Warning, /graphics/kst-plot/docbook/kst/plugins-chapter.docbook is written in an unsupported language. File is not indexed.
0001 <chapter id="pluginsandfilters">
0002 <title>Plugins, Fits, and Filters</title>
0003
0004 <sect1>
0005 <title>Using Plugins, Fits, and Filters</title>
0006 <para>
0007 Many of the mathematical data operators in &kst;, including fits and filters, are implemented as plugins. Plugins are loaded at run time and use a stable API, so it is possible to write your own plugins and include them in your local installation without re-compiling &kst;. Fits and Filters are simply subsets of the set of plugins, and thus behave identically to generic plugins, with the exception of additional convenience dialog functionality when selected from the plot context menu. See <link linkend="fits">here</link> for a general description of the creation of fits and filters.
0008 </para>
0009
0010 <para>
0011 To date, there are more than 25 built-in plugins available in &kst; that perform functions from taking cross correlations of two vectors to producing periodograms of a data set. The following screenshot shows the settings window for a typical plugin, created by selecting the desired plugin from the <guimenu>Standard Plugin</guimenu>, <guimenu>Fit Plugin</guimenu> or <guimenu>Filter Plugin</guimenu> submenus in the <guimenu>Create</guimenu> toolbar menu.
0012 </para>
0013
0014
0015 <screenshot>
0016 <screeninfo>Plugins Window</screeninfo>
0017 <mediaobject>
0018 <imageobject>
0019 <imagedata fileref="Screenshot-kst-plugin.png" format="PNG" />
0020 </imageobject>
0021 <textobject>
0022 <phrase>Plugins Windowpluginswindow</phrase>
0023 </textobject>
0024 </mediaobject>
0025 </screenshot>
0026
0027 <para>
0028 The following sections describe the purpose, key algorithms or formulas used to perform calculations,
0029 and inputs and outputs for each plugin. Note that fitting and filtering plugins are included in the following sections.
0030 </para>
0031
0032
0033 <!-- Begin the long plugins section. -->
0034 <sect2 id="plugin-autocorrelation">
0035 <title>Autocorrelation</title>
0036 <para>
0037 The autocorrelation plugin calculates correlation values between a series (vector) and a lagged version
0038 of itself, using lag values from <literal>floor(-(N-1)/2)</literal> to <literal>floor((N-1)/2)</literal>, where <literal>N</literal>
0039 is the number of points in the data set. The time
0040 vector is not an input as it is assumed that the data is sampled at equal time intervals. The correlation
0041 value <literal>r</literal> at lag <literal>k</literal> is:
0042 </para>
0043 <para>
0044 <inlinemediaobject>
0045 <imageobject>
0046 <imagedata fileref="Formula-kst-autocorrelation.png" format="PNG" />
0047 </imageobject>
0048 <textobject>
0049 <phrase>Autocorrelation formula</phrase>
0050 </textobject>
0051 </inlinemediaobject>
0052 </para>
0053
0054 <sect3 id="plugin-autocorrelation-inputs">
0055 <title>Inputs</title>
0056 <variablelist>
0057
0058 <varlistentry>
0059 <term>X Array (vector)</term>
0060 <listitem>
0061 <para>
0062 The array <literal>x</literal> of values to calculate correlation values for.
0063 </para>
0064 </listitem>
0065 </varlistentry>
0066
0067 </variablelist>
0068 </sect3>
0069
0070 <sect3 id="plugin-autocorrelation-outputs">
0071 <title>Outputs</title>
0072 <variablelist>
0073
0074 <varlistentry>
0075 <term>Step Number (vector)</term>
0076 <listitem>
0077 <para>
0078 The array of step, or lag values.
0079 </para>
0080 </listitem>
0081 </varlistentry>
0082
0083 <varlistentry>
0084 <term>Correlation Value (vector)</term>
0085 <listitem>
0086 <para>
0087 The array of correlation values calculated using the corresponding step number in the Step Number vector.
0088 </para>
0089 </listitem>
0090 </varlistentry>
0091
0092 </variablelist>
0093 </sect3>
0094
0095 </sect2>
0096
0097 <sect2 id="plugin-bin">
0098 <title>Bin</title>
0099 <para>
0100 The bin plugin bins elements of a single data vector into bins of a specified size. The value of each bin is the mean
0101 of the elements belonging to the bin. For example, if the bin size is <literal>3</literal>, and the input vector is
0102 <literal>[9,2,7,3,4,74,5,322,444,2,1]</literal>, then the outputted bins would be
0103 <literal>[6,27,257]</literal>. Note that any elements remaining at the end of the input vector that do not form a complete
0104 bin (in this case, elements <literal>2</literal> and <literal>1</literal>), are simply discarded.
0105 </para>
0106 <sect3 id="plugin-bin-inputs">
0107 <title>Inputs</title>
0108 <variablelist>
0109
0110 <varlistentry>
0111 <term>Input Vector (vector)</term>
0112 <listitem>
0113 <para>
0114 The vector to bin.
0115 </para>
0116 </listitem>
0117 </varlistentry>
0118
0119 <varlistentry>
0120 <term>Bin Size (scalar)</term>
0121 <listitem>
0122 <para>
0123 The size to use for each bin.
0124 </para>
0125 </listitem>
0126 </varlistentry>
0127
0128 </variablelist>
0129 </sect3>
0130
0131 <sect3 id="plugin-bin-outputs">
0132 <title>Outputs</title>
0133 <variablelist>
0134
0135 <varlistentry>
0136 <term>Bins (vector)</term>
0137 <listitem>
0138 <para>
0139 The array of means for each bin.
0140 </para>
0141 </listitem>
0142 </varlistentry>
0143 </variablelist>
0144 </sect3>
0145
0146 </sect2>
0147
0148 <sect2 id="plugin-butterworth_bandpass">
0149 <title>Butterworth band-pass</title>
0150 <para>
0151 The Butterworth band-pass plugin filters a set of data by calculating
0152 the Fourier transform of the data and recalculating the
0153 the frequency responses using the following formula
0154 </para>
0155 <para>
0156 <inlinemediaobject>
0157 <imageobject>
0158 <imagedata fileref="Formula-kst-bandpass.png" format="PNG" />
0159 </imageobject>
0160 <textobject>
0161 <phrase>Autocorrelation formula</phrase>
0162 </textobject>
0163 </inlinemediaobject>
0164 </para>
0165 <para>
0166 where <literal>f</literal> is the frequency, <literal>f<subscript>c</subscript></literal> is
0167 the low frequency cutoff, <literal>b</literal> is the bandwidth of the band to pass, and
0168 <literal>n</literal> is the order of the Butterworth filter. The inverse Fourier transform
0169 is then calculated using the new filtered frequency responses.
0170 </para>
0171
0172 <sect3 id="plugin-butterworth_bandpass-inputs">
0173 <title>Inputs</title>
0174 <variablelist>
0175
0176 <varlistentry>
0177 <term>X Array (vector)</term>
0178 <listitem>
0179 <para>
0180 The array of values to filter.
0181 </para>
0182 </listitem>
0183 </varlistentry>
0184
0185 <varlistentry>
0186 <term>Order (scalar)</term>
0187 <listitem>
0188 <para>
0189 The order of the Butterworth filter to use.
0190 </para>
0191 </listitem>
0192 </varlistentry>
0193
0194 <varlistentry>
0195 <term>Low cutoff frequency (scalar)</term>
0196 <listitem>
0197 <para>
0198 The low cutoff frequency of the Butterworth band pass filter.
0199 </para>
0200 </listitem>
0201 </varlistentry>
0202
0203 <varlistentry>
0204 <term>Band width (scalar)</term>
0205 <listitem>
0206 <para>
0207 The width of the band to pass. This should be the difference between the desired high
0208 cutoff frequency and the low cutoff frequency.
0209 </para>
0210 </listitem>
0211 </varlistentry>
0212
0213 </variablelist>
0214 </sect3>
0215
0216 <sect3 id="plugin-butterworth_bandpass-outputs">
0217 <title>Outputs</title>
0218 <variablelist>
0219
0220 <varlistentry>
0221 <term>X Filtered (vector)</term>
0222 <listitem>
0223 <para>
0224 The array of filtered data values.
0225 </para>
0226 </listitem>
0227 </varlistentry>
0228
0229 </variablelist>
0230 </sect3>
0231
0232 </sect2>
0233
0234 <sect2 id="plugin-butterworth_bandstop">
0235 <title>Butterworth band-stop</title>
0236 <para>
0237 The Butterworth band-stop plugin filters a set of data by calculating
0238 the Fourier transform of the data and recalculating the
0239 the frequency responses using the following formula
0240 </para>
0241 <para>
0242 <inlinemediaobject>
0243 <imageobject>
0244 <imagedata fileref="Formula-kst-bandstop.png" format="PNG" />
0245 </imageobject>
0246 <textobject>
0247 <phrase>Autocorrelation formula</phrase>
0248 </textobject>
0249 </inlinemediaobject>
0250 </para>
0251 <para>
0252 where <literal>f</literal> is the frequency, <literal>f<subscript>c</subscript></literal> is
0253 the low frequency cutoff, <literal>b</literal> is the bandwidth of the band to stop, and
0254 <literal>n</literal> is the order of the Butterworth filter. The inverse Fourier transform
0255 is then calculated using the new filtered frequency responses.
