File indexing completed on 2025-01-05 03:58:39

0001 // SPDX-License-Identifier: LGPL-2.1-or-later
0002 //
0003 // SPDX-FileCopyrightText: 2014 Gerhard Holtkamp
0004 //
0005 
0006 /* =========================================================================
0007   Procedures needed for standard astronomy programs.
0008   The majority of procedures in this unit are taken from Montenbruck,
0009   Pfleger "Astronomie mit dem Personal Computer", Springer Verlag, 1989
0010   as well as from the "Explanatory Supplement to the Astronomical Almanac"
0011   University Science Books, Mill Valley, California, 1992
0012   and modified correspondingly.
0013 
0014   License: GNU LGPL Version 2+
0015   Copyright : Gerhard HOLTKAMP          15-APR-2015
0016   ========================================================================= */
0017 
0018 #include <cmath>
0019 using namespace std;
0020 
0021 #include "astrolib.h"
0022 
0023 double frac (double f)
0024  { return fmod(f,1.0); }
0025 
0026 /*--------------- Function ddd ------------------------------------------*/
0027 
0028 double ddd (int d, int m, double s)
0029  {
0030   /*
0031     Conversion from Degrees, Minutes, Seconds into decimal degrees
0032 
0033     INPUT :
0034            d : degrees
0035            m : minutes
0036            s : seconds (and fractions)
0037 
0038     OUTPUT :
0039            dd : decimal degrees
0040    */
0041   double dd;
0042 
0043   if ( (d < 0) || (m < 0) || (s < 0)) dd = -1.0;
0044   else dd = 1.0;
0045   dd = dd * (fabs(double(d)) + fabs(double(m))/60.0 + fabs(s)/3600.0);
0046 
0047   return dd;
0048  }
0049 
0050 /*--------------- Function dms ------------------------------------------*/
0051 
0052 void dms (double dd, int &d, int &m, double &s)
0053  /*
0054    Conversion from decimal degrees into Degrees, Minutes, Seconds
0055 
0056    INPUT :
0057           dd : decimal degrees
0058 
0059    OUTPUT :
0060           d : degrees
0061           m : minutes
0062           s : seconds (and fractions)
0063   */
0064  {
0065   double d1;
0066 
0067   d1 = fabs(dd);
0068   // d = int(floor(d1));
0069   d = int(d1);
0070   d1 = (d1 - d) * 60.0;
0071   // m = int(floor(d1));
0072   m = int(d1);
0073   s = (d1 - m) * 60.0;
0074   if (dd < 0)
0075    {
0076     if (d != 0) d = -d;
0077     else
0078      {
0079       if (m != 0) m = -m;
0080       else s = -s;
0081      };
0082    };
0083  }
0084 
0085  /*------------ FUNCTION mjd ----------------------------------------------*/
0086 
0087 double mjd (int day, int month, int year, double hour)
0088 /*
0089   Modified Julian Date ( MJD = Julian Date - 2400000.5)
0090   valid for every date
0091   Julian Calendar up to 4-OCT-1582,
0092   Gregorian Calendar from 15-OCT-1582.
0093   */
0094  {
0095   double a;
0096   long int b, c;
0097 
0098   a = 10000.0 * year + 100.0 * month + day;
0099   if (month <= 2)
0100    {
0101     month = month + 12;
0102     year = year - 1;
0103    };
0104   if (a <= 15821004.1)
0105    {
0106     b = ((year+4716)/4) - 1181;
0107     if (year < -4716)
0108      {
0109       c = year + 4717;
0110       c = -c;
0111       c = c / 4;
0112       c = -c;
0113       b = c - 1182;
0114      };
0115    }
0116   else b = (year/400) - (year/100) + (year/4);
0117   //     { b = -2 + floor((year+4716)/4) - 1179;}
0118   // else {b = floor(year/400) - floor(year/100) + floor(year/4);};
0119 
0120   a = 365.0 * year - 679004.0;
0121   a = a + b + int(30.6001 * (month + 1)) + day + hour / 24.0;
0122 
0123   return a;
0124  }
0125 
0126 /*---------------- Function julcent ---------------------------------------*/
0127 
0128 double julcent (double mjuld)
