File indexing completed on 2024-05-12 04:19:45

0001 /*
0002  * transupp.c
0003  *
0004  * Copyright (C) 1997-2009, Thomas G. Lane, Guido Vollbeding.
0005  * This file is part of the Independent JPEG Group's software.
0006  * For conditions of distribution and use, see the accompanying README file.
0007  *
0008  * This file contains image transformation routines and other utility code
0009  * used by the jpegtran sample application.  These are NOT part of the core
0010  * JPEG library.  But we keep these routines separate from jpegtran.c to
0011  * ease the task of maintaining jpegtran-like programs that have other user
0012  * interfaces.
0013  */
0014 
0015 /* Although this file really shouldn't have access to the library internals,
0016  * it's helpful to let it call jround_up() and jcopy_block_row().
0017  */
0018 #define JPEG_INTERNALS
0019 
0020 #include "jinclude.h"
0021 #include "jpeglib.h"
0022 #include "transupp.h"       /* My own external interface */
0023 #include <ctype.h>      /* to declare isdigit() */
0024 
0025 #undef EXTERN
0026 #define EXTERN(type) type
0027 
0028 #if TRANSFORMS_SUPPORTED
0029 
0030 /*
0031  * Lossless image transformation routines.  These routines work on DCT
0032  * coefficient arrays and thus do not require any lossy decompression
0033  * or recompression of the image.
0034  * Thanks to Guido Vollbeding for the initial design and code of this feature,
0035  * and to Ben Jackson for introducing the cropping feature.
0036  *
0037  * Horizontal flipping is done in-place, using a single top-to-bottom
0038  * pass through the virtual source array.  It will thus be much the
0039  * fastest option for images larger than main memory.
0040  *
0041  * The other routines require a set of destination virtual arrays, so they
0042  * need twice as much memory as jpegtran normally does.  The destination
0043  * arrays are always written in normal scan order (top to bottom) because
0044  * the virtual array manager expects this.  The source arrays will be scanned
0045  * in the corresponding order, which means multiple passes through the source
0046  * arrays for most of the transforms.  That could result in much thrashing
0047  * if the image is larger than main memory.
0048  *
0049  * If cropping or trimming is involved, the destination arrays may be smaller
0050  * than the source arrays.  Note it is not possible to do horizontal flip
0051  * in-place when a nonzero Y crop offset is specified, since we'd have to move
0052  * data from one block row to another but the virtual array manager doesn't
0053  * guarantee we can touch more than one row at a time.  So in that case,
0054  * we have to use a separate destination array.
0055  *
0056  * Some notes about the operating environment of the individual transform
0057  * routines:
0058  * 1. Both the source and destination virtual arrays are allocated from the
0059  *    source JPEG object, and therefore should be manipulated by calling the
0060  *    source's memory manager.
0061  * 2. The destination's component count should be used.  It may be smaller
0062  *    than the source's when forcing to grayscale.
0063  * 3. Likewise the destination's sampling factors should be used.  When
0064  *    forcing to grayscale the destination's sampling factors will be all 1,
0065  *    and we may as well take that as the effective iMCU size.
0066  * 4. When "trim" is in effect, the destination's dimensions will be the
0067  *    trimmed values but the source's will be untrimmed.
0068  * 5. When "crop" is in effect, the destination's dimensions will be the
0069  *    cropped values but the source's will be uncropped.  Each transform
0070  *    routine is responsible for picking up source data starting at the
0071  *    correct X and Y offset for the crop region.  (The X and Y offsets
0072  *    passed to the transform routines are measured in iMCU blocks of the
0073  *    destination.)
0074  * 6. All the routines assume that the source and destination buffers are
0075  *    padded out to a full iMCU boundary.  This is true, although for the
0076  *    source buffer it is an undocumented property of jdcoefct.c.
0077  */
0078 
0079 
0080 EXTERN(void)
0081 do_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0082      JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
0083      jvirt_barray_ptr *src_coef_arrays,
0084      jvirt_barray_ptr *dst_coef_arrays)
0085 /* Crop.  This is only used when no rotate/flip is requested with the crop. */
0086 {
0087   JDIMENSION dst_blk_y, x_crop_blocks, y_crop_blocks;
0088   int ci, offset_y;
0089   JBLOCKARRAY src_buffer, dst_buffer;
0090   jpeg_component_info *compptr;
0091 
0092   /* We simply have to copy the right amount of data (the destination's
0093    * image size) starting at the given X and Y offsets in the source.
0094    */
0095   for (ci = 0; ci < dstinfo->num_components; ci++) {
0096     compptr = dstinfo->comp_info + ci;
0097     x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
0098     y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
0099     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0100      dst_blk_y += compptr->v_samp_factor) {
0101       dst_buffer = (*srcinfo->mem->access_virt_barray)
0102     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0103      (JDIMENSION) compptr->v_samp_factor, TRUE);
0104       src_buffer = (*srcinfo->mem->access_virt_barray)
0105     ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0106      dst_blk_y + y_crop_blocks,
0107      (JDIMENSION) compptr->v_samp_factor, FALSE);
0108       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0109     jcopy_block_row(src_buffer[offset_y] + x_crop_blocks,
0110             dst_buffer[offset_y],
0111             compptr->width_in_blocks);
0112       }
0113     }
0114   }
0115 }
0116 
0117 
0118 EXTERN(void)
0119 do_flip_h_no_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0120            JDIMENSION x_crop_offset,
0121            jvirt_barray_ptr *src_coef_arrays)
0122 /* Horizontal flip; done in-place, so no separate dest array is required.
0123  * NB: this only works when y_crop_offset is zero.
0124  */
0125 {
0126   JDIMENSION MCU_cols, comp_width, blk_x, blk_y, x_crop_blocks;
0127   int ci, k, offset_y;
0128   JBLOCKARRAY buffer;
0129   JCOEFPTR ptr1, ptr2;
0130   JCOEF temp1, temp2;
0131   jpeg_component_info *compptr;
0132 
0133   /* Horizontal mirroring of DCT blocks is accomplished by swapping
0134    * pairs of blocks in-place.  Within a DCT block, we perform horizontal
0135    * mirroring by changing the signs of odd-numbered columns.
0136    * Partial iMCUs at the right edge are left untouched.
0137    */
0138   MCU_cols = srcinfo->output_width /
0139     (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
0140 
0141   for (ci = 0; ci < dstinfo->num_components; ci++) {
0142     compptr = dstinfo->comp_info + ci;
0143     comp_width = MCU_cols * compptr->h_samp_factor;
0144     x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
0145     for (blk_y = 0; blk_y < compptr->height_in_blocks;
0146      blk_y += compptr->v_samp_factor) {
0147       buffer = (*srcinfo->mem->access_virt_barray)
0148     ((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y,
0149      (JDIMENSION) compptr->v_samp_factor, TRUE);
0150       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0151     /* Do the mirroring */
0152     for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) {
0153       ptr1 = buffer[offset_y][blk_x];
0154       ptr2 = buffer[offset_y][comp_width - blk_x - 1];
0155       /* this unrolled loop doesn't need to know which row it's on... */
0156       for (k = 0; k < DCTSIZE2; k += 2) {
0157         temp1 = *ptr1;  /* swap even column */
0158         temp2 = *ptr2;
0159         *ptr1++ = temp2;
0160         *ptr2++ = temp1;
0161         temp1 = *ptr1;  /* swap odd column with sign change */
0162         temp2 = *ptr2;
0163         *ptr1++ = -temp2;
0164         *ptr2++ = -temp1;
0165       }
0166     }
0167     if (x_crop_blocks > 0) {
0168       /* Now left-justify the portion of the data to be kept.
0169        * We can't use a single jcopy_block_row() call because that routine
0170        * depends on memcpy(), whose behavior is unspecified for overlapping
0171        * source and destination areas.  Sigh.
