 1477 </varlistentry> 1478 1479 <varlistentry> 1480 <term>Y Array (vector)</term> 1481 <listitem> 1482 <para> 1483 The array of y values for the data points to be fitted. 1484 </para> 1485 </listitem> 1486 </varlistentry> 1487 1488 <varlistentry> 1489 <term>Weights (vector)</term> 1490 <listitem> 1491 <para> 1492 The array of weights to use for the fit. 1493 </para> 1494 </listitem> 1495 </varlistentry> 1496 1497 <varlistentry> 1498 <term>Order (scalar)</term> 1499 <listitem> 1500 <para> 1501 The order, or degree, of the polynomial model to use. 1502 </para> 1503 </listitem> 1504 </varlistentry> 1505 1506 </variablelist> 1507 </sect3> 1508 1509 <sect3 id="plugin-kstfit_polynomial_weighted-outputs"> 1510 <title>Outputs</title> 1511 1512 <variablelist> 1513 1514 <varlistentry> 1515 <term>Y Fitted (vector)</term> 1516 <listitem> 1517 <para> 1518 The array of fitted y values. 1519 </para> 1520 </listitem> 1521 </varlistentry> 1522 1523 <varlistentry> 1524 <term>Residuals (vector)</term> 1525 <listitem> 1526 <para> 1527 The array of residuals. 1528 </para> 1529 </listitem> 1530 </varlistentry> 1531 1532 <varlistentry> 1533 <term>Parameters (vector)</term> 1534 <listitem> 1535 <para> 1536 The best fit parameters <literal>c<subscript>0</subscript></literal>, 1537 <literal>c<subscript>1</subscript></literal>,..., 1538 <literal>c<subscript>n</subscript></literal>. 1539 </para> 1540 </listitem> 1541 </varlistentry> 1542 1543 <varlistentry> 1544 <term>Covariance (vector)</term> 1545 <listitem> 1546 <para> 1547 The covariance matrix of the model parameters, returned row after row in the vector. 1548 </para> 1549 </listitem> 1550 </varlistentry> 1551 1552 <varlistentry> 1553 <term>chi^2/nu (scalar)</term> 1554 <listitem> 1555 <para> 1556 The weighted sum of squares of the residuals, divided by the degrees of freedom. 1557 </para> 1558 </listitem> 1559 </varlistentry> 1560 1561 </variablelist> 1562 </sect3> 1563 </sect2> 1564 1565 <sect2 id="plugin-kstfit_polynomial_unweighted"> 1566 <title>Fit polynomial</title> 1567 <para> 1568 The Fit polynomial plugin is identical in function to the 1569 <link linkend="plugin-kstfit_polynomial_weighted">Fit polynomial weighted</link> 1570 plugin with the exception that the weight value <literal>w<subscript>i</subscript></literal> 1571 is equal to <literal>1</literal> for all index values <literal>i</literal>. As a result, the 1572 Weights (vector) input does not exist. 1573 </para> 1574 </sect2> 1575 1576 1577 <sect2 id="plugin-kstfit_sinusoid_weighted"> 1578 <title>Fit sinusoid weighted</title> 1579 <para> 1580 The Fit sinusoid weighted plugin performs a least-squares fit to a sinusoid model: 1581 </para> 1582 <para> 1583 <inlinemediaobject> 1584 <imageobject> 1585 <imagedata fileref="Formula-kst-sinusoidfitequation.png" format="PNG"/> 1586 </imageobject> 1587 </inlinemediaobject> 1588 </para> 1589 <para> 1590 where <literal>T</literal> is the specified period, 1591 and <literal>n=2+2H</literal>, where 1592 <literal>H</literal> is the specified number of harmonics. 1593 </para> 1594 1595 <sect3 id="plugin-kstfit_sinusoid_weighted-inputs"> 1596 <title>Inputs</title> 1597 1598 <variablelist> 1599 1600 <varlistentry> 1601 <term>X Array (vector)</term> 1602 <listitem> 1603 <para> 1604 The array of x values for the data points to be fitted. 1605 </para> 1606 </listitem> 1607 </varlistentry> 1608 1609 <varlistentry> 1610 <term>Y Array (vector)</term> 1611 <listitem> 1612 <para> 1613 The array of y values for the data points to be fitted. 