0129  {
0130   /*
0131      Julian Centuries since J2000.0 of Modified Julian Date mjuld.
0132   */
0133   return (mjuld - 51544.5) / 36525.0;
0134  }
0135 
0136 /*---------------- Function caldat -----------------------------------------*/
0137 
0138 void caldat (double mjd, int &day, int &month, int &year, double &hour)
0139   /*
0140     Calculate the calendar date from the Modified Julian Date
0141 
0142     INPUT :
0143            mjd : Modified Julian Date (Julian Date - 2400000.5)
0144 
0145     OUTPUT :
0146            day, month, year : corresponding date
0147            hour : corresponding hours of the above date
0148    */
0149  {
0150   long int b, c, d, e, f, jd0;
0151 
0152   jd0 = long(mjd +  2400001.0);
0153   if (jd0 < 2299161) c = jd0 + 1524;    /* Julian calendar */
0154   else
0155    {                                /* Gregorian calendar */
0156     b = long (( jd0 - 1867216.25) / 36524.25);
0157     c = jd0 + b - (b/4) + 1525;
0158    };
0159 
0160   if (mjd < -2400001.0)  // special case for year < -4712
0161    {
0162     if (mjd == floor(mjd)) jd0 = jd0 + 1;
0163     c = long((-jd0 - 0.1)/ 365.25);
0164     c = c + 1;
0165     year = -4712 - c;
0166     d = c / 4;
0167     d = c * 365 + d;  // number of days from JAN 1, -4712
0168     f = d + jd0;  // day of the year
0169     if ((c % 4) == 0) e = 61;
0170     else e = 60;
0171     if (f == 0)
0172      {
0173       year = year - 1;
0174       month = 12;
0175       day = 31;
0176       f = 500;  // set as a marker
0177      };
0178     if (f < e)
0179      {
0180       if (f < 32)
0181        {
0182          month = 1;
0183          day = f;
0184        }
0185       else
0186        {
0187          month = 2;
0188          day = f - 31;
0189        };
0190      }
0191     else
0192      {
0193        if (f < 500)
0194         {
0195          f = f - e;
0196          month = long((f + 123.0) / 30.6001);
0197          day = f - long(month * 30.6001) + 123;
0198          month = month - 1;
0199         };
0200      };
0201    }
0202   else   // normal case
0203    {
0204     d = long ((c - 122.1) / 365.25);
0205     e = 365 * d + (d/4);
0206     f = long ((c - e) / 30.6001);
0207     day = c - e - long(30.6001 * f);
0208     month = f - 1 - 12 * (f / 14);
0209     year = d - 4715 - ((7 + month) / 10);
0210    };
0211 
0212   hour = 24.0 * (mjd - floor(mjd));
0213  }
0214 
0215 /*---------------- Function DefTdUt --------------------------------------*/
0216 double DefTdUt (int yi)
0217  {
0218   /*
0219      Get a suitable default for value of TDT - UT in year yi in seconds.
0220    */
0221 
0222   const int td[9] = {55,55,56,56,57,58,58,59,60};
0223   double t, result;
0224   int yy, yr;
0225 
0226   yr = yi;
0227 
0228   if (yr > 1899)
0229    {
0230     if (yr >= 2000)  // this corrects for observations until 2013
0231      {
0232       if (yr > 2006) yr -= 1;
0233       if (yr > 2006) yr -= 1;  // no leap second at the end of 2007
0234       if (yr > 2007) yr -= 1;  // no leap second at the end of 2009
0235       if (yr > 2007) yr -= 1;  // no leap second at the end of 2010
0236       if (yr > 2008) yr -= 1;  // no leap second at the end of 2012
0237       yr -= 6;
0238       if (yr < 1999) yr = 1999;
0239      };
0240     t = yr - 2000;
0241     t = t / 100.0;
0242     result = (((-339.84*t - 516.12)*t -160.22)*t + 92.23)*t + 71.28;
0243     if (yr > 2013)
0244      {
0245       t = yr - 2013;
0246       t = t / 100.0;
0247       result = (27.5*t + 75.0)*t + 73.0;
0248      }
0249     else if (yr > 1994)
0250      {
0251       result -= 6.28;
0252      }
0253     else if (yr  > 1985)
0254      {
0255       yy = yr - 1986;
0256       result = td[yy];
0257      };
0258    };
0259 
0260   if (yr < 1900)
0261    {
0262     t = yr - 1800;