0256 </para>
0257 <sect3 id="plugin-butterworth_bandstop-inputs">
0258 <title>Inputs</title>
0259 <variablelist>
0260
0261 <varlistentry>
0262 <term>X Array (vector)</term>
0263 <listitem>
0264 <para>
0265 The array of values to filter.
0266 </para>
0267 </listitem>
0268 </varlistentry>
0269
0270 <varlistentry>
0271 <term>Order (scalar)</term>
0272 <listitem>
0273 <para>
0274 The order of the Butterworth filter to use.
0275 </para>
0276 </listitem>
0277 </varlistentry>
0278
0279 <varlistentry>
0280 <term>Low cutoff frequency (scalar)</term>
0281 <listitem>
0282 <para>
0283 The low cutoff frequency of the Butterworth band stop filter.
0284 </para>
0285 </listitem>
0286 </varlistentry>
0287
0288 <varlistentry>
0289 <term>Band width (scalar)</term>
0290 <listitem>
0291 <para>
0292 The width of the band to stop. This should be the difference between the desired high
0293 cutoff frequency and the low cutoff frequency.
0294 </para>
0295 </listitem>
0296 </varlistentry>
0297
0298 </variablelist>
0299 </sect3>
0300
0301 <sect3 id="plugin-butterworth_bandstop-outputs">
0302 <title>Outputs</title>
0303 <variablelist>
0304
0305 <varlistentry>
0306 <term>X Filtered (vector)</term>
0307 <listitem>
0308 <para>
0309 The array of filtered data values.
0310 </para>
0311 </listitem>
0312 </varlistentry>
0313
0314 </variablelist>
0315 </sect3>
0316
0317 </sect2>
0318
0319 <sect2 id="plugin-butterworth_highpass">
0320 <title>Butterworth high-pass</title>
0321 <para>
0322 The Butterworth high-pass plugin filters a set of data by calculating
0323 the Fourier transform of the data and recalculating the
0324 the frequency responses using the following formula
0325 </para>
0326 <para>
0327 <inlinemediaobject>
0328 <imageobject>
0329 <imagedata fileref="Formula-kst-highpass.png" format="PNG" />
0330 </imageobject>
0331 <textobject>
0332 <phrase>Autocorrelation formula</phrase>
0333 </textobject>
0334 </inlinemediaobject>
0335 </para>
0336 <para>
0337 where <literal>f</literal> is the frequency, <literal>f<subscript>c</subscript></literal> is
0338 the high frequency cutoff, and
0339 <literal>n</literal> is the order of the Butterworth filter. The inverse Fourier transform
0340 is then calculated using the new filtered frequency responses.
0341 </para>
0342 <sect3 id="plugin-butterworth_highpass-inputs">
0343 <title>Inputs</title>
0344 <variablelist>
0345
0346 <varlistentry>
0347 <term>X Array (vector)</term>
0348 <listitem>
0349 <para>
0350 The array of values to filter.
0351 </para>
0352 </listitem>
0353 </varlistentry>
0354
0355 <varlistentry>
0356 <term>Order (scalar)</term>
0357 <listitem>
0358 <para>
0359 The order of the Butterworth filter to use.
0360 </para>
0361 </listitem>
0362 </varlistentry>
0363
0364 <varlistentry>
0365 <term>Cutoff frequency (scalar)</term>
0366 <listitem>
0367 <para>
0368 The cutoff frequency of the Butterworth high pass filter.
0369 </para>
0370 </listitem>
0371 </varlistentry>
0372
0373
0374 </variablelist>
0375 </sect3>
0376
0377 <sect3 id="plugin-butterworth_highpass-outputs">
0378 <title>Outputs</title>
0379 <variablelist>
0380
0381 <varlistentry>
0382 <term>X Filtered (vector)</term>
0383 <listitem>
0384 <para>
0385 The array of filtered data values.
0386 </para>
0387 </listitem>
0388 </varlistentry>
0389
0390 </variablelist>
0391 </sect3>
0392
0393 </sect2>
0394
0395 <sect2 id="plugin-butterworth_lowpass">
0396 <title>Butterworth low-pass</title>
0397 <para>
0398 The Butterworth low-pass plugin filters a set of data by calculating
0399 the Fourier transform of the data and recalculating the
0400 the frequency responses using the following formula
0401 </para>
0402 <para>
0403 <inlinemediaobject>
0404 <imageobject>
0405 <imagedata fileref="Formula-kst-lowpass.png" format="PNG" />
0406 </imageobject>
0407 <textobject>
0408 <phrase>Autocorrelation formula</phrase>
0409 </textobject>
0410 </inlinemediaobject>
0411 </para>
0412 <para>
0413 where <literal>f</literal> is the frequency, <literal>f<subscript>c</subscript></literal> is
0414 the low frequency cutoff, and
0415 <literal>n</literal> is the order of the Butterworth filter. The inverse Fourier transform
0416 is then calculated using the new filtered frequency responses.
0417 </para>
0418 <sect3 id="plugin-butterworth_lowpass-inputs">
0419 <title>Inputs</title>
0420 <variablelist>
0421
0422 <varlistentry>
0423 <term>X Array (vector)</term>
0424 <listitem>
0425 <para>
0426 The array of values to filter.
0427 </para>
0428 </listitem>
0429 </varlistentry>
0430
0431 <varlistentry>
0432 <term>Order (scalar)</term>
0433 <listitem>
0434 <para>
0435 The order of the Butterworth filter to use.
0436 </para>
0437 </listitem>
0438 </varlistentry>
0439
0440 <varlistentry>
0441 <term>Cutoff frequency (scalar)</term>
0442 <listitem>
0443 <para>
0444 The cutoff frequency of the Butterworth low pass filter.
0445 </para>
0446 </listitem>
0447 </varlistentry>
0448
0449 </variablelist>
0450 </sect3>
0451
0452 <sect3 id="plugin-butterworth_lowpass-outputs">
0453 <title>Outputs</title>
0454 <variablelist>
0455
0456 <varlistentry>
0457 <term>X Filtered (vector)</term>
0458 <listitem>
0459 <para>
0460 The array of filtered data values.
0461 </para>
0462 </listitem>
0463 </varlistentry>
0464
0465 </variablelist>
0466 </sect3>
0467
0468 </sect2>
0469
0470
0471
0472
0473 <sect2 id="plugin-chop">
0474 <title>Chop</title>
0475 <para>
0476 The chop plugin takes an input vector and divides it into two vectors. Every second element in the
0477 input vector is placed in one output vector, while all other elements from the input vector are placed
0478 in another output vector.
0479 </para>
0480
0481 <sect3 id="plugin-chop-inputs">
0482 <title>Inputs</title>
0483 <variablelist>
0484
0485 <varlistentry>
0486 <term>Array (vector)</term>
0487 <listitem>
0488 <para>
0489 The array of values to perform the chop on.
0490 </para>
0491 </listitem>
0492 </varlistentry>
0493
0494 </variablelist>
0495 </sect3>
0496
0497 <sect3 id="plugin-chop-outputs">
0498 <title>Outputs</title>
0499 <variablelist>
0500
0501 <varlistentry>
0502 <term>Odd Array (vector)</term>
0503 <listitem>
0504 <para>
0505 The array containing the odd part of the input array (i.e. it contains the first element of the
0506 input array).
0507 </para>
0508 </listitem>
0509 </varlistentry>
0510
0511 <varlistentry>
0512 <term>Even Array (vector)</term>
0513 <listitem>
0514 <para>
0515 The array containing the even part of the input array (i.e. it does not contain the first element
0516 of the input array).
0517 </para>
0518 </listitem>
0519 </varlistentry>
0520
0521 <varlistentry>
0522 <term>Difference Array (vector)</term>
0523 <listitem>
0524 <para>
0525 The array containing the elements of the odd array minus the respective elements of the even array.
0526 </para>
0527 </listitem>
0528 </varlistentry>
0529
0530 <varlistentry>
0531 <term>Index Array (vector)</term>
0532 <listitem>
0533 <para>
0534 An index array the same length as the other three output arrays.
0535 </para>
0536 </listitem>
0537 </varlistentry>
0538
0539 </variablelist>
0540 </sect3>
0541 </sect2>
0542
0543 <sect2 id="plugin-convolution">
0544 <title>Convolution</title>
0545 <para>
0546 The convolution plugin generates the convolution of one vector with another. The convolution of two functions
0547 <literal>f</literal> and <literal>g</literal> is given by:
0548 </para>
0549 <para>
0550 <inlinemediaobject>
0551 <imageobject>
0552 <imagedata fileref="Formula-kst-convolution.png" format="PNG"/>
0553 </imageobject>
0554 </inlinemediaobject>
0555 </para>
0556 <para>
0557 The order of the vectors does not matter, since <literal>f*g=g*f</literal>. In addition,
0558 the vectors do not need to be of the same size,
0559 as the plugin will automatically extrapolate the smaller vector.