0172        */
0173       for (blk_x = 0; blk_x < compptr->width_in_blocks; blk_x++) {
0174         jcopy_block_row(buffer[offset_y] + blk_x + x_crop_blocks,
0175                 buffer[offset_y] + blk_x,
0176                 (JDIMENSION) 1);
0177       }
0178     }
0179       }
0180     }
0181   }
0182 }
0183 
0184 
0185 EXTERN(void)
0186 do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0187        JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
0188        jvirt_barray_ptr *src_coef_arrays,
0189        jvirt_barray_ptr *dst_coef_arrays)
0190 /* Horizontal flip in general cropping case */
0191 {
0192   JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y;
0193   JDIMENSION x_crop_blocks, y_crop_blocks;
0194   int ci, k, offset_y;
0195   JBLOCKARRAY src_buffer, dst_buffer;
0196   JBLOCKROW src_row_ptr, dst_row_ptr;
0197   JCOEFPTR src_ptr, dst_ptr;
0198   jpeg_component_info *compptr;
0199 
0200   /* Here we must output into a separate array because we can't touch
0201    * different rows of a single virtual array simultaneously.  Otherwise,
0202    * this is essentially the same as the routine above.
0203    */
0204   MCU_cols = srcinfo->output_width /
0205     (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
0206 
0207   for (ci = 0; ci < dstinfo->num_components; ci++) {
0208     compptr = dstinfo->comp_info + ci;
0209     comp_width = MCU_cols * compptr->h_samp_factor;
0210     x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
0211     y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
0212     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0213      dst_blk_y += compptr->v_samp_factor) {
0214       dst_buffer = (*srcinfo->mem->access_virt_barray)
0215     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0216      (JDIMENSION) compptr->v_samp_factor, TRUE);
0217       src_buffer = (*srcinfo->mem->access_virt_barray)
0218     ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0219      dst_blk_y + y_crop_blocks,
0220      (JDIMENSION) compptr->v_samp_factor, FALSE);
0221       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0222     dst_row_ptr = dst_buffer[offset_y];
0223     src_row_ptr = src_buffer[offset_y];
0224     for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
0225       if (x_crop_blocks + dst_blk_x < comp_width) {
0226         /* Do the mirrorable blocks */
0227         dst_ptr = dst_row_ptr[dst_blk_x];
0228         src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1];
0229         /* this unrolled loop doesn't need to know which row it's on... */
0230         for (k = 0; k < DCTSIZE2; k += 2) {
0231           *dst_ptr++ = *src_ptr++;   /* copy even column */
0232           *dst_ptr++ = - *src_ptr++; /* copy odd column with sign change */
0233         }
0234       } else {
0235         /* Copy last partial block(s) verbatim */
0236         jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks,
0237                 dst_row_ptr + dst_blk_x,
0238                 (JDIMENSION) 1);
0239       }
0240     }
0241       }
0242     }
0243   }
0244 }
0245 
0246 
0247 EXTERN(void)
0248 do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0249        JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
0250        jvirt_barray_ptr *src_coef_arrays,
0251        jvirt_barray_ptr *dst_coef_arrays)
0252 /* Vertical flip */
0253 {
0254   JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
0255   JDIMENSION x_crop_blocks, y_crop_blocks;
0256   int ci, i, j, offset_y;
0257   JBLOCKARRAY src_buffer, dst_buffer;
0258   JBLOCKROW src_row_ptr, dst_row_ptr;
0259   JCOEFPTR src_ptr, dst_ptr;
0260   jpeg_component_info *compptr;
0261 
0262   /* We output into a separate array because we can't touch different
0263    * rows of the source virtual array simultaneously.  Otherwise, this
0264    * is a pretty straightforward analog of horizontal flip.
0265    * Within a DCT block, vertical mirroring is done by changing the signs
0266    * of odd-numbered rows.
0267    * Partial iMCUs at the bottom edge are copied verbatim.
0268    */
0269   MCU_rows = srcinfo->output_height /
0270     (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size);
0271 
0272   for (ci = 0; ci < dstinfo->num_components; ci++) {
0273     compptr = dstinfo->comp_info + ci;
0274     comp_height = MCU_rows * compptr->v_samp_factor;
0275     x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
0276     y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
0277     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0278      dst_blk_y += compptr->v_samp_factor) {
0279       dst_buffer = (*srcinfo->mem->access_virt_barray)
0280     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0281      (JDIMENSION) compptr->v_samp_factor, TRUE);
0282       if (y_crop_blocks + dst_blk_y < comp_height) {
0283     /* Row is within the mirrorable area. */
0284     src_buffer = (*srcinfo->mem->access_virt_barray)
0285       ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0286        comp_height - y_crop_blocks - dst_blk_y -
0287        (JDIMENSION) compptr->v_samp_factor,
0288        (JDIMENSION) compptr->v_samp_factor, FALSE);
0289       } else {
0290     /* Bottom-edge blocks will be copied verbatim. */
0291     src_buffer = (*srcinfo->mem->access_virt_barray)
0292       ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0293        dst_blk_y + y_crop_blocks,
0294        (JDIMENSION) compptr->v_samp_factor, FALSE);
0295       }
0296       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0297     if (y_crop_blocks + dst_blk_y < comp_height) {
0298       /* Row is within the mirrorable area. */
0299       dst_row_ptr = dst_buffer[offset_y];
0300       src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
0301       src_row_ptr += x_crop_blocks;
0302       for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
0303            dst_blk_x++) {
0304         dst_ptr = dst_row_ptr[dst_blk_x];
0305         src_ptr = src_row_ptr[dst_blk_x];
0306         for (i = 0; i < DCTSIZE; i += 2) {
0307           /* copy even row */
0308           for (j = 0; j < DCTSIZE; j++)
0309         *dst_ptr++ = *src_ptr++;
0310           /* copy odd row with sign change */
0311           for (j = 0; j < DCTSIZE; j++)
0312         *dst_ptr++ = - *src_ptr++;
0313         }
0314       }
0315     } else {
0316       /* Just copy row verbatim. */
0317       jcopy_block_row(src_buffer[offset_y] + x_crop_blocks,
0318               dst_buffer[offset_y],
0319               compptr->width_in_blocks);
0320     }
0321       }
0322     }
0323   }
0324 }
0325 
0326 
0327 EXTERN(void)
0328 do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0329           JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
0330           jvirt_barray_ptr *src_coef_arrays,
0331           jvirt_barray_ptr *dst_coef_arrays)
0332 /* Transpose source into destination */
0333 {
0334   JDIMENSION dst_blk_x, dst_blk_y, x_crop_blocks, y_crop_blocks;
0335   int ci, i, j, offset_x, offset_y;
0336   JBLOCKARRAY src_buffer, dst_buffer;
0337   JCOEFPTR src_ptr, dst_ptr;
0338   jpeg_component_info *compptr;
0339 
0340   /* Transposing pixels within a block just requires transposing the
0341    * DCT coefficients.
0342    * Partial iMCUs at the edges require no special treatment; we simply
0343    * process all the available DCT blocks for every component.
0344    */
0345   for (ci = 0; ci < dstinfo->num_components; ci++) {
0346     compptr = dstinfo->comp_info + ci;
0347     x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
0348     y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
0349     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0350      dst_blk_y += compptr->v_samp_factor) {
0351       dst_buffer = (*srcinfo->mem->access_virt_barray)
0352     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0353      (JDIMENSION) compptr->v_samp_factor, TRUE);
0354       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0355     for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
0356          dst_blk_x += compptr->h_samp_factor) {
0357       src_buffer = (*srcinfo->mem->access_virt_barray)
0358         ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0359          dst_blk_x + x_crop_blocks,
0360          (JDIMENSION) compptr->h_samp_factor, FALSE);
0361       for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
0362         dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
0363         src_ptr = src_buffer[offset_x][dst_blk_y + offset_y + y_crop_blocks];
0364         for (i = 0; i < DCTSIZE; i++)
0365           for (j = 0; j < DCTSIZE; j++)
0366         dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0367       }
0368     }
0369       }
0370     }
0371   }
0372 }
0373 
0374 
0375 EXTERN(void)
0376 do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0377        JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
0378        jvirt_barray_ptr *src_coef_arrays,
0379        jvirt_barray_ptr *dst_coef_arrays)
0380 /* 90 degree rotation is equivalent to
0381  *   1. Transposing the image;
0382  *   2. Horizontal mirroring.
0383  * These two steps are merged into a single processing routine.