1614 </para> 1615 </listitem> 1616 </varlistentry> 1617 1618 <varlistentry> 1619 <term>Weights (vector)</term> 1620 <listitem> 1621 <para> 1622 The array of weights to use for the fit. 1623 </para> 1624 </listitem> 1625 </varlistentry> 1626 1627 <varlistentry> 1628 <term>Harmonics (scalar)</term> 1629 <listitem> 1630 <para> 1631 The number of harmonics of the sinusoid to fit. 1632 </para> 1633 </listitem> 1634 </varlistentry> 1635 1636 <varlistentry> 1637 <term>Period (scalar)</term> 1638 <listitem> 1639 <para> 1640 The period of the sinusoid to fit. 1641 </para> 1642 </listitem> 1643 </varlistentry> 1644 1645 </variablelist> 1646 </sect3> 1647 1648 <sect3 id="plugin-kstfit_sinusoid_weighted-outputs"> 1649 <title>Outputs</title> 1650 1651 <variablelist> 1652 1653 <varlistentry> 1654 <term>Y Fitted (vector)</term> 1655 <listitem> 1656 <para> 1657 The array of fitted y values. 1658 </para> 1659 </listitem> 1660 </varlistentry> 1661 1662 <varlistentry> 1663 <term>Residuals (vector)</term> 1664 <listitem> 1665 <para> 1666 The array of residuals. 1667 </para> 1668 </listitem> 1669 </varlistentry> 1670 1671 <varlistentry> 1672 <term>Parameters (vector)</term> 1673 <listitem> 1674 <para> 1675 The best fit parameters <literal>c<subscript>0</subscript></literal>, 1676 <literal>c<subscript>1</subscript></literal>,..., 1677 <literal>c<subscript>n</subscript></literal>. 1678 </para> 1679 </listitem> 1680 </varlistentry> 1681 1682 <varlistentry> 1683 <term>Covariance (vector)</term> 1684 <listitem> 1685 <para> 1686 The covariance matrix of the model parameters, returned row after row in the vector. 1687 </para> 1688 </listitem> 1689 </varlistentry> 1690 1691 <varlistentry> 1692 <term>chi^2/nu (scalar)</term> 1693 <listitem> 1694 <para> 1695 The weighted sum of squares of the residuals, divided by the degrees of freedom. 1696 </para> 1697 </listitem> 1698 </varlistentry> 1699 1700 </variablelist> 1701 </sect3> 1702 </sect2> 1703 1704 <sect2 id="plugin-kstfit_sinusoid_unweighted"> 1705 <title>Fit sinusoid</title> 1706 <para> 1707 The Fit sinusoid plugin is identical in function to the 1708 <link linkend="plugin-kstfit_sinusoid_weighted">Fit sinusoid weighted</link> 1709 plugin with the exception that the weight value <literal>w<subscript>i</subscript></literal> 1710 is equal to <literal>1</literal> for all index values <literal>i</literal>. As a result, the 1711 Weights (vector) input does not exist. 1712 </para> 1713 </sect2> 1714 1715 1716 1717 1718 1719 1720 <sect2 id="plugin-kstinterp_akima"> 1721 <title>Interpolation Akima spline</title> 1722 <para> 1723 The Interpolation Akima spline plugin generates a non-rounded Akima spline interpolation for the supplied data set, 1724 using natural boundary conditions. 1725 </para> 1726 1727 <sect3 id="plugin-kstinterp_akima-inputs"> 1728 <title>Inputs</title> 1729 <variablelist> 1730 1731 <varlistentry> 1732 <term>X Array (vector)</term> 1733 <listitem> 1734 <para> 1735 The array of x values of the data points to generate the interpolation for. 1736 </para> 1737 </listitem> 1738 </varlistentry> 1739 1740 1741 <varlistentry> 1742 <term>Y Array (vector)</term> 1743 <listitem> 1744 <para> 1745 The array of y values of the data points to generate the interpolation for. 1746 </para> 1747 </listitem> 1748 </varlistentry> 1749 1750 <varlistentry> 1751 <term>X' Array (vector)</term> 1752 <listitem> 1753 <para> 1754 The array of x values for which interpolated y values are desired. 