0560 </para>
0561 <sect3 id="plugin-convolution-inputs">
0562 <title>Inputs</title>
0563 <variablelist>
0564
0565 <varlistentry>
0566 <term>Array One (vector)</term>
0567 <listitem>
0568 <para>
0569 One of the pair of arrays to take the convolution of.
0570 </para>
0571 </listitem>
0572 </varlistentry>
0573
0574 <varlistentry>
0575 <term>Array Two (vector)</term>
0576 <listitem>
0577 <para>
0578 One of the pair of arrays to take the convolution of.
0579 </para>
0580 </listitem>
0581 </varlistentry>
0582
0583 </variablelist>
0584 </sect3>
0585
0586 <sect3 id="plugin-convolution-outputs">
0587 <title>Outputs</title>
0588 <variablelist>
0589
0590 <varlistentry>
0591 <term>Convolved (vector)</term>
0592 <listitem>
0593 <para>
0594 The convolution of the two input vectors.
0595 </para>
0596 </listitem>
0597 </varlistentry>
0598 </variablelist>
0599 </sect3>
0600
0601 </sect2>
0602
0603
0604
0605
0606 <sect2 id="plugin-crosscorrelation">
0607 <title>Crosscorrelation</title>
0608 <para>
0609 The crosscorrelation plugin calculates correlation values between two series (vectors) <literal>x</literal> and
0610 <literal>y</literal>,
0611 using lag values from <literal>floor(-(N-1)/2)</literal> to <literal>floor((N-1)/2)</literal>, where <literal>N</literal>
0612 is the number of elements in the longer vector. The shorter vector is padded to the length of the
0613 longer vector using <literal>0</literal>s. The time
0614 vector is not an input as it is assumed that the data is sampled at equal time intervals. The correlation
0615 value <literal>r</literal> at lag <literal>k</literal> is:
0616 </para>
0617 <para>
0618 <inlinemediaobject>
0619 <imageobject>
0620 <imagedata fileref="Formula-kst-crosscorrelation.png" format="PNG" />
0621 </imageobject>
0622 <textobject>
0623 <phrase>crosscorrelation formula</phrase>
0624 </textobject>
0625 </inlinemediaobject>
0626 </para>
0627
0628 <sect3 id="plugin-crosscorrelation-inputs">
0629 <title>Inputs</title>
0630 <variablelist>
0631
0632 <varlistentry>
0633 <term>X Array (vector)</term>
0634 <listitem>
0635 <para>
0636 The array <literal>x</literal> used in the cross-correlation formula.
0637 </para>
0638 </listitem>
0639 </varlistentry>
0640
0641 <varlistentry>
0642 <term>Y Array (vector)</term>
0643 <listitem>
0644 <para>
0645 The array <literal>y</literal> used in the cross-correlation formula.
0646 </para>
0647 </listitem>
0648 </varlistentry>
0649
0650 </variablelist>
0651 </sect3>
0652
0653 <sect3 id="plugin-crosscorrelation-outputs">
0654 <title>Outputs</title>
0655 <variablelist>
0656
0657 <varlistentry>
0658 <term>Step Number (vector)</term>
0659 <listitem>
0660 <para>
0661 The array of step, or lag values.
0662 </para>
0663 </listitem>
0664 </varlistentry>
0665
0666 <varlistentry>
0667 <term>Correlation Value (vector)</term>
0668 <listitem>
0669 <para>
0670 The array of correlation values calculated using the corresponding step number in the Step Number vector.
0671 </para>
0672 </listitem>
0673 </varlistentry>
0674
0675 </variablelist>
0676 </sect3>
0677
0678 </sect2>
0679
0680
0681 <sect2 id="plugin-deconvolution">
0682 <title>Deconvolution</title>
0683 <para>
0684 The deconvolution plugin generates the deconvolution of one vector with another. Deconvolution is the inverse of
0685 convolution. Given the convolved vector <literal>h</literal> and another vector <literal>g</literal>, the deconvolution
0686 <literal>f</literal> is given by:
0687 </para>
0688 <para>
0689 <inlinemediaobject>
0690 <imageobject>
0691 <imagedata fileref="Formula-kst-deconvolution.png" format="PNG"/>
0692 </imageobject>
0693 </inlinemediaobject>
0694 </para>
0695 <para>
0696 The vectors do not need to be of the same size,
0697 as the plugin will automatically extrapolate the shorter vector. The shorter vector is assumed to be the
0698 response function <literal>g</literal>.
0699 </para>
0700 <sect3 id="plugin-deconvolution-inputs">
0701 <title>Inputs</title>
0702 <variablelist>
0703
0704 <varlistentry>
0705 <term>Array One (vector)</term>
0706 <listitem>
0707 <para>
0708 One of the pair of arrays to take the deconvolution of.
0709 </para>
0710 </listitem>
0711 </varlistentry>
0712
0713 <varlistentry>
0714 <term>Array Two (vector)</term>
0715 <listitem>
0716 <para>
0717 One of the pair of arrays to take the deconvolution of.
0718 </para>
0719 </listitem>
0720 </varlistentry>
0721
0722 </variablelist>
0723 </sect3>
0724
0725 <sect3 id="plugin-deconvolution-outputs">
0726 <title>Outputs</title>
0727 <variablelist>
0728
0729 <varlistentry>
0730 <term>Deconvolved (vector)</term>
0731 <listitem>
0732 <para>
0733 The deconvolution of the two input vectors.
0734 </para>
0735 </listitem>
0736 </varlistentry>
0737 </variablelist>
0738 </sect3>
0739
0740 </sect2>
0741
0742
0743 <sect2 id="plugin-kstfit_exponential_weighted">
0744 <title>Fit exponential weighted</title>
0745 <para>
0746 The Fit exponential weighted plugin performs a weighted non-linear least-squares fit
0747 to an exponential model:
0748 </para>
0749 <para>
0750 <inlinemediaobject>
0751 <imageobject>
0752 <imagedata fileref="Formula-kst-exponentialfitequation.png" format="PNG"/>
0753 </imageobject>
0754 </inlinemediaobject>
0755 </para>
0756
0757
0758 <para>
0759 An initial estimate of
0760 <literal>a=1.0</literal>,
0761 <inlinemediaobject>
0762 <imageobject>
0763 <imagedata fileref="Symbol-kst-lambda.png" format="PNG"/>
0764 </imageobject>
0765 </inlinemediaobject><literal>=0</literal>, and
0766 <literal>b=0</literal> is used. The plugin subsequently iterates to the solution
0767 until a precision of <literal>1.0e-4</literal> is reached or 500 iterations have been performed.
0768 </para>
0769
0770 <sect3 id="plugin-kstfit_exponential_weighted-inputs">
0771 <title>Inputs</title>
0772
0773 <variablelist>
0774
0775 <varlistentry>
0776 <term>X Array (vector)</term>
0777 <listitem>
0778 <para>
0779 The array of x values for the data points to be fitted.
0780 </para>
0781 </listitem>
0782 </varlistentry>
0783
0784 <varlistentry>
0785 <term>Y Array (vector)</term>
0786 <listitem>
0787 <para>
0788 The array of y values for the data points to be fitted.
0789 </para>
0790 </listitem>
0791 </varlistentry>
0792
0793 <varlistentry>
0794 <term>Weights (vector)</term>
0795 <listitem>
0796 <para>
0797 The array of weights to use for the fit.
0798 </para>
0799 </listitem>
0800 </varlistentry>
0801 </variablelist>
0802 </sect3>
0803
0804 <sect3 id="plugin-kstfit_exponential_weighted-outputs">
0805 <title>Outputs</title>
0806
0807 <variablelist>
0808
0809 <varlistentry>
0810 <term>Y Fitted (vector)</term>
0811 <listitem>
0812 <para>
0813 The array of fitted y values.
0814 </para>
0815 </listitem>
0816 </varlistentry>
0817
0818 <varlistentry>
0819 <term>Residuals (vector)</term>
0820 <listitem>
0821 <para>
0822 The array of residuals.
0823 </para>
0824 </listitem>
0825 </varlistentry>
0826
0827 <varlistentry>
0828 <term>Parameters (vector)</term>
0829 <listitem>
0830 <para>
0831 The best fit parameters <literal>a</literal>,
0832 <inlinemediaobject>
0833 <imageobject>
0834 <imagedata fileref="Symbol-kst-lambda.png" format="PNG"/>
0835 </imageobject>
0836 </inlinemediaobject>, and
0837 <literal>b</literal>.