0263     t = t / 100;
0264     if (yr > 1649)
0265      {
0266       t = t - 0.19;
0267       result = 5.156 + 13.3066 * t * t;
0268       if (yr > 1864) result = -0.6*(yr - 1865) + 6;
0269       if (yr > 1884) result = -0.2*(yr - 1885) - 6;
0270      }
0271     else
0272      {
0273       if (yr > 947) result = 25.5 * t*t;
0274       else result = 1360 + (44.3*t + 320.0) * t;
0275      };
0276    };
0277 
0278 // round to full seconds
0279 
0280   if (result < 0)
0281    {
0282     t = -result;
0283     t += 0.5;
0284     result = - floor(t);
0285    }
0286   else result = floor(result + 0.5);
0287 
0288   result += 0.184;  // because of TT = TAI + 32.184;
0289 
0290   return result;
0291  }
0292 
0293 /*---------------- Function lsidtim -------------------------------------*/
0294 
0295 double lsidtim (double jd, double lambda, double ep2)
0296  {
0297   /* Calculate the Apparent Local Mean Sidereal Time (in decimal hours) for
0298       the Modified Julian Date jd and geographic longitude lambda (in degrees)
0299       and with the correction (AST - MST) eps (given in seconds)
0300      */
0301     double lmst;
0302     double t, ut, gmst;
0303     int mjd0;
0304 
0305     mjd0 = int(jd);
0306     ut = (jd - mjd0)*24.0;
0307     t = (mjd0 - 51544.5) / 36525.0;
0308     gmst = 6.697374558 + 1.0027379093*ut
0309              + (8640184.812866 + (0.093104 - 6.2e-6*t)*t)*t/3600.0;
0310     lmst = 24.0 * frac((gmst + lambda/15.0) / 24.0);
0311     lmst = lmst + ep2 / 3600.0;
0312 
0313     return lmst;
0314  }
0315 
0316 /*---------------- Function eps -----------------------------------------*/
0317 
0318 double eps (double t)  //   obliquity of ecliptic
0319  {
0320   /*
0321      Obliquety of ecliptic eps (in radians)
0322      at time t (in Julian Centuries from J2000.0)
0323      */
0324      double tp;
0325 
0326      tp = 23.43929111 - (46.815+(0.00059-0.001813*t)*t)*t/3600.0;
0327      tp = 1.74532925199e-2 * tp;
0328 
0329      return tp;
0330   }
0331 
0332 /*---------------- Function eclequ -----------------------------------------*/
0333 
0334 Vec3 eclequ (double t, Vec3& r1)  //  ecliptic -> equatorial
0335  {
0336   /*
0337      Convert position vector r1 from ecliptic into equatorial coordinates
0338      at t (in Julian Centuries from J2000.0 )
0339      */
0340 
0341      Mat3 m;
0342      Vec3 r2;
0343 
0344      m = xrot (-eps(t));
0345      r2 =   mxvct (m, r1);
0346      return r2;
0347   }
0348 
0349 /*---------------- Function equecl -----------------------------------------*/
0350 
0351 Vec3 equecl (double t, Vec3& r1)    //  equatorial -> ecliptic
0352  {
0353   /*
0354      Convert position vector r1 from equatorial into ecliptic coordinates
0355      at t (in Julian Centuries from J2000.0)
0356      */
0357 
0358      Mat3 m;
0359      Vec3 r2;
0360 
0361      m = xrot (eps(t));
0362      r2 =   mxvct (m, r1);
0363      return r2;
0364   }
0365 
0366 /*---------------- Function pmatecl -----------------------------------------*/
0367 
0368 Mat3 pmatecl (double t1, double t2)  //  ecl. precession
0369  {
0370   /*
0371      Calculate ecliptic precession matrix a from t1 to t2
0372      (times in Julian Centuries from J2000.0)
0373      */
0374 
0375         const double  secrad = 4.8481368111e-6;  // arcsec -> radians
0376 
0377         double ppi, pii, pa, dt;
0378         Mat3   m1, m2, a;
0379 
0380     dt = t2 - t1;
0381     ppi = 174.876383889 + (((3289.4789+0.60622*t1)*t1) +
0382             ((-869.8089-0.50491*t1) + 0.03536*dt)*dt) / 3600.0;
0383     ppi = ppi * 1.74532925199e-2;
0384     pii = ((47.0029-(0.06603-0.000598*t1)*t1) +
0385           ((-0.03302+0.000598*t1)+0.00006*dt)*dt)*dt * secrad;
0386     pa = ((5029.0966+(2.22226-0.000042*t1)*t1) +