0384  */
0385 {
0386   JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y;
0387   JDIMENSION x_crop_blocks, y_crop_blocks;
0388   int ci, i, j, offset_x, offset_y;
0389   JBLOCKARRAY src_buffer, dst_buffer;
0390   JCOEFPTR src_ptr, dst_ptr;
0391   jpeg_component_info *compptr;
0392 
0393   /* Because of the horizontal mirror step, we can't process partial iMCUs
0394    * at the (output) right edge properly.  They just get transposed and
0395    * not mirrored.
0396    */
0397   MCU_cols = srcinfo->output_height /
0398     (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
0399 
0400   for (ci = 0; ci < dstinfo->num_components; ci++) {
0401     compptr = dstinfo->comp_info + ci;
0402     comp_width = MCU_cols * compptr->h_samp_factor;
0403     x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
0404     y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
0405     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0406      dst_blk_y += compptr->v_samp_factor) {
0407       dst_buffer = (*srcinfo->mem->access_virt_barray)
0408     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0409      (JDIMENSION) compptr->v_samp_factor, TRUE);
0410       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0411     for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
0412          dst_blk_x += compptr->h_samp_factor) {
0413       if (x_crop_blocks + dst_blk_x < comp_width) {
0414         /* Block is within the mirrorable area. */
0415         src_buffer = (*srcinfo->mem->access_virt_barray)
0416           ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0417            comp_width - x_crop_blocks - dst_blk_x -
0418            (JDIMENSION) compptr->h_samp_factor,
0419            (JDIMENSION) compptr->h_samp_factor, FALSE);
0420       } else {
0421         /* Edge blocks are transposed but not mirrored. */
0422         src_buffer = (*srcinfo->mem->access_virt_barray)
0423           ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0424            dst_blk_x + x_crop_blocks,
0425            (JDIMENSION) compptr->h_samp_factor, FALSE);
0426       }
0427       for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
0428         dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
0429         if (x_crop_blocks + dst_blk_x < comp_width) {
0430           /* Block is within the mirrorable area. */
0431           src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1]
0432         [dst_blk_y + offset_y + y_crop_blocks];
0433           for (i = 0; i < DCTSIZE; i++) {
0434         for (j = 0; j < DCTSIZE; j++)
0435           dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0436         i++;
0437         for (j = 0; j < DCTSIZE; j++)
0438           dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
0439           }
0440         } else {
0441           /* Edge blocks are transposed but not mirrored. */
0442           src_ptr = src_buffer[offset_x]
0443         [dst_blk_y + offset_y + y_crop_blocks];
0444           for (i = 0; i < DCTSIZE; i++)
0445         for (j = 0; j < DCTSIZE; j++)
0446           dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0447         }
0448       }
0449     }
0450       }
0451     }
0452   }
0453 }
0454 
0455 
0456 EXTERN(void)
0457 do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0458         JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
0459         jvirt_barray_ptr *src_coef_arrays,
0460         jvirt_barray_ptr *dst_coef_arrays)
0461 /* 270 degree rotation is equivalent to
0462  *   1. Horizontal mirroring;
0463  *   2. Transposing the image.
0464  * These two steps are merged into a single processing routine.
0465  */
0466 {
0467   JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
0468   JDIMENSION x_crop_blocks, y_crop_blocks;
0469   int ci, i, j, offset_x, offset_y;
0470   JBLOCKARRAY src_buffer, dst_buffer;
0471   JCOEFPTR src_ptr, dst_ptr;
0472   jpeg_component_info *compptr;
0473 
0474   /* Because of the horizontal mirror step, we can't process partial iMCUs
0475    * at the (output) bottom edge properly.  They just get transposed and
0476    * not mirrored.
0477    */
0478   MCU_rows = srcinfo->output_width /
0479     (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size);
0480 
0481   for (ci = 0; ci < dstinfo->num_components; ci++) {
0482     compptr = dstinfo->comp_info + ci;
0483     comp_height = MCU_rows * compptr->v_samp_factor;
0484     x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
0485     y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
0486     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0487      dst_blk_y += compptr->v_samp_factor) {
0488       dst_buffer = (*srcinfo->mem->access_virt_barray)
0489     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0490      (JDIMENSION) compptr->v_samp_factor, TRUE);
0491       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0492     for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
0493          dst_blk_x += compptr->h_samp_factor) {
0494       src_buffer = (*srcinfo->mem->access_virt_barray)
0495         ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0496          dst_blk_x + x_crop_blocks,
0497          (JDIMENSION) compptr->h_samp_factor, FALSE);
0498       for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
0499         dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
0500         if (y_crop_blocks + dst_blk_y < comp_height) {
0501           /* Block is within the mirrorable area. */
0502           src_ptr = src_buffer[offset_x]
0503         [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1];
0504           for (i = 0; i < DCTSIZE; i++) {
0505         for (j = 0; j < DCTSIZE; j++) {
0506           dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0507           j++;
0508           dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
0509         }
0510           }
0511         } else {
0512           /* Edge blocks are transposed but not mirrored. */
0513           src_ptr = src_buffer[offset_x]
0514         [dst_blk_y + offset_y + y_crop_blocks];
0515           for (i = 0; i < DCTSIZE; i++)
0516         for (j = 0; j < DCTSIZE; j++)
0517           dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0518         }
0519       }
0520     }
0521       }
0522     }
0523   }
0524 }
0525 
0526 
0527 EXTERN(void)
0528 do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0529         JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
0530         jvirt_barray_ptr *src_coef_arrays,
0531         jvirt_barray_ptr *dst_coef_arrays)
0532 /* 180 degree rotation is equivalent to
0533  *   1. Vertical mirroring;
0534  *   2. Horizontal mirroring.
0535  * These two steps are merged into a single processing routine.
0536  */
0537 {
0538   JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
0539   JDIMENSION x_crop_blocks, y_crop_blocks;
0540   int ci, i, j, offset_y;
0541   JBLOCKARRAY src_buffer, dst_buffer;
0542   JBLOCKROW src_row_ptr, dst_row_ptr;
0543   JCOEFPTR src_ptr, dst_ptr;
0544   jpeg_component_info *compptr;
0545 
0546   MCU_cols = srcinfo->output_width /
0547     (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
0548   MCU_rows = srcinfo->output_height /
0549     (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size);
0550 
0551   for (ci = 0; ci < dstinfo->num_components; ci++) {
0552     compptr = dstinfo->comp_info + ci;
0553     comp_width = MCU_cols * compptr->h_samp_factor;
0554     comp_height = MCU_rows * compptr->v_samp_factor;
0555     x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
0556     y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
0557     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0558      dst_blk_y += compptr->v_samp_factor) {
0559       dst_buffer = (*srcinfo->mem->access_virt_barray)
0560     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0561      (JDIMENSION) compptr->v_samp_factor, TRUE);
0562       if (y_crop_blocks + dst_blk_y < comp_height) {
0563     /* Row is within the vertically mirrorable area. */
0564     src_buffer = (*srcinfo->mem->access_virt_barray)
0565       ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0566        comp_height - y_crop_blocks - dst_blk_y -
0567        (JDIMENSION) compptr->v_samp_factor,
0568        (JDIMENSION) compptr->v_samp_factor, FALSE);
0569       } else {
0570     /* Bottom-edge rows are only mirrored horizontally. */
0571     src_buffer = (*srcinfo->mem->access_virt_barray)
0572       ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0573        dst_blk_y + y_crop_blocks,
0574        (JDIMENSION) compptr->v_samp_factor, FALSE);
0575       }
0576       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0577     dst_row_ptr = dst_buffer[offset_y];
0578     if (y_crop_blocks + dst_blk_y < comp_height) {
0579       /* Row is within the mirrorable area. */
0580       src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
0581       for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
0582         dst_ptr = dst_row_ptr[dst_blk_x];
0583         if (x_crop_blocks + dst_blk_x < comp_width) {
0584           /* Process the blocks that can be mirrored both ways. */
0585           src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1];
0586           for (i = 0; i < DCTSIZE; i += 2) {
0587         /* For even row, negate every odd column. */
0588         for (j = 0; j < DCTSIZE; j += 2) {
0589           *dst_ptr++ = *src_ptr++;
0590           *dst_ptr++ = - *src_ptr++;
0591         }
0592         /* For odd row, negate every even column. */
0593         for (j = 0; j < DCTSIZE; j += 2) {
0594           *dst_ptr++ = - *src_ptr++;
0595           *dst_ptr++ = *src_ptr++;
0596         }
0597           }
0598         } else {
0599           /* Any remaining right-edge blocks are only mirrored vertically. */
0600           src_ptr = src_row_ptr[x_crop_blocks + dst_blk_x];
0601           for (i = 0; i < DCTSIZE; i += 2) {
0602         for (j = 0; j < DCTSIZE; j++)
0603           *dst_ptr++ = *src_ptr++;
0604         for (j = 0; j < DCTSIZE; j++)
0605           *dst_ptr++ = - *src_ptr++;
0606           }
0607         }
0608       }
0609     } else {
0610       /* Remaining rows are just mirrored horizontally. */
0611       src_row_ptr = src_buffer[offset_y];
0612       for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
0613         if (x_crop_blocks + dst_blk_x < comp_width) {
0614           /* Process the blocks that can be mirrored. */
0615           dst_ptr = dst_row_ptr[dst_blk_x];
0616           src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1];
0617           for (i = 0; i < DCTSIZE2; i += 2) {
0618         *dst_ptr++ = *src_ptr++;
0619         *dst_ptr++ = - *src_ptr++;
0620           }
0621         } else {
0622           /* Any remaining right-edge blocks are only copied. */
0623           jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks,
0624                   dst_row_ptr + dst_blk_x,
0625                   (JDIMENSION) 1);
0626         }
0627       }
0628     }
0629       }
0630     }
0631   }
0632 }
0633 
0634 
0635 EXTERN(void)
0636 do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0637            JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
0638            jvirt_barray_ptr *src_coef_arrays,
0639            jvirt_barray_ptr *dst_coef_arrays)
0640 /* Transverse transpose is equivalent to
0641  *   1. 180 degree rotation;
0642  *   2. Transposition;
0643  * or
0644  *   1. Horizontal mirroring;
0645  *   2. Transposition;
0646  *   3. Horizontal mirroring.