0838 </para>
0839 </listitem>
0840 </varlistentry>
0841
0842 <varlistentry>
0843 <term>Covariance (vector)</term>
0844 <listitem>
0845 <para>
0846 The covariance matrix of the model parameters, returned row after row in the vector.
0847 </para>
0848 </listitem>
0849 </varlistentry>
0850
0851 <varlistentry>
0852 <term>chi^2/nu (scalar)</term>
0853 <listitem>
0854 <para>
0855 The weighted sum of squares of the residuals, divided by the degrees of freedom.
0856 </para>
0857 </listitem>
0858 </varlistentry>
0859
0860 </variablelist>
0861 </sect3>
0862
0863 </sect2>
0864
0865 <sect2 id="plugin-kstfit_exponential_unweighted">
0866 <title>Fit exponential</title>
0867 <para>
0868 The Fit exponential plugin is identical in function to the
0869 <link linkend="plugin-kstfit_exponential_weighted">Fit exponential weighted</link>
0870 plugin with the exception that the weight value <literal>w<subscript>i</subscript></literal>
0871 is equal to <literal>1</literal> for all index values <literal>i</literal>. As a result, the
0872 Weights (vector) input does not exist.
0873 </para>
0874 </sect2>
0875
0876 <sect2 id="plugin-kstfit_gaussian_weighted">
0877 <title>Fit gaussian weighted</title>
0878 <para>
0879 The Fit gaussian weighted plugin performs a weighted non-linear least-squares fit
0880 to a Gaussian model:
0881 </para>
0882 <para>
0883 <inlinemediaobject>
0884 <imageobject>
0885 <imagedata fileref="Formula-kst-gaussianfitequation.png" format="PNG"/>
0886 </imageobject>
0887 </inlinemediaobject>
0888 </para>
0889
0890 <para>
0891 An initial estimate of
0892 <literal>a=</literal>(maximum of the y values),
0893 <inlinemediaobject>
0894 <imageobject>
0895 <imagedata fileref="Symbol-kst-mu.png" format="PNG"/>
0896 </imageobject>
0897 </inlinemediaobject><literal>=</literal>(mean of the x values), and
0898 <inlinemediaobject>
0899 <imageobject>
0900 <imagedata fileref="Symbol-kst-sigma.png" format="PNG"/>
0901 </imageobject>
0902 </inlinemediaobject><literal>=</literal>(the midpoint of the x values)
0903 is used. The plugin subsequently iterates to the solution
0904 until a precision of <literal>1.0e-4</literal> is reached or 500 iterations have been performed.
0905 </para>
0906
0907 <sect3 id="plugin-kstfit_gaussian_weighted-inputs">
0908 <title>Inputs</title>
0909
0910 <variablelist>
0911
0912 <varlistentry>
0913 <term>X Array (vector)</term>
0914 <listitem>
0915 <para>
0916 The array of x values for the data points to be fitted.
0917 </para>
0918 </listitem>
0919 </varlistentry>
0920
0921 <varlistentry>
0922 <term>Y Array (vector)</term>
0923 <listitem>
0924 <para>
0925 The array of y values for the data points to be fitted.
0926 </para>
0927 </listitem>
0928 </varlistentry>
0929
0930 <varlistentry>
0931 <term>Weights (vector)</term>
0932 <listitem>
0933 <para>
0934 The array of weights to use for the fit.
0935 </para>
0936 </listitem>
0937 </varlistentry>
0938 </variablelist>
0939 </sect3>
0940
0941 <sect3 id="plugin-kstfit_gaussian_weighted-outputs">
0942 <title>Outputs</title>
0943
0944 <variablelist>
0945
0946 <varlistentry>
0947 <term>Y Fitted (vector)</term>
0948 <listitem>
0949 <para>
0950 The array of fitted y values.
0951 </para>
0952 </listitem>
0953 </varlistentry>
0954
0955 <varlistentry>
0956 <term>Residuals (vector)</term>
0957 <listitem>
0958 <para>
0959 The array of residuals.
0960 </para>
0961 </listitem>
0962 </varlistentry>
0963
0964 <varlistentry>
0965 <term>Parameters (vector)</term>
0966 <listitem>
0967 <para>
0968 The best fit parameters
0969 <inlinemediaobject>
0970 <imageobject>
0971 <imagedata fileref="Symbol-kst-mu.png" format="PNG"/>
0972 </imageobject>
0973 </inlinemediaobject>,
0974 <inlinemediaobject>
0975 <imageobject>
0976 <imagedata fileref="Symbol-kst-sigma.png" format="PNG"/>
0977 </imageobject>
0978 </inlinemediaobject>, and
0979 <literal>a</literal>.
0980 </para>
0981 </listitem>
0982 </varlistentry>
0983
0984 <varlistentry>
0985 <term>Covariance (vector)</term>
0986 <listitem>
0987 <para>
0988 The covariance matrix of the model parameters, returned row after row in the vector.
0989 </para>
0990 </listitem>
0991 </varlistentry>
0992
0993 <varlistentry>
0994 <term>chi^2/nu (scalar)</term>
0995 <listitem>
0996 <para>
0997 The weighted sum of squares of the residuals, divided by the degrees of freedom.
0998 </para>
0999 </listitem>
1000 </varlistentry>
1001
1002 </variablelist>
1003 </sect3>
1004
1005 </sect2>
1006
1007 <sect2 id="plugin-kstfit_gaussian_unweighted">
1008 <title>Fit gaussian</title>
1009 <para>
1010 The Fit gaussian plugin is identical in function to the
1011 <link linkend="plugin-kstfit_gaussian_weighted">Fit gaussian weighted</link>
1012 plugin with the exception that the weight value <literal>w<subscript>i</subscript></literal>
1013 is equal to <literal>1</literal> for all index values <literal>i</literal>. As a result, the
1014 Weights (vector) input does not exist.
1015 </para>
1016 </sect2>
1017
1018
1019 <sect2 id="plugin-kstfit_gradient_weighted">
1020 <title>Fit gradient weighted</title>
1021 <para>
1022 The gradient weighted plugin performs a weighted least-squares fit to a straight line
1023 model without a constant term:
1024 </para>
1025 <para>
1026 <inlinemediaobject>
1027 <imageobject>
1028 <imagedata fileref="Formula-kst-gradientequation.png" format="PNG"/>
1029 </imageobject>
1030 </inlinemediaobject>
1031 </para>
1032 <para>
1033 The best-fit is found by minimizing the weighted sum of squared residuals:
1034 </para>
1035 <para>
1036 <inlinemediaobject>
1037 <imageobject>
1038 <imagedata fileref="Formula-kst-gradientsumofsquares.png" format="PNG"/>
1039 </imageobject>
1040 </inlinemediaobject>
1041 </para>
1042 <para>
1043 for <literal>b</literal>,
1044 where <literal>w<subscript>i</subscript></literal> is the weight at index <literal>i</literal>.
1045 </para>
1046 <sect3 id="plugin-kstfit_gradient_weighted-inputs">
1047 <title>Inputs</title>
1048 <variablelist>
1049
1050 <varlistentry>
1051 <term>X Array (vector)</term>
1052 <listitem>
1053 <para>
1054 The array of x values for the data points to be fitted.
1055 </para>
1056 </listitem>
1057 </varlistentry>
1058
1059 <varlistentry>
1060 <term>Y Array (vector)</term>
1061 <listitem>
1062 <para>
1063 The array of y values for the data points to be fitted.
1064 </para>
1065 </listitem>
1066 </varlistentry>
1067
1068 <varlistentry>
1069 <term>Weights (vector)</term>
1070 <listitem>
1071 <para>
1072 The array containing weights to be used for the fit.
1073 </para>
1074 </listitem>
1075 </varlistentry>
1076
1077 </variablelist>
1078 </sect3>
1079
1080 <sect3 id="plugin-kstfit_gradient_weighted-outputs">
1081 <title>Outputs</title>
1082 <variablelist>
1083 <varlistentry>
1084 <term>Y Fitted (vector)</term>
1085 <listitem>
1086 <para>
1087 The array of y values for the points representing the best-fit line.
1088 </para>
1089 </listitem>
1090 </varlistentry>
1091
1092 <varlistentry>
1093 <term>Residuals (vector)</term>
1094 <listitem>
1095 <para>
1096 The array of residuals, or differences between the y values of the best-fit line and the y values
1097 of the data points.
1098 </para>
1099 </listitem>
1100 </varlistentry>
1101
1102 <varlistentry>
1103 <term>Parameters (vector)</term>
1104 <listitem>
1105 <para>
1106 The parameter <literal>b</literal> of the best-fit.
1107 </para>
1108 </listitem>
1109 </varlistentry>
1110
1111 <varlistentry>
1112 <term>Covariance (vector)</term>
1113 <listitem>
1114 <para>
1115 The estimated covariance matrix, returned row after row, starting with row 0.
1116 </para>
1117 </listitem>
1118 </varlistentry>
1119
1120 <varlistentry>
1121 <term>Y Lo (vector)</term>
1122 <listitem>
1123 <para>
1124 The corresponding value in Y Fitted minus the standard deviation of the best-fit function at
1125 the corresponding x value.