0387              ((1.11113-0.000042*t1)-0.000006*dt)*dt)*dt * secrad;
0388 
0389     pa = ppi + pa;
0390     m1 = zrot (-pa);
0391     m2 = xrot (pii);
0392     m1 = m1 * m2;
0393     m2 = zrot (ppi);
0394     a = m1 * m2;
0395 
0396      return a;
0397   }
0398 
0399 /*---------------- Function pmatequ --------------------------------------*/
0400 
0401 Mat3 pmatequ (double t1, double t2)  //  equ. precession
0402  {
0403   /*
0404     Calculate equatorial precession matrix a from t1 to t2
0405     (times in Julian Centuries from J2000.0)
0406    */
0407   const double  secrad = 4.8481368111e-6;  // arcsec -> radians
0408 
0409   double  dt, zeta, z, theta;
0410   Mat3   m1, m2, a;
0411 
0412   dt = t2 - t1;
0413   zeta = ((2306.2181+(1.39656-0.000139*t1)*t1) +
0414               ((0.30188-0.000345*t1)+0.017998*dt)*dt)*dt * secrad;
0415   z = zeta + ((0.7928+0.000411*t1)+0.000205*dt)*dt*dt * secrad;
0416   theta = ((2004.3109-(0.8533+0.000217*t1)*t1) -
0417            ((0.42665+0.000217*t1)+0.041833*dt)*dt)*dt * secrad;
0418 
0419   m1 = zrot (-z);
0420   m2 = yrot (theta);
0421   m1 = m1 * m2;
0422   m2 = zrot (-zeta);
0423   a = m1 * m2;
0424 
0425   return a;
0426  }
0427 
0428 /*---------------- Function nutmat --------------------------------------*/
0429 
0430 Mat3 nutmat (double t, double& ep2, bool hpr)
0431  {
0432   /*
0433     Calculate nutation matrix a from mean to true equatorial coordinates
0434     at time t (in Julian Centuries from J2000.0)
0435     Also calculates the correction ep2 for apparent sidereal time in sec
0436 
0437    if hpr is true a high precision is used, otherwise a low precision
0438     (only the first 50 terms of the nutation theory are used)
0439      */
0440   const int  ntb1 = 15;
0441   const int tb1[ntb1][5] =
0442    {
0443     {  0, 0, 0, 0, 1}, //   1
0444     {  0, 0, 0, 0, 2}, //   2
0445     {  0, 0, 2,-2, 2}, //   9
0446     {  0, 1, 0, 0, 0}, //  10
0447     {  0, 1, 2,-2, 2}, //  11
0448     {  0,-1, 2,-2, 2}, //  12
0449     {  0, 0, 2,-2, 1}, //  13
0450     {  0, 2, 0, 0, 0}, //  16
0451     {  0, 2, 2,-2, 2}, //  18
0452     {  0, 0, 2, 0, 2}, //  31
0453     {  1, 0, 0, 0, 0}, //  32
0454     {  0, 0, 2, 0, 1}, //  33
0455     {  1, 0, 2, 0, 2}, //  34
0456     {  1, 0, 0, 0, 1}, //  38
0457     { -1, 0, 0, 0, 1}, //  39
0458    };
0459 
0460   const int  ntb2 = 35;
0461   const int tb2[ntb2][5] =
0462   {
0463     { -2, 0, 2, 0, 1}, //   3
0464     {  2, 0,-2, 0, 0}, //   4
0465     { -2, 0, 2, 0, 2}, //   5
0466     {  1,-1, 0,-1, 0}, //   6
0467     {  0,-2, 2,-2, 1}, //   7
0468     {  2, 0,-2, 0, 1}, //   8
0469     {  2, 0, 0,-2, 0}, //  14
0470     {  0, 0, 2,-2, 0}, //  15
0471     {  0, 1, 0, 0, 1}, //  17
0472     {  0,-1, 0, 0, 1}, //  19
0473     { -2, 0, 0, 2, 1}, //  20
0474     {  0,-1, 2,-2, 1}, //  21
0475     {  2, 0, 0,-2, 1}, //  22
0476     {  0, 1, 2,-2, 1}, //  23
0477     {  1, 0, 0,-1, 0}, //  24
0478     {  2, 1, 0,-2, 0}, //  25
0479     {  0, 0,-2, 2, 1}, //  26
0480     {  0, 1,-2, 2, 0}, //  27
0481     {  0, 1, 0, 0, 2}, //  28
0482     { -1, 0, 0, 1, 1}, //  29
0483     {  0, 1, 2,-2, 0}, //  30
0484     {  1, 0, 0,-2, 0}, //  35
0485     { -1, 0, 2, 0, 2}, //  36
0486     {  0, 0, 0, 2, 0}, //  37
0487     { -1, 0, 2, 2, 2}, //  40
0488     {  1, 0, 2, 0, 1}, //  41
0489     {  0, 0, 2, 2, 2}, //  42
0490     {  2, 0, 0, 0, 0}, //  43
0491     {  1, 0, 2,-2, 2}, //  44
0492     {  2, 0, 2, 0, 2}, //  45
0493     {  0, 0, 2, 0, 0}, //  46
0494     { -1, 0, 2, 0, 1}, //  47
0495     { -1, 0, 0, 2, 1}, //  48
0496     {  1, 0, 0,-2, 1}, //  49
0497     { -1, 0, 2, 2, 1}, //  50
0498    };
0499 
0500   const double tb3[ntb1][4] =
0501    {
0502     {-171996.0,-174.2,  92025.0,   8.9 },   //   1
0503     {   2062.0,   0.2,   -895.0,   0.5 },   //   2