0647  * These steps are merged into a single processing routine.
0648  */
0649 {
0650   JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
0651   JDIMENSION x_crop_blocks, y_crop_blocks;
0652   int ci, i, j, offset_x, offset_y;
0653   JBLOCKARRAY src_buffer, dst_buffer;
0654   JCOEFPTR src_ptr, dst_ptr;
0655   jpeg_component_info *compptr;
0656 
0657   MCU_cols = srcinfo->output_height /
0658     (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
0659   MCU_rows = srcinfo->output_width /
0660     (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size);
0661 
0662   for (ci = 0; ci < dstinfo->num_components; ci++) {
0663     compptr = dstinfo->comp_info + ci;
0664     comp_width = MCU_cols * compptr->h_samp_factor;
0665     comp_height = MCU_rows * compptr->v_samp_factor;
0666     x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
0667     y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
0668     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0669      dst_blk_y += compptr->v_samp_factor) {
0670       dst_buffer = (*srcinfo->mem->access_virt_barray)
0671     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0672      (JDIMENSION) compptr->v_samp_factor, TRUE);
0673       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0674     for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
0675          dst_blk_x += compptr->h_samp_factor) {
0676       if (x_crop_blocks + dst_blk_x < comp_width) {
0677         /* Block is within the mirrorable area. */
0678         src_buffer = (*srcinfo->mem->access_virt_barray)
0679           ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0680            comp_width - x_crop_blocks - dst_blk_x -
0681            (JDIMENSION) compptr->h_samp_factor,
0682            (JDIMENSION) compptr->h_samp_factor, FALSE);
0683       } else {
0684         src_buffer = (*srcinfo->mem->access_virt_barray)
0685           ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0686            dst_blk_x + x_crop_blocks,
0687            (JDIMENSION) compptr->h_samp_factor, FALSE);
0688       }
0689       for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
0690         dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
0691         if (y_crop_blocks + dst_blk_y < comp_height) {
0692           if (x_crop_blocks + dst_blk_x < comp_width) {
0693         /* Block is within the mirrorable area. */
0694         src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1]
0695           [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1];
0696         for (i = 0; i < DCTSIZE; i++) {
0697           for (j = 0; j < DCTSIZE; j++) {
0698             dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0699             j++;
0700             dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
0701           }
0702           i++;
0703           for (j = 0; j < DCTSIZE; j++) {
0704             dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
0705             j++;
0706             dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0707           }
0708         }
0709           } else {
0710         /* Right-edge blocks are mirrored in y only */
0711         src_ptr = src_buffer[offset_x]
0712           [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1];
0713         for (i = 0; i < DCTSIZE; i++) {
0714           for (j = 0; j < DCTSIZE; j++) {
0715             dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0716             j++;
0717             dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
0718           }
0719         }
0720           }
0721         } else {
0722           if (x_crop_blocks + dst_blk_x < comp_width) {
0723         /* Bottom-edge blocks are mirrored in x only */
0724         src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1]
0725           [dst_blk_y + offset_y + y_crop_blocks];
0726         for (i = 0; i < DCTSIZE; i++) {
0727           for (j = 0; j < DCTSIZE; j++)
0728             dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0729           i++;
0730           for (j = 0; j < DCTSIZE; j++)
0731             dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
0732         }
0733           } else {
0734         /* At lower right corner, just transpose, no mirroring */
0735         src_ptr = src_buffer[offset_x]
0736           [dst_blk_y + offset_y + y_crop_blocks];
0737         for (i = 0; i < DCTSIZE; i++)
0738           for (j = 0; j < DCTSIZE; j++)
0739             dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0740           }
0741         }
0742       }
0743     }
0744       }
0745     }
0746   }
0747 }
0748 
0749 
0750 /* Parse an unsigned integer: subroutine for jtransform_parse_crop_spec.
0751  * Returns TRUE if valid integer found, FALSE if not.
0752  * *strptr is advanced over the digit string, and *result is set to its value.
0753  */
0754 
0755 EXTERN(boolean)
0756 jt_read_integer (const char ** strptr, JDIMENSION * result)
0757 {
0758   const char * ptr = *strptr;
0759   JDIMENSION val = 0;
0760 
0761   for (; isdigit(*ptr); ptr++) {
0762     val = val * 10 + (JDIMENSION) (*ptr - '0');
0763   }
0764   *result = val;
0765   if (ptr == *strptr)
0766     return FALSE;       /* oops, no digits */
0767   *strptr = ptr;
0768   return TRUE;
0769 }
0770 
0771 
0772 /* Parse a crop specification (written in X11 geometry style).
0773  * The routine returns TRUE if the spec string is valid, FALSE if not.
0774  *
0775  * The crop spec string should have the format
0776  *  <width>x<height>{+-}<xoffset>{+-}<yoffset>
0777  * where width, height, xoffset, and yoffset are unsigned integers.
0778  * Each of the elements can be omitted to indicate a default value.
0779  * (A weakness of this style is that it is not possible to omit xoffset
0780  * while specifying yoffset, since they look alike.)
0781  *
0782  * This code is loosely based on XParseGeometry from the X11 distribution.