1126 </para>
1127 </listitem>
1128 </varlistentry>
1129
1130 <varlistentry>
1131 <term>Y Hi (vector)</term>
1132 <listitem>
1133 <para>
1134 The corresponding value in Y Fitted plus the standard deviation of the best-fit function at
1135 the corresponding x value.
1136 </para>
1137 </listitem>
1138 </varlistentry>
1139
1140 <varlistentry>
1141 <term>chi^2/nu (scalar)</term>
1142 <listitem>
1143 <para>
1144 The value of the sum of squares of the residuals, divided by the degrees of freedom.
1145 </para>
1146 </listitem>
1147 </varlistentry>
1148
1149
1150 </variablelist>
1151 </sect3>
1152 </sect2>
1153
1154 <sect2 id="plugin-kstfit_gradient_unweighted">
1155 <title>Fit gradient</title>
1156 <para>
1157 The Fit linear plugin is identical in function to the
1158 <link linkend="plugin-kstfit_gradient_weighted">Fit gradient weighted</link>
1159 plugin with the exception that the weight value <literal>w<subscript>i</subscript></literal>
1160 is equal to <literal>1</literal> for all index values <literal>i</literal>. As a result, the
1161 Weights (vector) input does not exist.
1162 </para>
1163 </sect2>
1164
1165
1166
1167 <sect2 id="plugin-kstfit_linear_weighted">
1168 <title>Fit linear weighted</title>
1169 <para>
1170 The Fit linear weighted plugin performs a weighted least-squares fit to a straight line model:
1171 </para>
1172 <para>
1173 <inlinemediaobject>
1174 <imageobject>
1175 <imagedata fileref="Formula-kst-linefitequation.png" format="PNG"/>
1176 </imageobject>
1177 </inlinemediaobject>
1178 </para>
1179 <para>
1180 The best-fit is found by minimizing the weighted sum of squared residuals:
1181 </para>
1182 <para>
1183 <inlinemediaobject>
1184 <imageobject>
1185 <imagedata fileref="Formula-kst-linefitsumofsquaredresiduals.png" format="PNG"/>
1186 </imageobject>
1187 </inlinemediaobject>
1188 </para>
1189 <para>
1190 for <literal>a</literal> and <literal>b</literal>,
1191 where <literal>w<subscript>i</subscript></literal> is the weight at index <literal>i</literal>.
1192 </para>
1193 <sect3 id="plugin-kstfit_linear_weighted-inputs">
1194 <title>Inputs</title>
1195 <variablelist>
1196
1197 <varlistentry>
1198 <term>X Array (vector)</term>
1199 <listitem>
1200 <para>
1201 The array of x values for the data points to be fitted.
1202 </para>
1203 </listitem>
1204 </varlistentry>
1205
1206 <varlistentry>
1207 <term>Y Array (vector)</term>
1208 <listitem>
1209 <para>
1210 The array of y values for the data points to be fitted.
1211 </para>
1212 </listitem>
1213 </varlistentry>
1214
1215 <varlistentry>
1216 <term>Weights (vector)</term>
1217 <listitem>
1218 <para>
1219 The array containing weights to be used for the fit.
1220 </para>
1221 </listitem>
1222 </varlistentry>
1223
1224 </variablelist>
1225 </sect3>
1226
1227 <sect3 id="plugin-kstfit_linear_weighted-outputs">
1228 <title>Outputs</title>
1229 <variablelist>
1230
1231 <varlistentry>
1232 <term>Y Fitted (vector)</term>
1233 <listitem>
1234 <para>
1235 The array of y values for the points representing the best-fit line.
1236 </para>
1237 </listitem>
1238 </varlistentry>
1239
1240 <varlistentry>
1241 <term>Residuals (vector)</term>
1242 <listitem>
1243 <para>
1244 The array of residuals, or differences between the y values of the best-fit line and the y values
1245 of the data points.
1246 </para>
1247 </listitem>
1248 </varlistentry>
1249
1250 <varlistentry>
1251 <term>Parameters (vector)</term>
1252 <listitem>
1253 <para>
1254 The parameters <literal>a</literal> and <literal>b</literal> of the best-fit.
1255 </para>
1256 </listitem>
1257 </varlistentry>
1258
1259 <varlistentry>
1260 <term>Covariance (vector)</term>
1261 <listitem>
1262 <para>
1263 The estimated covariance matrix, returned row after row, starting with row 0.
1264 </para>
1265 </listitem>
1266 </varlistentry>
1267
1268 <varlistentry>
1269 <term>Y Lo (vector)</term>
1270 <listitem>
1271 <para>
1272 The corresponding value in Y Fitted minus the standard deviation of the best-fit function at
1273 the corresponding x value.
1274 </para>
1275 </listitem>
1276 </varlistentry>
1277
1278 <varlistentry>
1279 <term>Y Hi (vector)</term>
1280 <listitem>
1281 <para>
1282 The corresponding value in Y Fitted plus the standard deviation of the best-fit function at
1283 the corresponding x value.
1284 </para>
1285 </listitem>
1286 </varlistentry>
1287
1288 <varlistentry>
1289 <term>chi^2/nu (scalar)</term>
1290 <listitem>
1291 <para>
1292 The value of the sum of squares of the residuals, divided by the degrees of freedom.
1293 </para>
1294 </listitem>
1295 </varlistentry>
1296
1297
1298 </variablelist>
1299 </sect3>
1300 </sect2>
1301
1302 <sect2 id="plugin-kstfit_linear_unweighted">
1303 <title>Fit linear</title>
1304 <para>
1305 The Fit linear plugin is identical in function to the
1306 <link linkend="plugin-kstfit_linear_weighted">Fit linear weighted</link>
1307 plugin with the exception that the weight value <literal>w<subscript>i</subscript></literal>
1308 is equal to <literal>1</literal> for all index values <literal>i</literal>. As a result, the
1309 Weights (vector) input does not exist.
1310 </para>
1311 </sect2>
1312
1313
1314 <sect2 id="plugin-kstfit_lorentzian_weighted">
1315 <title>Fit lorentzian weighted</title>
1316 <para>
1317 The Fit lorentzian weighted plugin performs a weighted non-linear least-squares fit
1318 to a Lorentzian model:
1319 </para>
1320 <para>
1321 <inlinemediaobject>
1322 <imageobject>
1323 <imagedata fileref="Formula-kst-lorentzianfitequation.png" format="PNG"/>
1324 </imageobject>
1325 </inlinemediaobject>
1326 </para>
1327
1328 <para>
1329 An initial estimate of
1330 <literal>a=</literal>(maximum of the y values),
1331 <literal>x<subscript>0</subscript>=</literal>(mean of the x values), and
1332 <inlinemediaobject>
1333 <imageobject>
1334 <imagedata fileref="Symbol-kst-Gamma.png" format="PNG"/>
1335 </imageobject>
1336 </inlinemediaobject><literal>=</literal>(the midpoint of the x values)
1337 is used. The plugin subsequently iterates to the solution
1338 until a precision of <literal>1.0e-4</literal> is reached or 500 iterations have been performed.
1339 </para>
1340
1341 <sect3 id="plugin-kstfit_lorentzian_weighted-inputs">
1342 <title>Inputs</title>
1343
1344 <variablelist>
1345
1346 <varlistentry>
1347 <term>X Array (vector)</term>
1348 <listitem>
1349 <para>
1350 The array of x values for the data points to be fitted.
1351 </para>
1352 </listitem>
1353 </varlistentry>
1354
1355 <varlistentry>
1356 <term>Y Array (vector)</term>
1357 <listitem>
1358 <para>
1359 The array of y values for the data points to be fitted.
1360 </para>
1361 </listitem>
1362 </varlistentry>
1363
1364 <varlistentry>
1365 <term>Weights (vector)</term>
1366 <listitem>
1367 <para>
1368 The array of weights to use for the fit.
1369 </para>
1370 </listitem>
1371 </varlistentry>
1372 </variablelist>
1373 </sect3>
1374
1375 <sect3 id="plugin-kstfit_lorentzian_weighted-outputs">
1376 <title>Outputs</title>
1377
1378 <variablelist>
1379
1380 <varlistentry>
1381 <term>Y Fitted (vector)</term>
1382 <listitem>
1383 <para>
1384 The array of fitted y values.
1385 </para>
1386 </listitem>
1387 </varlistentry>
1388
1389 <varlistentry>
1390 <term>Residuals (vector)</term>
1391 <listitem>
1392 <para>
1393 The array of residuals.
1394 </para>
1395 </listitem>
1396 </varlistentry>
1397
1398 <varlistentry>
1399 <term>Parameters (vector)</term>
1400 <listitem>
1401 <para>
1402 The best fit parameters
1403 <literal>x<subscript>0</subscript></literal>,
1404 <inlinemediaobject>
1405 <imageobject>
1406 <imagedata fileref="Symbol-kst-Gamma.png" format="PNG"/>
1407 </imageobject>
1408 </inlinemediaobject>, and
1409 <literal>a</literal>.