0504     { -13187.0,  -1.6,   5736.0,  -3.1 },   //   9
0505     {   1426.0,  -3.4,     54.0,  -0.1 },   //  10
0506     {   -517.0,   1.2,    224.0,  -0.6 },   //  11
0507     {    217.0,  -0.5,    -95.0,   0.3 },   //  12
0508     {    129.0,   0.1,    -70.0,   0.0 },   //  13
0509     {     17.0,  -0.1,      0.0,   0.0 },   //  16
0510     {    -16.0,   0.1,      7.0,   0.0 },   //  18
0511     {  -2274.0,  -0.2,    977.0,  -0.5 },   //  31
0512     {    712.0,   0.1,     -7.0,   0.0 },   //  32
0513     {   -386.0,  -0.4,    200.0,   0.0 },   //  33
0514     {   -301.0,   0.0,    129.0,  -0.1 },   //  34
0515     {     63.0,   0.1,    -33.0,   0.0 },   //  38
0516     {    -58.0,  -0.1,     32.0,   0.0 },   //  39
0517    };
0518 
0519   const double tb4[ntb2][2] =
0520   {
0521     { 46.0, -24.0}, //   3
0522     { 11.0,  0.0 }, //   4
0523     { -3.0,  1.0 }, //   5
0524     { -3.0,  0.0 }, //   6
0525     { -2.0,  1.0 }, //   7
0526     {  1.0,  0.0 }, //   8
0527     { 48.0,  1.0 }, //  14
0528     {-22.0,  0.0 }, //  15
0529     {-15.0,  9.0 }, //  17
0530     {-12.0,  6.0 }, //  19
0531     { -6.0,  3.0 }, //  20
0532     { -5.0,  3.0 }, //  21
0533     {  4.0, -2.0 }, //  22
0534     {  4.0, -2.0 }, //  23
0535     { -4.0,  0.0 }, //  24
0536     {  1.0,  0.0 }, //  25
0537     {  1.0,  0.0 }, //  26
0538     { -1.0,  0.0 }, //  27
0539     {  1.0,  0.0 }, //  28
0540     {  1.0,  0.0 }, //  29
0541     { -1.0,  0.0 }, //  30
0542     {-158.0,-1.0 }, //  35
0543     {123.0,-53.0 }, //  36
0544     { 63.0, -2.0 }, //  37
0545     {-59.0, 26.0 }, //  40
0546     {-51.0, 27.0 }, //  41
0547     {-38.0, 16.0 }, //  42
0548     { 29.0, -1.0 }, //  43
0549     { 29.0,-12.0 }, //  44
0550     {-31.0, 13.0 }, //  45
0551     { 26.0, -1.0 }, //  46
0552     { 21.0,-10.0 }, //  47
0553     { 16.0, -8.0 }, //  48
0554     {-13.0,  7.0 }, //  49
0555     {-10.0,  5.0 }, //  50
0556    };
0557 
0558    const double  secrad = 4.8481368111e-6;  // arcsec -> radians
0559    const double  p2 = 2.0 * M_PI;
0560 
0561    double ls, lm, d, f, n, dpsi, deps, ep0;
0562    int j;
0563    Mat3   m1, m2, a;
0564 
0565    if (hpr)
0566     {
0567      lm = 2.355548393544 +
0568           (8328.691422883903 + (0.000151795164 + 0.000000310281*t)*t)*t;
0569      ls = 6.240035939326 +
0570           (628.301956024185 + (-0.000002797375 - 0.000000058178*t)*t)*t;
0571      f = 1.627901933972 +
0572           (8433.466158318464 + (-0.000064271750 + 0.000000053330*t)*t)*t;
0573      d = 5.198469513580 +
0574           (7771.377146170650 + (-0.000033408511 + 0.000000092115*t)*t)*t;
0575      n = 2.182438624361 +
0576           (-33.757045933754 + (0.000036142860 + 0.000000038785*t)*t)*t;
0577 
0578      lm = fmod(lm,p2);
0579      ls = fmod(ls,p2);
0580      f = fmod(f,p2);
0581      d = fmod(d,p2);
0582      n = fmod(n,p2);
0583 
0584      dpsi = 0.0;
0585      deps = 0.0;
0586      for(j=0; j<ntb1; j++)
0587       {
0588        ep0 =  tb1[j][0]*lm + tb1[j][1]*ls + tb1[j][2]*f + tb1[j][3]*d + tb1[j][4]*n;
0589        dpsi = dpsi + (tb3[j][0]+tb3[j][1]*t) * sin(ep0);
0590        deps = deps + (tb3[j][2]+tb3[j][3]*t) * cos(ep0);
0591       };
0592      for(j=0; j<ntb2; j++)
0593       {
0594        ep0 =  tb2[j][0]*lm + tb2[j][1]*ls + tb2[j][2]*f + tb2[j][3]*d + tb2[j][4]*n;
0595        dpsi = dpsi + tb4[j][0] * sin(ep0);
0596        deps = deps + tb4[j][1] * cos(ep0);
0597       };
0598      dpsi = 1.0e-4 * dpsi * secrad;
0599      deps = 1.0e-4 * deps * secrad;
0600     }
0601 
0602    else   // low precision
0603     {
0604      ls = p2 * frac (0.993133+99.997306*t);  //  mean anomaly sun
0605          d = p2 * frac (0.827362+1236.853087*t); //  diff long. moon-sun
0606          f = p2 * frac (0.259089+1342.227826*t); //  dist. node