1755 </para> 1756 </listitem> 1757 </varlistentry> 1758 1759 </variablelist> 1760 </sect3> 1761 1762 <sect3 id="plugin-kstinterp_akima-outputs"> 1763 <title>Outputs</title> 1764 <variablelist> 1765 1766 <varlistentry> 1767 <term>Y Interpolated (vector)</term> 1768 <listitem> 1769 <para> 1770 The interpolated y values. 1771 </para> 1772 </listitem> 1773 </varlistentry> 1774 1775 </variablelist> 1776 </sect3> 1777 </sect2> 1778 1779 <sect2 id="plugin-kstinterp_akima_periodic"> 1780 <title>Interpolation Akima spline periodic</title> 1781 <para> 1782 The kstinterp akima periodic plugin generates a non-rounded Akima spline interpolation for the supplied data set, 1783 using periodic boundary conditions. 1784 </para> 1785 1786 <sect3 id="plugin-kstinterp_akima_periodic-inputs"> 1787 <title>Inputs</title> 1788 <variablelist> 1789 1790 <varlistentry> 1791 <term>X Array (vector)</term> 1792 <listitem> 1793 <para> 1794 The array of x values of the data points to generate the interpolation for. 1795 </para> 1796 </listitem> 1797 </varlistentry> 1798 1799 1800 <varlistentry> 1801 <term>Y Array (vector)</term> 1802 <listitem> 1803 <para> 1804 The array of y values of the data points to generate the interpolation for. 1805 </para> 1806 </listitem> 1807 </varlistentry> 1808 1809 <varlistentry> 1810 <term>X' Array (vector)</term> 1811 <listitem> 1812 <para> 1813 The array of x values for which interpolated y values are desired. 1814 </para> 1815 </listitem> 1816 </varlistentry> 1817 1818 </variablelist> 1819 </sect3> 1820 1821 <sect3 id="plugin-kstinterp_akima_periodic-outputs"> 1822 <title>Outputs</title> 1823 <variablelist> 1824 1825 <varlistentry> 1826 <term>Y Interpolated (vector)</term> 1827 <listitem> 1828 <para> 1829 The interpolated y values. 1830 </para> 1831 </listitem> 1832 </varlistentry> 1833 1834 </variablelist> 1835 </sect3> 1836 </sect2> 1837 1838 <sect2 id="plugin-kstinterp_cspline"> 1839 <title>Interpolation cubic spline</title> 1840 <para> 1841 The Interpolation cubic spline plugin generates a cubic spline interpolation for the supplied data set, 1842 using natural boundary conditions. 1843 </para> 1844 1845 <sect3 id="plugin-kstinterp_cspline-inputs"> 1846 <title>Inputs</title> 1847 <variablelist> 1848 1849 <varlistentry> 1850 <term>X Array (vector)</term> 1851 <listitem> 1852 <para> 1853 The array of x values of the data points to generate the interpolation for. 1854 </para> 1855 </listitem> 1856 </varlistentry> 1857 1858 1859 <varlistentry> 1860 <term>Y Array (vector)</term> 1861 <listitem> 1862 <para> 1863 The array of y values of the data points to generate the interpolation for. 1864 </para> 1865 </listitem> 1866 </varlistentry> 1867 1868 <varlistentry> 1869 <term>X' Array (vector)</term> 1870 <listitem> 1871 <para> 1872 The array of x values for which interpolated y values are desired. 1873 </para> 1874 </listitem> 1875 </varlistentry> 1876 1877 </variablelist> 1878 </sect3> 1879 1880 <sect3 id="plugin-kstinterp_cspline-outputs"> 1881 <title>Outputs</title> 1882 <variablelist> 1883 1884 <varlistentry> 1885 <term>Y Interpolated (vector)</term> 1886 <listitem> 1887 <para> 1888 The interpolated y values. 1889 </para> 1890 </listitem> 1891 </varlistentry> 1892 1893 </variablelist> 1894 </sect3> 1895 </sect2> 1896 1897 <sect2 id="plugin-kstinterp_cspline_periodic"> 1898 <title>Interpolation cubic spline periodic</title> 1899 <para> 1900 The Interpolation cubic spline periodic plugin generates a cubic spline interpolation for the supplied data set, 1901 using periodic boundary conditions. 