1410 </para>
1411 </listitem>
1412 </varlistentry>
1413
1414 <varlistentry>
1415 <term>Covariance (vector)</term>
1416 <listitem>
1417 <para>
1418 The covariance matrix of the model parameters, returned row after row in the vector.
1419 </para>
1420 </listitem>
1421 </varlistentry>
1422
1423 <varlistentry>
1424 <term>chi^2/nu (scalar)</term>
1425 <listitem>
1426 <para>
1427 The weighted sum of squares of the residuals, divided by the degrees of freedom.
1428 </para>
1429 </listitem>
1430 </varlistentry>
1431
1432 </variablelist>
1433 </sect3>
1434
1435 </sect2>
1436
1437 <sect2 id="plugin-kstfit_lorentzian_unweighted">
1438 <title>Fit lorentzian</title>
1439 <para>
1440 The Fit lorentzian plugin is identical in function to the
1441 <link linkend="plugin-kstfit_lorentzian_weighted">Fit lorentzian weighted</link>
1442 plugin with the exception that the weight value <literal>w<subscript>i</subscript></literal>
1443 is equal to <literal>1</literal> for all index values <literal>i</literal>. As a result, the
1444 Weights (vector) input does not exist.
1445 </para>
1446 </sect2>
1447
1448
1449 <sect2 id="plugin-kstfit_polynomial_weighted">
1450 <title>Fit polynomial weighted</title>
1451 <para>
1452 The Fit polynomial weighted plugin performs a weighted least-squares fit to a polynomial model:
1453 </para>
1454 <para>
1455 <inlinemediaobject>
1456 <imageobject>
1457 <imagedata fileref="Formula-kst-polynomialfitequation.png" format="PNG"/>
1458 </imageobject>
1459 </inlinemediaobject>
1460 </para>
1461 <para>
1462 where <literal>n</literal> is the degree of the polynomial model.
1463 </para>
1464
1465 <sect3 id="plugin-kstfit_polynomial_weighted-inputs">
1466 <title>Inputs</title>
1467
1468 <variablelist>
1469
1470 <varlistentry>
1471 <term>X Array (vector)</term>
1472 <listitem>
1473 <para>
1474 The array of x values for the data points to be fitted.
1475 </para>
1476 </listitem>
1477 </varlistentry>
1478
1479 <varlistentry>
1480 <term>Y Array (vector)</term>
1481 <listitem>
1482 <para>
1483 The array of y values for the data points to be fitted.
1484 </para>
1485 </listitem>
1486 </varlistentry>
1487
1488 <varlistentry>
1489 <term>Weights (vector)</term>
1490 <listitem>
1491 <para>
1492 The array of weights to use for the fit.
1493 </para>
1494 </listitem>
1495 </varlistentry>
1496
1497 <varlistentry>
1498 <term>Order (scalar)</term>
1499 <listitem>
1500 <para>
1501 The order, or degree, of the polynomial model to use.
1502 </para>
1503 </listitem>
1504 </varlistentry>
1505
1506 </variablelist>
1507 </sect3>
1508
1509 <sect3 id="plugin-kstfit_polynomial_weighted-outputs">
1510 <title>Outputs</title>
1511
1512 <variablelist>
1513
1514 <varlistentry>
1515 <term>Y Fitted (vector)</term>
1516 <listitem>
1517 <para>
1518 The array of fitted y values.
1519 </para>
1520 </listitem>
1521 </varlistentry>
1522
1523 <varlistentry>
1524 <term>Residuals (vector)</term>
1525 <listitem>
1526 <para>
1527 The array of residuals.
1528 </para>
1529 </listitem>
1530 </varlistentry>
1531
1532 <varlistentry>
1533 <term>Parameters (vector)</term>
1534 <listitem>
1535 <para>
1536 The best fit parameters <literal>c<subscript>0</subscript></literal>,
1537 <literal>c<subscript>1</subscript></literal>,...,
1538 <literal>c<subscript>n</subscript></literal>.
1539 </para>
1540 </listitem>
1541 </varlistentry>
1542
1543 <varlistentry>
1544 <term>Covariance (vector)</term>
1545 <listitem>
1546 <para>
1547 The covariance matrix of the model parameters, returned row after row in the vector.
1548 </para>
1549 </listitem>
1550 </varlistentry>
1551
1552 <varlistentry>
1553 <term>chi^2/nu (scalar)</term>
1554 <listitem>
1555 <para>
1556 The weighted sum of squares of the residuals, divided by the degrees of freedom.
1557 </para>
1558 </listitem>
1559 </varlistentry>
1560
1561 </variablelist>
1562 </sect3>
1563 </sect2>
1564
1565 <sect2 id="plugin-kstfit_polynomial_unweighted">
1566 <title>Fit polynomial</title>
1567 <para>
1568 The Fit polynomial plugin is identical in function to the
1569 <link linkend="plugin-kstfit_polynomial_weighted">Fit polynomial weighted</link>
1570 plugin with the exception that the weight value <literal>w<subscript>i</subscript></literal>
1571 is equal to <literal>1</literal> for all index values <literal>i</literal>. As a result, the
1572 Weights (vector) input does not exist.
1573 </para>
1574 </sect2>
1575
1576
1577 <sect2 id="plugin-kstfit_sinusoid_weighted">
1578 <title>Fit sinusoid weighted</title>
1579 <para>
1580 The Fit sinusoid weighted plugin performs a least-squares fit to a sinusoid model:
1581 </para>
1582 <para>
1583 <inlinemediaobject>
1584 <imageobject>
1585 <imagedata fileref="Formula-kst-sinusoidfitequation.png" format="PNG"/>
1586 </imageobject>
1587 </inlinemediaobject>
1588 </para>
1589 <para>
1590 where <literal>T</literal> is the specified period,
1591 and <literal>n=2+2H</literal>, where
1592 <literal>H</literal> is the specified number of harmonics.
1593 </para>
1594
1595 <sect3 id="plugin-kstfit_sinusoid_weighted-inputs">
1596 <title>Inputs</title>
1597
1598 <variablelist>
1599
1600 <varlistentry>
1601 <term>X Array (vector)</term>
1602 <listitem>
1603 <para>
1604 The array of x values for the data points to be fitted.
1605 </para>
1606 </listitem>
1607 </varlistentry>
1608
1609 <varlistentry>
1610 <term>Y Array (vector)</term>
1611 <listitem>
1612 <para>
1613 The array of y values for the data points to be fitted.
1614 </para>
1615 </listitem>
1616 </varlistentry>
1617
1618 <varlistentry>
1619 <term>Weights (vector)</term>
1620 <listitem>
1621 <para>
1622 The array of weights to use for the fit.
1623 </para>
1624 </listitem>
1625 </varlistentry>
1626
1627 <varlistentry>
1628 <term>Harmonics (scalar)</term>
1629 <listitem>
1630 <para>
1631 The number of harmonics of the sinusoid to fit.
1632 </para>
1633 </listitem>
1634 </varlistentry>
1635
1636 <varlistentry>
1637 <term>Period (scalar)</term>
1638 <listitem>
1639 <para>
1640 The period of the sinusoid to fit.
1641 </para>
1642 </listitem>
1643 </varlistentry>
1644
1645 </variablelist>
1646 </sect3>
1647
1648 <sect3 id="plugin-kstfit_sinusoid_weighted-outputs">
1649 <title>Outputs</title>
1650
1651 <variablelist>
1652
1653 <varlistentry>
1654 <term>Y Fitted (vector)</term>
1655 <listitem>
1656 <para>
1657 The array of fitted y values.
1658 </para>
1659 </listitem>
1660 </varlistentry>
1661
1662 <varlistentry>
1663 <term>Residuals (vector)</term>
1664 <listitem>
1665 <para>
1666 The array of residuals.
1667 </para>
1668 </listitem>
1669 </varlistentry>
1670
1671 <varlistentry>
1672 <term>Parameters (vector)</term>
1673 <listitem>
1674 <para>
1675 The best fit parameters <literal>c<subscript>0</subscript></literal>,
1676 <literal>c<subscript>1</subscript></literal>,...,
1677 <literal>c<subscript>n</subscript></literal>.
1678 </para>
1679 </listitem>
1680 </varlistentry>
1681
1682 <varlistentry>
1683 <term>Covariance (vector)</term>
1684 <listitem>
1685 <para>
1686 The covariance matrix of the model parameters, returned row after row in the vector.
1687 </para>
1688 </listitem>
1689 </varlistentry>
1690
1691 <varlistentry>
1692 <term>chi^2/nu (scalar)</term>
1693 <listitem>
1694 <para>
1695 The weighted sum of squares of the residuals, divided by the degrees of freedom.
1696 </para>
1697 </listitem>
1698 </varlistentry>
1699
1700 </variablelist>
1701 </sect3>
1702 </sect2>
1703
1704 <sect2 id="plugin-kstfit_sinusoid_unweighted">
1705 <title>Fit sinusoid</title>
1706 <para>
1707 The Fit sinusoid plugin is identical in function to the
1708 <link linkend="plugin-kstfit_sinusoid_weighted">Fit sinusoid weighted</link>
1709 plugin with the exception that the weight value <literal>w<subscript>i</subscript></literal>
1710 is equal to <literal>1</literal> for all index values <literal>i</literal>. As a result, the
1711 Weights (vector) input does not exist.
1712 </para>
1713 </sect2>
1714
1715
1716
1717
1718
1719
1720 <sect2 id="plugin-kstinterp_akima">
1721 <title>Interpolation Akima spline</title>
1722 <para>
1723 The Interpolation Akima spline plugin generates a non-rounded Akima spline interpolation for the supplied data set,
1724 using natural boundary conditions.