0607          n = p2 * frac (0.347346 - 5.372447*t);  //  long. node
0608 
0609          dpsi = (-17.2*sin(n) - 1.319*sin(2*(f-d+n)) - 0.227*sin(2*(f+n))
0610                     + 0.206*sin(2*n) + 0.143*sin(ls)) * secrad;
0611          deps = (+9.203*cos(n) + 0.574*cos(2*(f-d+n)) + 0.098*cos(2*(f+n))
0612                     -0.09*cos(2*n) ) * secrad;
0613     };
0614 
0615    ep0 = eps (t);
0616    ep2 = ep0 + deps;
0617    m1 = xrot (ep0);
0618    m2 = zrot (-dpsi);
0619    m1 *= m2;
0620    m2 = xrot (-ep2);
0621    a = m2 * m1;
0622    ep2 = dpsi * cos (ep2);
0623    ep2 *= 13750.9870831;   // convert radians into time-seconds
0624 
0625    return a;
0626  }
0627 
0628 /*---------------- Function nutecl --------------------------------------*/
0629 
0630 Mat3 nutecl (double t, double& ep2)  //  nutation matrix (ecliptic)
0631  {
0632   /*
0633      Calculate nutation matrix a from mean to true ecliptic coordinates
0634      at time t (in Julian Centuries from J2000.0)
0635      Also calculates the correction ep2 for apparent sidereal time in sec
0636      */
0637 
0638      const double secrad = 4.8481368111e-6; //   arcsec -> radians
0639      const double p2 = 2.0 * M_PI;
0640 
0641      double ls, d, f, n, dpsi, deps, ep0;
0642      Mat3   m1, m2, a;
0643 
0644     ls = p2 * frac (0.993133+99.997306*t);  //  mean anomaly sun
0645     d = p2 * frac (0.827362+1236.853087*t); //  diff long. moon-sun
0646     f = p2 * frac (0.259089+1342.227826*t); //  dist. node
0647     n = p2 * frac (0.347346 - 5.372447*t);  //  long. node
0648 
0649     dpsi = (-17.2*sin(n) - 1.319*sin(2*(f-d+n)) - 0.227*sin(2*(f+n))
0650                 + 0.206*sin(2*n) + 0.143*sin(ls)) * secrad;
0651 
0652     deps = (+9.203*cos(n) + 0.574*cos(2*(f-d+n)) + 0.098*cos(2*(f+n))
0653                 -0.09*cos(2*n) ) * secrad;
0654 
0655     ep0 = eps (t);
0656     ep2 = ep0 + deps;
0657     m1 = xrot (-deps);
0658     m2 = zrot (-dpsi);
0659     a = m1 * m2;
0660     ep2 = dpsi * cos (ep2);
0661     ep2 *= 13750.9870831;   // convert radians into time-seconds
0662 
0663         return a;
0664   }
0665 
0666 /*---------------- Function pmatequ --------------------------------------*/
0667 
0668 Mat3 PoleMx (double xp, double yp)
0669  {
0670   /* Returns Polar Motion matrix.
0671      xp and yp are the coordinates of the Celestial Ephemeris Pole
0672      with respect to the IERS Reference Pole in arcsec as published
0673      in the IERS Bulletin B.
0674   */
0675   const double arctrd = M_PI / (180.0*3600.0);
0676   Mat3 res;
0677   double xr, yr;
0678 
0679   xr = xp * arctrd;
0680   yr = yp * arctrd;
0681   res.assign(1.0,0.0,xr,0.0,1.0,-yr,-xr,yr,1.0);
0682 
0683   return res;
0684  }
0685 
0686 /*---------------- Function aberrat --------------------------------------*/
0687 
0688 Vec3 aberrat (double t, Vec3& ve)   //  aberration
0689  {
0690   /*
0691      Correct position vector ve for aberration into new position va
0692      at time t (in Julian Centuries from J2000.0)
0693     */
0694         const double p2 = 2.0 * M_PI;
0695 
0696         double l, cl, d0;
0697         Vec3 va;
0698 
0699     d0 = abs(ve);
0700     l = p2 * frac(0.27908+100.00214*t);
0701     cl = cos(l)*d0;
0702     va[0] = ve[0] - 9.934e-5 * sin(l) * d0;
0703     va[1] = ve[1] + 9.125e-5 * cl;
0704     va[2] = ve[2] + 3.927e-5 * cl;
0705 
0706         return va;
0707   }
0708 
0709 /*--------------------- Function GeoPos ----------------------------------*/
0710 
0711 Vec3 GeoPos (double jd, double ep2, double lat, double lng, double ht)
0712  {
0713   /* Return the geocentric vector (in the equatorial system) of the
0714       geographic position given by the latitude lat and longitude lng
0715       (in radians) and height ht (in m) at the MJD-time jd (UT).