0783  */
0784 
0785 EXTERN(boolean)
0786 jtransform_parse_crop_spec (jpeg_transform_info *info, const char *spec)
0787 {
0788   info->crop = FALSE;
0789   info->crop_width_set = JCROP_UNSET;
0790   info->crop_height_set = JCROP_UNSET;
0791   info->crop_xoffset_set = JCROP_UNSET;
0792   info->crop_yoffset_set = JCROP_UNSET;
0793 
0794   if (isdigit(*spec)) {
0795     /* fetch width */
0796     if (! jt_read_integer(&spec, &info->crop_width))
0797       return FALSE;
0798     info->crop_width_set = JCROP_POS;
0799   }
0800   if (*spec == 'x' || *spec == 'X') {   
0801     /* fetch height */
0802     spec++;
0803     if (! jt_read_integer(&spec, &info->crop_height))
0804       return FALSE;
0805     info->crop_height_set = JCROP_POS;
0806   }
0807   if (*spec == '+' || *spec == '-') {
0808     /* fetch xoffset */
0809     info->crop_xoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS;
0810     spec++;
0811     if (! jt_read_integer(&spec, &info->crop_xoffset))
0812       return FALSE;
0813   }
0814   if (*spec == '+' || *spec == '-') {
0815     /* fetch yoffset */
0816     info->crop_yoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS;
0817     spec++;
0818     if (! jt_read_integer(&spec, &info->crop_yoffset))
0819       return FALSE;
0820   }
0821   /* We had better have gotten to the end of the string. */
0822   if (*spec != '\0')
0823     return FALSE;
0824   info->crop = TRUE;
0825   return TRUE;
0826 }
0827 
0828 
0829 /* Trim off any partial iMCUs on the indicated destination edge */
0830 
0831 EXTERN(void)
0832 trim_right_edge (jpeg_transform_info *info, JDIMENSION full_width)
0833 {
0834   JDIMENSION MCU_cols;
0835 
0836   MCU_cols = info->output_width / info->iMCU_sample_width;
0837   if (MCU_cols > 0 && info->x_crop_offset + MCU_cols ==
0838       full_width / info->iMCU_sample_width)
0839     info->output_width = MCU_cols * info->iMCU_sample_width;
0840 }
0841 
0842 EXTERN(void)
0843 trim_bottom_edge (jpeg_transform_info *info, JDIMENSION full_height)
0844 {
0845   JDIMENSION MCU_rows;
0846 
0847   MCU_rows = info->output_height / info->iMCU_sample_height;
0848   if (MCU_rows > 0 && info->y_crop_offset + MCU_rows ==
0849       full_height / info->iMCU_sample_height)
0850     info->output_height = MCU_rows * info->iMCU_sample_height;
0851 }
0852 
0853 
0854 /* Request any required workspace.
0855  *
0856  * This routine figures out the size that the output image will be
0857  * (which implies that all the transform parameters must be set before
0858  * it is called).
0859  *
0860  * We allocate the workspace virtual arrays from the source decompression
0861  * object, so that all the arrays (both the original data and the workspace)
0862  * will be taken into account while making memory management decisions.
0863  * Hence, this routine must be called after jpeg_read_header (which reads
0864  * the image dimensions) and before jpeg_read_coefficients (which realizes
0865  * the source's virtual arrays).
0866  *
0867  * This function returns FALSE right away if -perfect is given
0868  * and transformation is not perfect.  Otherwise returns TRUE.
0869  */
0870 
0871 EXTERN(boolean)
0872 jtransform_request_workspace (j_decompress_ptr srcinfo,
0873                   jpeg_transform_info *info)
0874 {
0875   jvirt_barray_ptr *coef_arrays;
0876   boolean need_workspace, transpose_it;
0877   jpeg_component_info *compptr;
0878   JDIMENSION xoffset, yoffset;
0879   JDIMENSION width_in_iMCUs, height_in_iMCUs;
0880   JDIMENSION width_in_blocks, height_in_blocks;
0881   int ci, h_samp_factor, v_samp_factor;
0882 
0883   /* Determine number of components in output image */
0884   if (info->force_grayscale &&
0885       srcinfo->jpeg_color_space == JCS_YCbCr &&
0886       srcinfo->num_components == 3)
0887     /* We'll only process the first component */
0888     info->num_components = 1;
0889   else
0890     /* Process all the components */
0891     info->num_components = srcinfo->num_components;
0892 
0893   /* Compute output image dimensions and related values. */
0894   jpeg_core_output_dimensions(srcinfo);
0895 
0896   /* Return right away if -perfect is given and transformation is not perfect.
0897    */
0898   if (info->perfect) {
0899     if (info->num_components == 1) {
0900       if (!jtransform_perfect_transform(srcinfo->output_width,
0901       srcinfo->output_height,
0902       srcinfo->min_DCT_h_scaled_size,
0903       srcinfo->min_DCT_v_scaled_size,
0904       info->transform))
0905     return FALSE;
0906     } else {
0907       if (!jtransform_perfect_transform(srcinfo->output_width,
0908       srcinfo->output_height,
0909       srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size,
0910       srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size,
0911       info->transform))
0912     return FALSE;
0913     }
0914   }
0915 
0916   /* If there is only one output component, force the iMCU size to be 1;
0917    * else use the source iMCU size.  (This allows us to do the right thing
0918    * when reducing color to grayscale, and also provides a handy way of
0919    * cleaning up "funny" grayscale images whose sampling factors are not 1x1.)
0920    */
0921   switch (info->transform) {
0922   case JXFORM_TRANSPOSE:
0923   case JXFORM_TRANSVERSE:
0924   case JXFORM_ROT_90:
0925   case JXFORM_ROT_270:
0926     info->output_width = srcinfo->output_height;
0927     info->output_height = srcinfo->output_width;
0928     if (info->num_components == 1) {
0929       info->iMCU_sample_width = srcinfo->min_DCT_v_scaled_size;
0930       info->iMCU_sample_height = srcinfo->min_DCT_h_scaled_size;
0931     } else {
0932       info->iMCU_sample_width =
0933     srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size;
0934       info->iMCU_sample_height =
0935     srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size;
0936     }
0937     break;
0938   default:
0939     info->output_width = srcinfo->output_width;
0940     info->output_height = srcinfo->output_height;
0941     if (info->num_components == 1) {
0942       info->iMCU_sample_width = srcinfo->min_DCT_h_scaled_size;
0943       info->iMCU_sample_height = srcinfo->min_DCT_v_scaled_size;
0944     } else {
0945       info->iMCU_sample_width =
0946     srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size;
0947       info->iMCU_sample_height =
0948     srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size;
0949     }
0950     break;
0951   }
0952 
0953   /* If cropping has been requested, compute the crop area's position and
0954    * dimensions, ensuring that its upper left corner falls at an iMCU boundary.
0955    */
0956   if (info->crop) {
0957     /* Insert default values for unset crop parameters */
0958     if (info->crop_xoffset_set == JCROP_UNSET)
0959       info->crop_xoffset = 0;   /* default to +0 */
0960     if (info->crop_yoffset_set == JCROP_UNSET)
0961       info->crop_yoffset = 0;   /* default to +0 */
0962     if (info->crop_xoffset >= info->output_width ||
0963     info->crop_yoffset >= info->output_height)
0964       ERREXIT(srcinfo, JERR_BAD_CROP_SPEC);
0965     if (info->crop_width_set == JCROP_UNSET)
0966       info->crop_width = info->output_width - info->crop_xoffset;
0967     if (info->crop_height_set == JCROP_UNSET)
0968       info->crop_height = info->output_height - info->crop_yoffset;
0969     /* Ensure parameters are valid */
0970     if (info->crop_width <= 0 || info->crop_width > info->output_width ||
0971     info->crop_height <= 0 || info->crop_height > info->output_height ||
0972     info->crop_xoffset > info->output_width - info->crop_width ||
0973     info->crop_yoffset > info->output_height - info->crop_height)
0974       ERREXIT(srcinfo, JERR_BAD_CROP_SPEC);
0975     /* Convert negative crop offsets into regular offsets */
0976     if (info->crop_xoffset_set == JCROP_NEG)
0977       xoffset = info->output_width - info->crop_width - info->crop_xoffset;
0978     else
0979       xoffset = info->crop_xoffset;
0980     if (info->crop_yoffset_set == JCROP_NEG)
0981       yoffset = info->output_height - info->crop_height - info->crop_yoffset;
0982     else
0983       yoffset = info->crop_yoffset;
0984     /* Now adjust so that upper left corner falls at an iMCU boundary */
0985     info->output_width =
0986       info->crop_width + (xoffset % info->iMCU_sample_width);
0987     info->output_height =
0988       info->crop_height + (yoffset % info->iMCU_sample_height);
0989     /* Save x/y offsets measured in iMCUs */
0990     info->x_crop_offset = xoffset / info->iMCU_sample_width;
0991     info->y_crop_offset = yoffset / info->iMCU_sample_height;
0992   } else {
0993     info->x_crop_offset = 0;
0994     info->y_crop_offset = 0;
0995   }
0996 
0997   /* Figure out whether we need workspace arrays,
0998    * and if so whether they are transposed relative to the source.