1902 </para> 1903 1904 <sect3 id="plugin-kstinterp_cspline_periodic-inputs"> 1905 <title>Inputs</title> 1906 <variablelist> 1907 1908 <varlistentry> 1909 <term>X Array (vector)</term> 1910 <listitem> 1911 <para> 1912 The array of x values of the data points to generate the interpolation for. 1913 </para> 1914 </listitem> 1915 </varlistentry> 1916 1917 1918 <varlistentry> 1919 <term>Y Array (vector)</term> 1920 <listitem> 1921 <para> 1922 The array of y values of the data points to generate the interpolation for. 1923 </para> 1924 </listitem> 1925 </varlistentry> 1926 1927 <varlistentry> 1928 <term>X' Array (vector)</term> 1929 <listitem> 1930 <para> 1931 The array of x values for which interpolated y values are desired. 1932 </para> 1933 </listitem> 1934 </varlistentry> 1935 1936 </variablelist> 1937 </sect3> 1938 1939 <sect3 id="plugin-kstinterp_cspline_periodic-outputs"> 1940 <title>Outputs</title> 1941 <variablelist> 1942 1943 <varlistentry> 1944 <term>Y Interpolated (vector)</term> 1945 <listitem> 1946 <para> 1947 The interpolated y values. 1948 </para> 1949 </listitem> 1950 </varlistentry> 1951 1952 </variablelist> 1953 </sect3> 1954 </sect2> 1955 1956 <sect2 id="plugin-kstinterp_linear"> 1957 <title>Interpolation linear</title> 1958 <para> 1959 The Interpolation linear plugin generates a linear interpolation for the supplied data set. 1960 </para> 1961 1962 <sect3 id="plugin-kstinterp_linear-inputs"> 1963 <title>Inputs</title> 1964 <variablelist> 1965 1966 <varlistentry> 1967 <term>X Array (vector)</term> 1968 <listitem> 1969 <para> 1970 The array of x values of the data points to generate the interpolation for. 1971 </para> 1972 </listitem> 1973 </varlistentry> 1974 1975 1976 <varlistentry> 1977 <term>Y Array (vector)</term> 1978 <listitem> 1979 <para> 1980 The array of y values of the data points to generate the interpolation for. 1981 </para> 1982 </listitem> 1983 </varlistentry> 1984 1985 <varlistentry> 1986 <term>X' Array (vector)</term> 1987 <listitem> 1988 <para> 1989 The array of x values for which interpolated y values are desired. 1990 </para> 1991 </listitem> 1992 </varlistentry> 1993 1994 </variablelist> 1995 </sect3> 1996 1997 <sect3 id="plugin-kstinterp_linear-outputs"> 1998 <title>Outputs</title> 1999 <variablelist> 2000 2001 <varlistentry> 2002 <term>Y Interpolated (vector)</term> 2003 <listitem> 2004 <para> 2005 The interpolated y values. 2006 </para> 2007 </listitem> 2008 </varlistentry> 2009 2010 </variablelist> 2011 </sect3> 2012 </sect2> 2013 2014 <sect2 id="plugin-kstinterp_polynomial"> 2015 <title>Interpolation polynomial</title> 2016 <para> 2017 The Interpolation polynomial plugin generates a polynomial interpolation for the supplied data set. 2018 The number of terms in the polynomial used is equal to the number of points in the supplied 2019 data set. 2020 </para> 2021 2022 <sect3 id="plugin-kstinterp_polynomial-inputs"> 2023 <title>Inputs</title> 2024 <variablelist> 2025 2026 <varlistentry> 2027 <term>X Array (vector)</term> 2028 <listitem> 2029 <para> 2030 The array of x values of the data points to generate the interpolation for. 2031 </para> 2032 </listitem> 2033 </varlistentry> 2034 2035 2036 <varlistentry> 2037 <term>Y Array (vector)</term> 2038 <listitem> 2039 <para> 2040 The array of y values of the data points to generate the interpolation for. 2041 </para> 2042 </listitem> 2043 </varlistentry> 2044 2045 <varlistentry> 2046 <term>X' Array (vector)</term> 2047 <listitem> 2048 <para> 2049 The array of x values for which interpolated y values are desired. 