0716       ep2 : correction for apparent sidereal time in sec
0717 
0718       The length unit of the vector is in terms of the equatorial
0719       Earth radius (6378.137 km)
0720      */
0721      double const e2 = 6.69438499959e-3;
0722      double np, h, sp;
0723 
0724      Vec3 r;
0725 
0726      sp = sin(lat);
0727      h = ht / 6378.137e3;
0728      np = 1.0 / (sqrt(1.0 - e2*sp*sp));
0729      r[2] = ((1.0 - e2)*np + h)*sp;
0730 
0731      sp = (np + h) * cos(lat);
0732      np = lsidtim(jd, (lng*180.0/M_PI), ep2) * M_PI/12.0;
0733 
0734      r[0] = sp * cos(np);
0735      r[1] = sp * sin(np);
0736 
0737      return r;
0738   }
0739 
0740 Vec3 GeoPos (double jd, double ep2, double lat, double lng, double ht,
0741               double xp, double yp)
0742  {
0743   /* Return the geocentric vector (in the equatorial system) of the
0744       geographic position given by the latitude lat and longitude lng
0745       (in radians) and height ht (in m) at the MJD-time jd (UT).
0746 
0747     ep2 : correction for apparent sidereal time in sec
0748     xp, yp: coordinates of polar motion in arcsec.
0749 
0750     The length unit of the vector is in terms of the equatorial
0751     Earth radius (6378.137 km)
0752    */
0753    double const e2 = 6.69438499959e-3;
0754    double np, h, sp;
0755    Mat3 prx;
0756    Vec3 r;
0757 
0758    sp = sin(lat);
0759    h = ht / 6378.137e3;
0760    np = 1.0 / (sqrt(1.0 - e2*sp*sp));
0761    r[2] = ((1.0 - e2)*np + h)*sp;
0762    sp = (np + h) * cos(lat);
0763    r[0] = sp * cos(lng);
0764    r[1] = sp * sin(lng);
0765 
0766    // correct for polar motion
0767    if ((xp != 0) || (yp != 0))
0768     {
0769      prx = mxtrn(PoleMx(xp, yp));
0770      r = mxvct(prx, r);
0771     };
0772 
0773    // convert into equatorial
0774    np = lsidtim(jd, 0.0, ep2) * M_PI/12.0;
0775    prx = zrot(-np);
0776    r = mxvct(prx, r);
0777 
0778    return r;
0779   }
0780 
0781 /*--------------------- Function EquHor ----------------------------------*/
0782 
0783 Vec3 EquHor (double jd, double ep2, double lat, double lng, Vec3 r)
0784  {
0785   /* convert vector r from the equatorial system into the horizontal system.
0786       jd = MJD-time (UT)
0787       ep2 : correction for apparent sidereal time in sec
0788       lat, lng : geographic latitude and longitude (in radians)
0789      */
0790   double lst;
0791   Vec3 s;
0792   Mat3 mx;
0793 
0794   lst = lsidtim(jd, (lng*180.0/M_PI), ep2) * M_PI/12.0;
0795   mx = zrot(lst);
0796   s = mxvct(mx, r);
0797   mx = yrot(M_PI/2.0 - lat);
0798   s = mxvct(mx, s);
0799 
0800   return s;
0801  }
0802 
0803 /*--------------------- Function HorEqu ----------------------------------*/
0804 
0805 
0806 Vec3 HorEqu (double jd, double ep2, double lat, double lng, Vec3 r)
0807  {
0808   /* convert vector r from the horizontal system into the equatorial system.
0809       jd = MJD-time (UT)
0810       ep2 : correction for apparent sidereal time in sec
0811       lat, lng : geographic latitude and longitude (in radians)
0812      */
0813   double lst;
0814   Vec3 s;
0815   Mat3 mx;
0816 
0817   mx = yrot(lat - M_PI/2.0);
0818   s = mxvct(mx, r);
0819   lst = -lsidtim(jd, (lng*180.0/M_PI), ep2) * M_PI/12.0;
0820   mx = zrot(lst);
0821   s = mxvct(mx, s);
0822 
0823   return s;
0824  }
0825 
0826 /*--------------------- Function AppPos ----------------------------------*/
0827 
0828 void AppPos (double jd, double ep2, double lat, double lng, double ht,
0829                  int solsys, const Vec3& r, double& azim, double& elev, double& dist)
0830  {
0831   /* get apparent position in the horizontal system
0832       jd = MJD-time (UT)
0833       ep2 : correction for apparent sidereal time in sec
0834       lat, lng : geographic latitude and longitude (in radians)
0835       ht : height above normal in meters.
0836       solsys : = 1 if object is in solar system and parallax has to be
0837                         taken into account, 0 otherwise.