0999    */
1000   need_workspace = FALSE;
1001   transpose_it = FALSE;
1002   switch (info->transform) {
1003   case JXFORM_NONE:
1004     if (info->x_crop_offset != 0 || info->y_crop_offset != 0)
1005       need_workspace = TRUE;
1006     /* No workspace needed if neither cropping nor transforming */
1007     break;
1008   case JXFORM_FLIP_H:
1009     if (info->trim)
1010       trim_right_edge(info, srcinfo->output_width);
1011     if (info->y_crop_offset != 0)
1012       need_workspace = TRUE;
1013     /* do_flip_h_no_crop doesn't need a workspace array */
1014     break;
1015   case JXFORM_FLIP_V:
1016     if (info->trim)
1017       trim_bottom_edge(info, srcinfo->output_height);
1018     /* Need workspace arrays having same dimensions as source image. */
1019     need_workspace = TRUE;
1020     break;
1021   case JXFORM_TRANSPOSE:
1022     /* transpose does NOT have to trim anything */
1023     /* Need workspace arrays having transposed dimensions. */
1024     need_workspace = TRUE;
1025     transpose_it = TRUE;
1026     break;
1027   case JXFORM_TRANSVERSE:
1028     if (info->trim) {
1029       trim_right_edge(info, srcinfo->output_height);
1030       trim_bottom_edge(info, srcinfo->output_width);
1031     }
1032     /* Need workspace arrays having transposed dimensions. */
1033     need_workspace = TRUE;
1034     transpose_it = TRUE;
1035     break;
1036   case JXFORM_ROT_90:
1037     if (info->trim)
1038       trim_right_edge(info, srcinfo->output_height);
1039     /* Need workspace arrays having transposed dimensions. */
1040     need_workspace = TRUE;
1041     transpose_it = TRUE;
1042     break;
1043   case JXFORM_ROT_180:
1044     if (info->trim) {
1045       trim_right_edge(info, srcinfo->output_width);
1046       trim_bottom_edge(info, srcinfo->output_height);
1047     }
1048     /* Need workspace arrays having same dimensions as source image. */
1049     need_workspace = TRUE;
1050     break;
1051   case JXFORM_ROT_270:
1052     if (info->trim)
1053       trim_bottom_edge(info, srcinfo->output_width);
1054     /* Need workspace arrays having transposed dimensions. */
1055     need_workspace = TRUE;
1056     transpose_it = TRUE;
1057     break;
1058   }
1059 
1060   /* Allocate workspace if needed.
1061    * Note that we allocate arrays padded out to the next iMCU boundary,
1062    * so that transform routines need not worry about missing edge blocks.
1063    */
1064   if (need_workspace) {
1065     coef_arrays = (jvirt_barray_ptr *)
1066       (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE,
1067         SIZEOF(jvirt_barray_ptr) * info->num_components);
1068     width_in_iMCUs = (JDIMENSION)
1069       jdiv_round_up((long) info->output_width,
1070             (long) info->iMCU_sample_width);
1071     height_in_iMCUs = (JDIMENSION)
1072       jdiv_round_up((long) info->output_height,
1073             (long) info->iMCU_sample_height);
1074     for (ci = 0; ci < info->num_components; ci++) {
1075       compptr = srcinfo->comp_info + ci;
1076       if (info->num_components == 1) {
1077     /* we're going to force samp factors to 1x1 in this case */
1078     h_samp_factor = v_samp_factor = 1;
1079       } else if (transpose_it) {
1080     h_samp_factor = compptr->v_samp_factor;
1081     v_samp_factor = compptr->h_samp_factor;
1082       } else {
1083     h_samp_factor = compptr->h_samp_factor;
1084     v_samp_factor = compptr->v_samp_factor;
1085       }
1086       width_in_blocks = width_in_iMCUs * h_samp_factor;
1087       height_in_blocks = height_in_iMCUs * v_samp_factor;
1088       coef_arrays[ci] = (*srcinfo->mem->request_virt_barray)
1089     ((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE,
1090      width_in_blocks, height_in_blocks, (JDIMENSION) v_samp_factor);
1091     }
1092     info->workspace_coef_arrays = coef_arrays;
1093   } else
1094     info->workspace_coef_arrays = NULL;
1095 
1096   return TRUE;
1097 }
1098 
1099 
1100 /* Transpose destination image parameters */
1101 
1102 EXTERN(void)
1103 transpose_critical_parameters (j_compress_ptr dstinfo)
1104 {
1105   int tblno, i, j, ci, itemp;
1106   jpeg_component_info *compptr;
1107   JQUANT_TBL *qtblptr;
1108   JDIMENSION jtemp;
1109   UINT16 qtemp;
1110 
1111   /* Transpose image dimensions */
1112   jtemp = dstinfo->image_width;
1113   dstinfo->image_width = dstinfo->image_height;
1114   dstinfo->image_height = jtemp;
1115   itemp = dstinfo->min_DCT_h_scaled_size;
1116   dstinfo->min_DCT_h_scaled_size = dstinfo->min_DCT_v_scaled_size;
1117   dstinfo->min_DCT_v_scaled_size = itemp;
1118 
1119   /* Transpose sampling factors */
1120   for (ci = 0; ci < dstinfo->num_components; ci++) {
1121     compptr = dstinfo->comp_info + ci;
1122     itemp = compptr->h_samp_factor;
1123     compptr->h_samp_factor = compptr->v_samp_factor;
1124     compptr->v_samp_factor = itemp;
1125   }
1126 
1127   /* Transpose quantization tables */
1128   for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
1129     qtblptr = dstinfo->quant_tbl_ptrs[tblno];
1130     if (qtblptr != NULL) {
1131       for (i = 0; i < DCTSIZE; i++) {
1132     for (j = 0; j < i; j++) {
1133       qtemp = qtblptr->quantval[i*DCTSIZE+j];
1134       qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i];
1135       qtblptr->quantval[j*DCTSIZE+i] = qtemp;
1136     }
1137       }
1138     }
1139   }
1140 }
1141 
1142 
1143 /* Adjust Exif image parameters.
1144  *
1145  * We try to adjust the Tags ExifImageWidth and ExifImageHeight if possible.