1725 </para>
1726
1727 <sect3 id="plugin-kstinterp_akima-inputs">
1728 <title>Inputs</title>
1729 <variablelist>
1730
1731 <varlistentry>
1732 <term>X Array (vector)</term>
1733 <listitem>
1734 <para>
1735 The array of x values of the data points to generate the interpolation for.
1736 </para>
1737 </listitem>
1738 </varlistentry>
1739
1740
1741 <varlistentry>
1742 <term>Y Array (vector)</term>
1743 <listitem>
1744 <para>
1745 The array of y values of the data points to generate the interpolation for.
1746 </para>
1747 </listitem>
1748 </varlistentry>
1749
1750 <varlistentry>
1751 <term>X' Array (vector)</term>
1752 <listitem>
1753 <para>
1754 The array of x values for which interpolated y values are desired.
1755 </para>
1756 </listitem>
1757 </varlistentry>
1758
1759 </variablelist>
1760 </sect3>
1761
1762 <sect3 id="plugin-kstinterp_akima-outputs">
1763 <title>Outputs</title>
1764 <variablelist>
1765
1766 <varlistentry>
1767 <term>Y Interpolated (vector)</term>
1768 <listitem>
1769 <para>
1770 The interpolated y values.
1771 </para>
1772 </listitem>
1773 </varlistentry>
1774
1775 </variablelist>
1776 </sect3>
1777 </sect2>
1778
1779 <sect2 id="plugin-kstinterp_akima_periodic">
1780 <title>Interpolation Akima spline periodic</title>
1781 <para>
1782 The kstinterp akima periodic plugin generates a non-rounded Akima spline interpolation for the supplied data set,
1783 using periodic boundary conditions.
1784 </para>
1785
1786 <sect3 id="plugin-kstinterp_akima_periodic-inputs">
1787 <title>Inputs</title>
1788 <variablelist>
1789
1790 <varlistentry>
1791 <term>X Array (vector)</term>
1792 <listitem>
1793 <para>
1794 The array of x values of the data points to generate the interpolation for.
1795 </para>
1796 </listitem>
1797 </varlistentry>
1798
1799
1800 <varlistentry>
1801 <term>Y Array (vector)</term>
1802 <listitem>
1803 <para>
1804 The array of y values of the data points to generate the interpolation for.
1805 </para>
1806 </listitem>
1807 </varlistentry>
1808
1809 <varlistentry>
1810 <term>X' Array (vector)</term>
1811 <listitem>
1812 <para>
1813 The array of x values for which interpolated y values are desired.
1814 </para>
1815 </listitem>
1816 </varlistentry>
1817
1818 </variablelist>
1819 </sect3>
1820
1821 <sect3 id="plugin-kstinterp_akima_periodic-outputs">
1822 <title>Outputs</title>
1823 <variablelist>
1824
1825 <varlistentry>
1826 <term>Y Interpolated (vector)</term>
1827 <listitem>
1828 <para>
1829 The interpolated y values.
1830 </para>
1831 </listitem>
1832 </varlistentry>
1833
1834 </variablelist>
1835 </sect3>
1836 </sect2>
1837
1838 <sect2 id="plugin-kstinterp_cspline">
1839 <title>Interpolation cubic spline</title>
1840 <para>
1841 The Interpolation cubic spline plugin generates a cubic spline interpolation for the supplied data set,
1842 using natural boundary conditions.
1843 </para>
1844
1845 <sect3 id="plugin-kstinterp_cspline-inputs">
1846 <title>Inputs</title>
1847 <variablelist>
1848
1849 <varlistentry>
1850 <term>X Array (vector)</term>
1851 <listitem>
1852 <para>
1853 The array of x values of the data points to generate the interpolation for.
1854 </para>
1855 </listitem>
1856 </varlistentry>
1857
1858
1859 <varlistentry>
1860 <term>Y Array (vector)</term>
1861 <listitem>
1862 <para>
1863 The array of y values of the data points to generate the interpolation for.
1864 </para>
1865 </listitem>
1866 </varlistentry>
1867
1868 <varlistentry>
1869 <term>X' Array (vector)</term>
1870 <listitem>
1871 <para>
1872 The array of x values for which interpolated y values are desired.
1873 </para>
1874 </listitem>
1875 </varlistentry>
1876
1877 </variablelist>
1878 </sect3>
1879
1880 <sect3 id="plugin-kstinterp_cspline-outputs">
1881 <title>Outputs</title>
1882 <variablelist>
1883
1884 <varlistentry>
1885 <term>Y Interpolated (vector)</term>
1886 <listitem>
1887 <para>
1888 The interpolated y values.
1889 </para>
1890 </listitem>
1891 </varlistentry>
1892
1893 </variablelist>
1894 </sect3>
1895 </sect2>
1896
1897 <sect2 id="plugin-kstinterp_cspline_periodic">
1898 <title>Interpolation cubic spline periodic</title>
1899 <para>
1900 The Interpolation cubic spline periodic plugin generates a cubic spline interpolation for the supplied data set,
1901 using periodic boundary conditions.
1902 </para>
1903
1904 <sect3 id="plugin-kstinterp_cspline_periodic-inputs">
1905 <title>Inputs</title>
1906 <variablelist>
1907
1908 <varlistentry>
1909 <term>X Array (vector)</term>
1910 <listitem>
1911 <para>
1912 The array of x values of the data points to generate the interpolation for.
1913 </para>
1914 </listitem>
1915 </varlistentry>
1916
1917
1918 <varlistentry>
1919 <term>Y Array (vector)</term>
1920 <listitem>
1921 <para>
1922 The array of y values of the data points to generate the interpolation for.
1923 </para>
1924 </listitem>
1925 </varlistentry>
1926
1927 <varlistentry>
1928 <term>X' Array (vector)</term>
1929 <listitem>
1930 <para>
1931 The array of x values for which interpolated y values are desired.
1932 </para>
1933 </listitem>
1934 </varlistentry>
1935
1936 </variablelist>
1937 </sect3>
1938
1939 <sect3 id="plugin-kstinterp_cspline_periodic-outputs">
1940 <title>Outputs</title>
1941 <variablelist>
1942
1943 <varlistentry>
1944 <term>Y Interpolated (vector)</term>
1945 <listitem>
1946 <para>
1947 The interpolated y values.
1948 </para>
1949 </listitem>
1950 </varlistentry>
1951
1952 </variablelist>
1953 </sect3>
1954 </sect2>
1955
1956 <sect2 id="plugin-kstinterp_linear">
1957 <title>Interpolation linear</title>
1958 <para>
1959 The Interpolation linear plugin generates a linear interpolation for the supplied data set.
1960 </para>
1961
1962 <sect3 id="plugin-kstinterp_linear-inputs">
1963 <title>Inputs</title>
1964 <variablelist>
1965
1966 <varlistentry>
1967 <term>X Array (vector)</term>
1968 <listitem>
1969 <para>
1970 The array of x values of the data points to generate the interpolation for.
1971 </para>
1972 </listitem>
1973 </varlistentry>
1974
1975
1976 <varlistentry>
1977 <term>Y Array (vector)</term>
1978 <listitem>
1979 <para>
1980 The array of y values of the data points to generate the interpolation for.
1981 </para>
1982 </listitem>
1983 </varlistentry>
1984
1985 <varlistentry>
1986 <term>X' Array (vector)</term>
1987 <listitem>
1988 <para>
1989 The array of x values for which interpolated y values are desired.
1990 </para>
1991 </listitem>
1992 </varlistentry>
1993
1994 </variablelist>
1995 </sect3>
1996
1997 <sect3 id="plugin-kstinterp_linear-outputs">
1998 <title>Outputs</title>
1999 <variablelist>
2000
2001 <varlistentry>
2002 <term>Y Interpolated (vector)</term>
2003 <listitem>
2004 <para>
2005 The interpolated y values.
2006 </para>
2007 </listitem>
2008 </varlistentry>
2009
2010 </variablelist>
2011 </sect3>
2012 </sect2>
2013
2014 <sect2 id="plugin-kstinterp_polynomial">
2015 <title>Interpolation polynomial</title>
2016 <para>
2017 The Interpolation polynomial plugin generates a polynomial interpolation for the supplied data set.
2018 The number of terms in the polynomial used is equal to the number of points in the supplied
2019 data set.