2050 </para> 2051 </listitem> 2052 </varlistentry> 2053 2054 </variablelist> 2055 </sect3> 2056 2057 <sect3 id="plugin-kstinterp_polynomial-outputs"> 2058 <title>Outputs</title> 2059 <variablelist> 2060 2061 <varlistentry> 2062 <term>Y Interpolated (vector)</term> 2063 <listitem> 2064 <para> 2065 The interpolated y values. 2066 </para> 2067 </listitem> 2068 </varlistentry> 2069 2070 </variablelist> 2071 </sect3> 2072 </sect2> 2073 <sect2 id="plugin-noise-addition"> 2074 <title>Noise Addition</title> 2075 <para> 2076 The Noise addition plugin adds a Gaussian random variable to each element of the input vector. 2077 The Gaussian distribution used has a mean of <literal>0</literal> and the specified 2078 standard deviation. The probability density function of a Gaussian random variable is: 2079 </para> 2080 <para> 2081 <inlinemediaobject> 2082 <imageobject> 2083 <imagedata fileref="Formula-kst-gaussianprobability.png" format="PNG"/> 2084 </imageobject> 2085 </inlinemediaobject> 2086 </para> 2087 2088 <sect3 id="plugin-noise-addition-inputs"> 2089 <title>Inputs</title> 2090 <variablelist> 2091 2092 <varlistentry> 2093 <term>Array (vector)</term> 2094 <listitem> 2095 <para> 2096 The array of elements to which random noise is to be added. 2097 </para> 2098 </listitem> 2099 </varlistentry> 2100 2101 2102 <varlistentry> 2103 <term>Sigma (scalar)</term> 2104 <listitem> 2105 <para> 2106 The standard deviation to use for the Gaussian distribution. 2107 </para> 2108 </listitem> 2109 </varlistentry> 2110 2111 2112 </variablelist> 2113 </sect3> 2114 2115 <sect3 id="plugin-noiseaddition-outputs"> 2116 <title>Outputs</title> 2117 <variablelist> 2118 2119 <varlistentry> 2120 <term>Output Array (vector)</term> 2121 <listitem> 2122 <para> 2123 The array of elements with Gaussian noise added. 2124 </para> 2125 </listitem> 2126 </varlistentry> 2127 2128 </variablelist> 2129 </sect3> 2130 </sect2> 2131 2132 <sect2 id="plugin-periodogram"> 2133 <title>Periodogram</title> 2134 <para> 2135 The periodogram plugin produces the periodogram of a given data set. One of two algorithms is used depending on the 2136 size of the data set—a fast algorithm is used if there are greater than 100 data points, while a slower 2137 algorithm is used if there are less than or equal to 100 data points. 2138 </para> 2139 2140 <sect3 id="plugin-periodogram-inputs"> 2141 <title>Inputs</title> 2142 <variablelist> 2143 2144 <varlistentry> 2145 <term>Time Array (vector)</term> 2146 <listitem> 2147 <para> 2148 The array of time values of the data points to generate the interpolation for. 2149 </para> 2150 </listitem> 2151 </varlistentry> 2152 2153 2154 <varlistentry> 2155 <term>Data Array (vector)</term> 2156 <listitem> 2157 <para> 2158 The array of data values, dependent on the time values, 2159 of the data points to generate the interpolation for. 2160 </para> 2161 </listitem> 2162 </varlistentry> 2163 2164 <varlistentry> 2165 <term>Oversampling factor (scalar)</term> 2166 <listitem> 2167 <para> 2168 The factor to oversample by. 2169 </para> 2170 </listitem> 2171 </varlistentry> 2172 2173 <varlistentry> 2174 <term>Average Nyquist frequency factor (scalar)</term> 2175 <listitem> 2176 <para> 2177 The average Nyquist frequency factor. 