1146  */
1147 
1148 EXTERN(void)
1149 adjust_exif_parameters (JOCTET FAR * data, unsigned int length,
1150             JDIMENSION new_width, JDIMENSION new_height)
1151 {
1152   boolean is_motorola; /* Flag for byte order */
1153   unsigned int number_of_tags, tagnum;
1154   unsigned int firstoffset, offset;
1155   JDIMENSION new_value;
1156 
1157   if (length < 12) return; /* Length of an IFD entry */
1158 
1159   /* Discover byte order */
1160   if (GETJOCTET(data[0]) == 0x49 && GETJOCTET(data[1]) == 0x49)
1161     is_motorola = FALSE;
1162   else if (GETJOCTET(data[0]) == 0x4D && GETJOCTET(data[1]) == 0x4D)
1163     is_motorola = TRUE;
1164   else
1165     return;
1166 
1167   /* Check Tag Mark */
1168   if (is_motorola) {
1169     if (GETJOCTET(data[2]) != 0) return;
1170     if (GETJOCTET(data[3]) != 0x2A) return;
1171   } else {
1172     if (GETJOCTET(data[3]) != 0) return;
1173     if (GETJOCTET(data[2]) != 0x2A) return;
1174   }
1175 
1176   /* Get first IFD offset (offset to IFD0) */
1177   if (is_motorola) {
1178     if (GETJOCTET(data[4]) != 0) return;
1179     if (GETJOCTET(data[5]) != 0) return;
1180     firstoffset = GETJOCTET(data[6]);
1181     firstoffset <<= 8;
1182     firstoffset += GETJOCTET(data[7]);
1183   } else {
1184     if (GETJOCTET(data[7]) != 0) return;
1185     if (GETJOCTET(data[6]) != 0) return;
1186     firstoffset = GETJOCTET(data[5]);
1187     firstoffset <<= 8;
1188     firstoffset += GETJOCTET(data[4]);
1189   }
1190   if (firstoffset > length - 2) return; /* check end of data segment */
1191 
1192   /* Get the number of directory entries contained in this IFD */
1193   if (is_motorola) {
1194     number_of_tags = GETJOCTET(data[firstoffset]);
1195     number_of_tags <<= 8;
1196     number_of_tags += GETJOCTET(data[firstoffset+1]);
1197   } else {
1198     number_of_tags = GETJOCTET(data[firstoffset+1]);
1199     number_of_tags <<= 8;
1200     number_of_tags += GETJOCTET(data[firstoffset]);
1201   }
1202   if (number_of_tags == 0) return;
1203   firstoffset += 2;
1204 
1205   /* Search for ExifSubIFD offset Tag in IFD0 */
1206   for (;;) {
1207     if (firstoffset > length - 12) return; /* check end of data segment */
1208     /* Get Tag number */
1209     if (is_motorola) {
1210       tagnum = GETJOCTET(data[firstoffset]);
1211       tagnum <<= 8;
1212       tagnum += GETJOCTET(data[firstoffset+1]);
1213     } else {
1214       tagnum = GETJOCTET(data[firstoffset+1]);
1215       tagnum <<= 8;
1216       tagnum += GETJOCTET(data[firstoffset]);
1217     }
1218     if (tagnum == 0x8769) break; /* found ExifSubIFD offset Tag */
1219     if (--number_of_tags == 0) return;
1220     firstoffset += 12;
1221   }
1222 
1223   /* Get the ExifSubIFD offset */
1224   if (is_motorola) {
1225     if (GETJOCTET(data[firstoffset+8]) != 0) return;
1226     if (GETJOCTET(data[firstoffset+9]) != 0) return;
1227     offset = GETJOCTET(data[firstoffset+10]);
1228     offset <<= 8;
1229     offset += GETJOCTET(data[firstoffset+11]);
1230   } else {
1231     if (GETJOCTET(data[firstoffset+11]) != 0) return;
1232     if (GETJOCTET(data[firstoffset+10]) != 0) return;
1233     offset = GETJOCTET(data[firstoffset+9]);
1234     offset <<= 8;
1235     offset += GETJOCTET(data[firstoffset+8]);
1236   }
1237   if (offset > length - 2) return; /* check end of data segment */
1238 
1239   /* Get the number of directory entries contained in this SubIFD */
1240   if (is_motorola) {
1241     number_of_tags = GETJOCTET(data[offset]);
1242     number_of_tags <<= 8;
1243     number_of_tags += GETJOCTET(data[offset+1]);
1244   } else {
1245     number_of_tags = GETJOCTET(data[offset+1]);
1246     number_of_tags <<= 8;
1247     number_of_tags += GETJOCTET(data[offset]);
1248   }
1249   if (number_of_tags < 2) return;
1250   offset += 2;
1251 
1252   /* Search for ExifImageWidth and ExifImageHeight Tags in this SubIFD */
1253   do {
1254     if (offset > length - 12) return; /* check end of data segment */
1255     /* Get Tag number */
1256     if (is_motorola) {
1257       tagnum = GETJOCTET(data[offset]);
1258       tagnum <<= 8;
1259       tagnum += GETJOCTET(data[offset+1]);
1260     } else {
1261       tagnum = GETJOCTET(data[offset+1]);
1262       tagnum <<= 8;
1263       tagnum += GETJOCTET(data[offset]);
1264     }
1265     if (tagnum == 0xA002 || tagnum == 0xA003) {
1266       if (tagnum == 0xA002)
1267     new_value = new_width; /* ExifImageWidth Tag */
1268       else
1269     new_value = new_height; /* ExifImageHeight Tag */
1270       if (is_motorola) {
1271     data[offset+2] = 0; /* Format = unsigned long (4 octets) */
1272     data[offset+3] = 4;
1273     data[offset+4] = 0; /* Number Of Components = 1 */
1274     data[offset+5] = 0;
1275     data[offset+6] = 0;
1276     data[offset+7] = 1;
1277     data[offset+8] = 0;
1278     data[offset+9] = 0;
1279     data[offset+10] = (JOCTET)((new_value >> 8) & 0xFF);
1280     data[offset+11] = (JOCTET)(new_value & 0xFF);
1281       } else {
1282     data[offset+2] = 4; /* Format = unsigned long (4 octets) */
1283     data[offset+3] = 0;
1284     data[offset+4] = 1; /* Number Of Components = 1 */
1285     data[offset+5] = 0;
1286     data[offset+6] = 0;
1287     data[offset+7] = 0;
1288     data[offset+8] = (JOCTET)(new_value & 0xFF);
1289     data[offset+9] = (JOCTET)((new_value >> 8) & 0xFF);
1290     data[offset+10] = 0;
1291     data[offset+11] = 0;
1292       }
1293     }
1294     offset += 12;
1295   } while (--number_of_tags);
1296 }
1297 
1298 
1299 /* Adjust output image parameters as needed.
1300  *
1301  * This must be called after jpeg_copy_critical_parameters()
1302  * and before jpeg_write_coefficients().
1303  *
1304  * The return value is the set of virtual coefficient arrays to be written
1305  * (either the ones allocated by jtransform_request_workspace, or the
1306  * original source data arrays).  The caller will need to pass this value
1307  * to jpeg_write_coefficients().
1308  */
1309 
1310 EXTERN(jvirt_barray_ptr *)
1311 jtransform_adjust_parameters (j_decompress_ptr srcinfo,
1312                   j_compress_ptr dstinfo,
1313                   jvirt_barray_ptr *src_coef_arrays,
1314                   jpeg_transform_info *info)
1315 {
1316   /* If force-to-grayscale is requested, adjust destination parameters */
1317   if (info->force_grayscale) {
1318     /* First, ensure we have YCbCr or grayscale data, and that the source's
1319      * Y channel is full resolution.  (No reasonable person would make Y
1320      * be less than full resolution, so actually coping with that case
1321      * isn't worth extra code space.  But we check it to avoid crashing.)
1322      */
1323     if (((dstinfo->jpeg_color_space == JCS_YCbCr &&
1324       dstinfo->num_components == 3) ||
1325      (dstinfo->jpeg_color_space == JCS_GRAYSCALE &&
1326       dstinfo->num_components == 1)) &&
1327     srcinfo->comp_info[0].h_samp_factor == srcinfo->max_h_samp_factor &&
1328     srcinfo->comp_info[0].v_samp_factor == srcinfo->max_v_samp_factor) {
1329       /* We use jpeg_set_colorspace to make sure subsidiary settings get fixed
1330        * properly.  Among other things, it sets the target h_samp_factor &
1331        * v_samp_factor to 1, which typically won't match the source.
1332        * We have to preserve the source's quantization table number, however.
1333        */
1334       int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no;
1335       jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE);
1336       dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no;
1337     } else {
1338       /* Sorry, can't do it */
1339       ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL);
1340     }
1341   } else if (info->num_components == 1) {
1342     /* For a single-component source, we force the destination sampling factors
1343      * to 1x1, with or without force_grayscale.  This is useful because some
1344      * decoders choke on grayscale images with other sampling factors.
1345      */
1346     dstinfo->comp_info[0].h_samp_factor = 1;
1347     dstinfo->comp_info[0].v_samp_factor = 1;
1348   }
1349 
1350   /* Correct the destination's image dimensions as necessary
1351    * for rotate/flip, resize, and crop operations.
1352    */
1353   dstinfo->jpeg_width = info->output_width;
1354   dstinfo->jpeg_height = info->output_height;
1355 
1356   /* Transpose destination image parameters */
1357   switch (info->transform) {
1358   case JXFORM_TRANSPOSE:
1359   case JXFORM_TRANSVERSE:
1360   case JXFORM_ROT_90:
1361   case JXFORM_ROT_270:
1362     transpose_critical_parameters(dstinfo);
1363     break;
1364   default:
1365     break;
1366   }
1367 
1368   /* Adjust Exif properties */
1369   if (srcinfo->marker_list != NULL &&
1370       srcinfo->marker_list->marker == JPEG_APP0+1 &&
1371       srcinfo->marker_list->data_length >= 6 &&
1372       GETJOCTET(srcinfo->marker_list->data[0]) == 0x45 &&
1373       GETJOCTET(srcinfo->marker_list->data[1]) == 0x78 &&
1374       GETJOCTET(srcinfo->marker_list->data[2]) == 0x69 &&
1375       GETJOCTET(srcinfo->marker_list->data[3]) == 0x66 &&
1376       GETJOCTET(srcinfo->marker_list->data[4]) == 0 &&
1377       GETJOCTET(srcinfo->marker_list->data[5]) == 0) {
1378     /* Suppress output of JFIF marker */
1379     dstinfo->write_JFIF_header = FALSE;
1380     /* Adjust Exif image parameters */
1381     if (dstinfo->jpeg_width != srcinfo->image_width ||
1382     dstinfo->jpeg_height != srcinfo->image_height)
1383       /* Align data segment to start of TIFF structure for parsing */
1384       adjust_exif_parameters(srcinfo->marker_list->data + 6,
1385     srcinfo->marker_list->data_length - 6,
1386     dstinfo->jpeg_width, dstinfo->jpeg_height);
1387   }
1388 
1389   /* Return the appropriate output data set */
1390   if (info->workspace_coef_arrays != NULL)
1391     return info->workspace_coef_arrays;
1392   return src_coef_arrays;
1393 }
1394 
1395 
1396 /* Execute the actual transformation, if any.