2020 </para>
2021
2022 <sect3 id="plugin-kstinterp_polynomial-inputs">
2023 <title>Inputs</title>
2024 <variablelist>
2025
2026 <varlistentry>
2027 <term>X Array (vector)</term>
2028 <listitem>
2029 <para>
2030 The array of x values of the data points to generate the interpolation for.
2031 </para>
2032 </listitem>
2033 </varlistentry>
2034
2035
2036 <varlistentry>
2037 <term>Y Array (vector)</term>
2038 <listitem>
2039 <para>
2040 The array of y values of the data points to generate the interpolation for.
2041 </para>
2042 </listitem>
2043 </varlistentry>
2044
2045 <varlistentry>
2046 <term>X' Array (vector)</term>
2047 <listitem>
2048 <para>
2049 The array of x values for which interpolated y values are desired.
2050 </para>
2051 </listitem>
2052 </varlistentry>
2053
2054 </variablelist>
2055 </sect3>
2056
2057 <sect3 id="plugin-kstinterp_polynomial-outputs">
2058 <title>Outputs</title>
2059 <variablelist>
2060
2061 <varlistentry>
2062 <term>Y Interpolated (vector)</term>
2063 <listitem>
2064 <para>
2065 The interpolated y values.
2066 </para>
2067 </listitem>
2068 </varlistentry>
2069
2070 </variablelist>
2071 </sect3>
2072 </sect2>
2073 <sect2 id="plugin-noise-addition">
2074 <title>Noise Addition</title>
2075 <para>
2076 The Noise addition plugin adds a Gaussian random variable to each element of the input vector.
2077 The Gaussian distribution used has a mean of <literal>0</literal> and the specified
2078 standard deviation. The probability density function of a Gaussian random variable is:
2079 </para>
2080 <para>
2081 <inlinemediaobject>
2082 <imageobject>
2083 <imagedata fileref="Formula-kst-gaussianprobability.png" format="PNG"/>
2084 </imageobject>
2085 </inlinemediaobject>
2086 </para>
2087
2088 <sect3 id="plugin-noise-addition-inputs">
2089 <title>Inputs</title>
2090 <variablelist>
2091
2092 <varlistentry>
2093 <term>Array (vector)</term>
2094 <listitem>
2095 <para>
2096 The array of elements to which random noise is to be added.
2097 </para>
2098 </listitem>
2099 </varlistentry>
2100
2101
2102 <varlistentry>
2103 <term>Sigma (scalar)</term>
2104 <listitem>
2105 <para>
2106 The standard deviation to use for the Gaussian distribution.
2107 </para>
2108 </listitem>
2109 </varlistentry>
2110
2111
2112 </variablelist>
2113 </sect3>
2114
2115 <sect3 id="plugin-noiseaddition-outputs">
2116 <title>Outputs</title>
2117 <variablelist>
2118
2119 <varlistentry>
2120 <term>Output Array (vector)</term>
2121 <listitem>
2122 <para>
2123 The array of elements with Gaussian noise added.
2124 </para>
2125 </listitem>
2126 </varlistentry>
2127
2128 </variablelist>
2129 </sect3>
2130 </sect2>
2131
2132 <sect2 id="plugin-periodogram">
2133 <title>Periodogram</title>
2134 <para>
2135 The periodogram plugin produces the periodogram of a given data set. One of two algorithms is used depending on the
2136 size of the data set—a fast algorithm is used if there are greater than 100 data points, while a slower
2137 algorithm is used if there are less than or equal to 100 data points.
2138 </para>
2139
2140 <sect3 id="plugin-periodogram-inputs">
2141 <title>Inputs</title>
2142 <variablelist>
2143
2144 <varlistentry>
2145 <term>Time Array (vector)</term>
2146 <listitem>
2147 <para>
2148 The array of time values of the data points to generate the interpolation for.
2149 </para>
2150 </listitem>
2151 </varlistentry>
2152
2153
2154 <varlistentry>
2155 <term>Data Array (vector)</term>
2156 <listitem>
2157 <para>
2158 The array of data values, dependent on the time values,
2159 of the data points to generate the interpolation for.
2160 </para>
2161 </listitem>
2162 </varlistentry>
2163
2164 <varlistentry>
2165 <term>Oversampling factor (scalar)</term>
2166 <listitem>
2167 <para>
2168 The factor to oversample by.
2169 </para>
2170 </listitem>
2171 </varlistentry>
2172
2173 <varlistentry>
2174 <term>Average Nyquist frequency factor (scalar)</term>
2175 <listitem>
2176 <para>
2177 The average Nyquist frequency factor.
2178 </para>
2179 </listitem>
2180 </varlistentry>
2181
2182 </variablelist>
2183 </sect3>
2184
2185 <sect3 id="plugin-periodogram-outputs">
2186 <title>Outputs</title>
2187 <variablelist>
2188
2189 <varlistentry>
2190 <term>Frequency (vector)</term>
2191 <listitem>
2192 <para>
2193 The frequency vector.
2194 </para>
2195 </listitem>
2196 </varlistentry>
2197
2198 <varlistentry>
2199 <term>Periodogram (vector)</term>
2200 <listitem>
2201 <para>
2202 The frequency response vector for the periodogram.
2203 </para>
2204 </listitem>
2205 </varlistentry>
2206
2207 </variablelist>
2208 </sect3>
2209 </sect2>
2210
2211
2212 <sect2 id="plugin-statistics">
2213 <title>Statistics</title>
2214 <para>
2215 The statistics plugin calculates statistics for a given data set. Most of the output scalars
2216 are named such that the values they represent should be apparent. Standard formulas are used
2217 to calculate the statistical values.
2218 </para>
2219
2220 <sect3 id="plugin-statistics-inputs">
2221 <title>Inputs</title>
2222 <variablelist>
2223
2224 <varlistentry>
2225 <term>Data Array (vector)</term>
2226 <listitem>
2227 <para>
2228 The array of data values to calculate statistics for.
2229 </para>
2230 </listitem>
2231 </varlistentry>
2232
2233 </variablelist>
2234 </sect3>
2235
2236 <sect3 id="plugin-statistics-outputs">
2237 <title>Outputs</title>
2238 <variablelist>
2239 <varlistentry>
2240 <term>Mean (scalar)</term>
2241 <listitem>
2242 <para>
2243 The mean of the data values.
2244 </para>
2245 </listitem>
2246 </varlistentry>
2247
2248 <varlistentry>
2249 <term>Minimum (scalar)</term>
2250 <listitem>
2251 <para>
2252 The minimum value found in the data array.
2253 </para>
2254 </listitem>
2255 </varlistentry>
2256
2257 <varlistentry>
2258 <term>Maximum (scalar)</term>
2259 <listitem>
2260 <para>
2261 The maximum value found in the data array.
2262 </para>
2263 </listitem>
2264 </varlistentry>
2265
2266 <varlistentry>
2267 <term>Variance (scalar)</term>
2268 <listitem>
2269 <para>
2270 The variance of the data set.
2271 </para>
2272 </listitem>
2273 </varlistentry>
2274
2275 <varlistentry>
2276 <term>Standard deviation (scalar)</term>
2277 <listitem>
2278 <para>
2279 The standard deviation of the data set.
2280 </para>
2281 </listitem>
2282 </varlistentry>
2283
2284 <varlistentry>
2285 <term>Median (scalar)</term>
2286 <listitem>
2287 <para>
2288 The median of the data set.
2289 </para>
2290 </listitem>
2291 </varlistentry>
2292
2293 <varlistentry>
2294 <term>Absolute deviation (scalar)</term>
2295 <listitem>
2296 <para>
2297 The absolute deviation of the data set.
2298 </para>
2299 </listitem>
2300 </varlistentry>
2301
2302 <varlistentry>
2303 <term>Skewness (scalar)</term>
2304 <listitem>
2305 <para>
2306 The skewness of the data set.
2307 </para>
2308 </listitem>
2309 </varlistentry>
2310
2311
2312 <varlistentry>
2313 <term>Kurtosis (scalar)</term>
2314 <listitem>
2315 <para>
2316 The kurtosis of the data set.
2317 </para>
2318 </listitem>
2319 </varlistentry>
2320 </variablelist>
2321 </sect3>
2322 </sect2>
2323
2324 <!-- End the long plugins section -->
2325 </sect1>
2326
2327 </chapter>
2328
2329
2330 <!-- Keep this comment at the end of the file
2331 Local variables:
2332 mode: xml
2333 sgml-omittag:nil
2334 sgml-shorttag:nil
2335 sgml-namecase-general:nil
2336 sgml-general-insert-case:lower
2337 sgml-minimize-attributes:nil
2338 sgml-always-quote-attributes:t
2339 sgml-indent-step:0
2340 sgml-indent-data:true
2341 sgml-parent-document:("index.docbook" "book" "chapter")
2342 sgml-exposed-tags:nil
2343 sgml-local-catalogs:nil
2344 sgml-local-ecat-files:nil
2345 End:
2346 -->