2178 </para> 2179 </listitem> 2180 </varlistentry> 2181 2182 </variablelist> 2183 </sect3> 2184 2185 <sect3 id="plugin-periodogram-outputs"> 2186 <title>Outputs</title> 2187 <variablelist> 2188 2189 <varlistentry> 2190 <term>Frequency (vector)</term> 2191 <listitem> 2192 <para> 2193 The frequency vector. 2194 </para> 2195 </listitem> 2196 </varlistentry> 2197 2198 <varlistentry> 2199 <term>Periodogram (vector)</term> 2200 <listitem> 2201 <para> 2202 The frequency response vector for the periodogram. 2203 </para> 2204 </listitem> 2205 </varlistentry> 2206 2207 </variablelist> 2208 </sect3> 2209 </sect2> 2210 2211 2212 <sect2 id="plugin-statistics"> 2213 <title>Statistics</title> 2214 <para> 2215 The statistics plugin calculates statistics for a given data set. Most of the output scalars 2216 are named such that the values they represent should be apparent. Standard formulas are used 2217 to calculate the statistical values. 2218 </para> 2219 2220 <sect3 id="plugin-statistics-inputs"> 2221 <title>Inputs</title> 2222 <variablelist> 2223 2224 <varlistentry> 2225 <term>Data Array (vector)</term> 2226 <listitem> 2227 <para> 2228 The array of data values to calculate statistics for. 2229 </para> 2230 </listitem> 2231 </varlistentry> 2232 2233 </variablelist> 2234 </sect3> 2235 2236 <sect3 id="plugin-statistics-outputs"> 2237 <title>Outputs</title> 2238 <variablelist> 2239 <varlistentry> 2240 <term>Mean (scalar)</term> 2241 <listitem> 2242 <para> 2243 The mean of the data values. 2244 </para> 2245 </listitem> 2246 </varlistentry> 2247 2248 <varlistentry> 2249 <term>Minimum (scalar)</term> 2250 <listitem> 2251 <para> 2252 The minimum value found in the data array. 2253 </para> 2254 </listitem> 2255 </varlistentry> 2256 2257 <varlistentry> 2258 <term>Maximum (scalar)</term> 2259 <listitem> 2260 <para> 2261 The maximum value found in the data array. 2262 </para> 2263 </listitem> 2264 </varlistentry> 2265 2266 <varlistentry> 2267 <term>Variance (scalar)</term> 2268 <listitem> 2269 <para> 2270 The variance of the data set. 2271 </para> 2272 </listitem> 2273 </varlistentry> 2274 2275 <varlistentry> 2276 <term>Standard deviation (scalar)</term> 2277 <listitem> 2278 <para> 2279 The standard deviation of the data set. 2280 </para> 2281 </listitem> 2282 </varlistentry> 2283 2284 <varlistentry> 2285 <term>Median (scalar)</term> 2286 <listitem> 2287 <para> 2288 The median of the data set. 2289 </para> 2290 </listitem> 2291 </varlistentry> 2292 2293 <varlistentry> 2294 <term>Absolute deviation (scalar)</term> 2295 <listitem> 2296 <para> 2297 The absolute deviation of the data set. 2298 </para> 2299 </listitem> 2300 </varlistentry> 2301 2302 <varlistentry> 2303 <term>Skewness (scalar)</term> 2304 <listitem> 2305 <para> 2306 The skewness of the data set. 2307 </para> 2308 </listitem> 2309 </varlistentry> 2310 2311 2312 <varlistentry> 2313 <term>Kurtosis (scalar)</term> 2314 <listitem> 2315 <para> 2316 The kurtosis of the data set. 2317 </para> 2318 </listitem> 2319 </varlistentry> 2320 </variablelist> 2321 </sect3> 2322 </sect2> 2323 2324 <!-- End the long plugins section --> 2325 </sect1> 2326 2327 </chapter> 2328 2329 2330 <!-- Keep this comment at the end of the file 2331 Local variables: 2332 mode: xml 2333 sgml-omittag:nil 2334 sgml-shorttag:nil 2335 sgml-namecase-general:nil 2336 sgml-general-insert-case:lower 2337 sgml-minimize-attributes:nil 2338 sgml-always-quote-attributes:t 2339 sgml-indent-step:0 2340 sgml-indent-data:true 2341 sgml-parent-document:("index.docbook" "book" "chapter") 2342 sgml-exposed-tags:nil 2343 sgml-local-catalogs:nil 2344 sgml-local-ecat-files:nil 2345 End: 2346 -->