1397  *
1398  * This must be called *after* jpeg_write_coefficients, because it depends
1399  * on jpeg_write_coefficients to have computed subsidiary values such as
1400  * the per-component width and height fields in the destination object.
1401  *
1402  * Note that some transformations will modify the source data arrays!
1403  */
1404 
1405 EXTERN(void)
1406 jtransform_execute_transform (j_decompress_ptr srcinfo,
1407                   j_compress_ptr dstinfo,
1408                   jvirt_barray_ptr *src_coef_arrays,
1409                   jpeg_transform_info *info)
1410 {
1411   jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays;
1412 
1413   /* Note: conditions tested here should match those in switch statement
1414    * in jtransform_request_workspace()
1415    */
1416   switch (info->transform) {
1417   case JXFORM_NONE:
1418     if (info->x_crop_offset != 0 || info->y_crop_offset != 0)
1419       do_crop(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
1420           src_coef_arrays, dst_coef_arrays);
1421     break;
1422   case JXFORM_FLIP_H:
1423     if (info->y_crop_offset != 0)
1424       do_flip_h(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
1425         src_coef_arrays, dst_coef_arrays);
1426     else
1427       do_flip_h_no_crop(srcinfo, dstinfo, info->x_crop_offset,
1428             src_coef_arrays);
1429     break;
1430   case JXFORM_FLIP_V:
1431     do_flip_v(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
1432           src_coef_arrays, dst_coef_arrays);
1433     break;
1434   case JXFORM_TRANSPOSE:
1435     do_transpose(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
1436          src_coef_arrays, dst_coef_arrays);
1437     break;
1438   case JXFORM_TRANSVERSE:
1439     do_transverse(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
1440           src_coef_arrays, dst_coef_arrays);
1441     break;
1442   case JXFORM_ROT_90:
1443     do_rot_90(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
1444           src_coef_arrays, dst_coef_arrays);
1445     break;
1446   case JXFORM_ROT_180:
1447     do_rot_180(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
1448            src_coef_arrays, dst_coef_arrays);
1449     break;
1450   case JXFORM_ROT_270:
1451     do_rot_270(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
1452            src_coef_arrays, dst_coef_arrays);
1453     break;
1454   }
1455 }
1456 
1457 /* jtransform_perfect_transform
1458  *
1459  * Determine whether lossless transformation is perfectly
1460  * possible for a specified image and transformation.
1461  *
1462  * Inputs:
1463  *   image_width, image_height: source image dimensions.
1464  *   MCU_width, MCU_height: pixel dimensions of MCU.
1465  *   transform: transformation identifier.
1466  * Parameter sources from initialized jpeg_struct
1467  * (after reading source header):
1468  *   image_width = cinfo.image_width
1469  *   image_height = cinfo.image_height
1470  *   MCU_width = cinfo.max_h_samp_factor * cinfo.block_size
1471  *   MCU_height = cinfo.max_v_samp_factor * cinfo.block_size
1472  * Result:
1473  *   TRUE = perfect transformation possible
1474  *   FALSE = perfect transformation not possible
1475  *           (may use custom action then)
1476  */
1477 
1478 EXTERN(boolean)
1479 jtransform_perfect_transform(JDIMENSION image_width, JDIMENSION image_height,
1480                  int MCU_width, int MCU_height,
1481                  JXFORM_CODE transform)
1482 {
1483   boolean result = TRUE; /* initialize TRUE */
1484 
1485   switch (transform) {
1486   case JXFORM_FLIP_H:
1487   case JXFORM_ROT_270:
1488     if (image_width % (JDIMENSION) MCU_width)
1489       result = FALSE;
1490     break;
1491   case JXFORM_FLIP_V:
1492   case JXFORM_ROT_90:
1493     if (image_height % (JDIMENSION) MCU_height)
1494       result = FALSE;
1495     break;
1496   case JXFORM_TRANSVERSE:
1497   case JXFORM_ROT_180:
1498     if (image_width % (JDIMENSION) MCU_width)
1499       result = FALSE;
1500     if (image_height % (JDIMENSION) MCU_height)
1501       result = FALSE;
1502     break;
1503   default:
1504     break;
1505   }
1506 
1507   return result;
1508 }
1509 
1510 #endif /* TRANSFORMS_SUPPORTED */
1511 
1512 
1513 /* Setup decompression object to save desired markers in memory.
1514  * This must be called before jpeg_read_header() to have the desired effect.
1515  */
1516 
1517 EXTERN(void)
1518 jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option)
1519 {
1520 #ifdef SAVE_MARKERS_SUPPORTED
1521   int m;
1522 
1523   /* Save comments except under NONE option */
1524   if (option != JCOPYOPT_NONE) {
1525     jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF);
1526   }
1527   /* Save all types of APPn markers iff ALL option */
1528   if (option == JCOPYOPT_ALL) {
1529     for (m = 0; m < 16; m++)
1530       jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF);
1531   }
1532 #endif /* SAVE_MARKERS_SUPPORTED */
1533 }
1534 
1535 /* Copy markers saved in the given source object to the destination object.
1536  * This should be called just after jpeg_start_compress() or
1537  * jpeg_write_coefficients().
1538  * Note that those routines will have written the SOI, and also the
1539  * JFIF APP0 or Adobe APP14 markers if selected.
1540  */
1541 
1542 EXTERN(void)
1543 jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
1544                JCOPY_OPTION option)
1545 {
1546   (void)option; /* Suppress compiler unused parameter warning. */
1547   jpeg_saved_marker_ptr marker;
1548 
1549   /* In the current implementation, we don't actually need to examine the
1550    * option flag here; we just copy everything that got saved.
1551    * But to avoid confusion, we do not output JFIF and Adobe APP14 markers
1552    * if the encoder library already wrote one.
1553    */
1554   for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) {
1555     if (dstinfo->write_JFIF_header &&
1556     marker->marker == JPEG_APP0 &&
1557     marker->data_length >= 5 &&
1558     GETJOCTET(marker->data[0]) == 0x4A &&
1559     GETJOCTET(marker->data[1]) == 0x46 &&
1560     GETJOCTET(marker->data[2]) == 0x49 &&
1561     GETJOCTET(marker->data[3]) == 0x46 &&
1562     GETJOCTET(marker->data[4]) == 0)
1563       continue;         /* reject duplicate JFIF */
1564     if (dstinfo->write_Adobe_marker &&
1565     marker->marker == JPEG_APP0+14 &&
1566     marker->data_length >= 5 &&
1567     GETJOCTET(marker->data[0]) == 0x41 &&
1568     GETJOCTET(marker->data[1]) == 0x64 &&
1569     GETJOCTET(marker->data[2]) == 0x6F &&
1570     GETJOCTET(marker->data[3]) == 0x62 &&
1571     GETJOCTET(marker->data[4]) == 0x65)
1572       continue;         /* reject duplicate Adobe */
1573 #ifdef NEED_FAR_POINTERS
1574     /* We could use jpeg_write_marker if the data weren't FAR... */
1575     {
1576       unsigned int i;
1577       jpeg_write_m_header(dstinfo, marker->marker, marker->data_length);
1578       for (i = 0; i < marker->data_length; i++)
1579     jpeg_write_m_byte(dstinfo, marker->data[i]);
1580     }
1581 #else
1582     jpeg_write_marker(dstinfo, marker->marker,
1583               marker->data, marker->data_length);
1584 #endif
1585   }
1586 }