0838       r = vector of celestial object. The unit of length of this vector
0839             has to be in terms of the equatorial Earth radius (6378.14 km)
0840             if solsys = 1, otherwise it's arbitrary.
0841       azim : azimuth in radians (0 is to the North).
0842       elev : elevation in radians
0843       dist : distance (if solsys = 1; otherwise abs(r))
0844      */
0845   Vec3 s;
0846 
0847   // correct for topocentric position (parallax)
0848   if (solsys) s = r - GeoPos(jd, ep2, lat, lng, ht);
0849   else s = r;
0850 
0851   s = EquHor(jd, ep2, lat, lng, s);
0852   s = carpol(s);
0853   dist = s[0];
0854   elev = s[2];
0855   azim = M_PI - s[1];
0856  }
0857 
0858 /*--------------------- Function AppRADec ----------------------------------*/
0859 
0860 void AppRADec (double jd, double ep2, double lat, double lng,
0861                 double azim, double elev, double& ra, double& dec)
0862  {
0863   /* get apparent position in the horizontal system
0864       jd = MJD-time (UT)
0865       ep2 : correction for apparent sidereal time in sec
0866       lat, lng : geographic latitude and longitude (in radians)
0867       azim : azimuth in radians (0 is to the North).
0868       elev : elevation in radians
0869       ra : Right Ascension (in radians)
0870       dec : Declination (in radians)
0871     */
0872      Vec3 s;
0873 
0874    s[0] = 1.0;
0875    s[1] = M_PI - azim;
0876    s[2] = elev;
0877    s = polcar(s);
0878    s = HorEqu(jd, ep2, lat, lng, s);
0879    s = carpol(s);
0880    dec = s[2];
0881    ra = s[1];
0882  }
0883 
0884 /*------------------------- Refract ---------------------------------*/
0885 
0886 double Refract (double h, double p, double t)
0887  {
0888   /* Calculate atmospheric refraction with low precision
0889       h = height (in radians) of object
0890       p = presure (in millibars)
0891       t = temperature (in degrees Celsius)
0892 
0893       RETURN: refraction angle in radians
0894    */
0895   double const raddeg = 180.0 / M_PI;
0896   double r;
0897 
0898   r = h * raddeg;
0899   r = (r + 7.31 / (r + 4.4)) / raddeg;
0900   r = (0.28*p/(t+273.0)) * 0.0167 / tan(r);
0901   r = r / raddeg;
0902 
0903   return r;
0904  }
0905 
0906 /*---------------- Function eccanom --------------------------------------*/
0907 
0908 double eccanom (double man, double ecc)
0909  {
0910   /*
0911      Solve Kepler equation for eccentric anomaly of elliptical orbits.
0912      man : Mean Anomaly (in radians)
0913      ecc : eccentricity
0914      */
0915      const double p2 = 2.0*M_PI;
0916      const double eps = 1E-11;
0917      const int maxit = 15;
0918 
0919      double  m, e, f;
0920      int i, mi;
0921 
0922     m=man/p2;
0923     mi = int(m);
0924     m=p2*(m-mi);
0925     if (m < 0)  m=m+p2;
0926     if (ecc < 0.8) e=m;
0927     else e=M_PI;
0928     f = e - ecc*sin(e) - m;
0929     i=0;
0930 
0931     while ((fabs(f) > eps) && (i < maxit))
0932      {
0933       e = e - f / (1.0 - ecc*cos(e));
0934       f = e - ecc*sin(e) - m;
0935       i = i + 1;
0936      }
0937 
0938         return  e;
0939  }
0940 
0941 
0942 /*---------------- Function hypanom --------------------------------------*/
0943 
0944 double hypanom (double mh, double ecc)
0945  {
0946   /*
0947      Solve Kepler equation for eccentric anomaly of hyperbolic orbits.
0948      mh : Mean Anomaly
0949      ecc : eccentricity
0950      */
0951      const double eps = 1E-11;
0952      const int maxit = 15;
0953 
0954      double  h, f;
0955      int i;
0956 
0957     h = log (2.0*fabs(mh)/ecc+1.8);
0958     if (mh < 0.0) h = -h;
0959     f = ecc * sinh(h) - h - mh;
0960     i = 0;
0961 
0962     while ((fabs(f) > eps*(1.0+fabs(h+mh))) && (i < maxit))
0963      {
0964       h = h - f / (ecc*cosh(h) - 1.0);
0965       f = ecc*sinh(h) - h - mh;
0966       i = i + 1;
0967      }
0968 
0969         return h;
0970   }
0971 
0972 
0973 /*------------------ Function ellip ------------------------------------*/
0974 
0975 void ellip (double gm, double t0, double t, double a, double ecc,
0976                 double m0, Vec3& r1, Vec3& v1)
0977  {
0978   /*
0979      Calculate position r1 and velocity v1 of for elliptic orbit at time t.
0980      gm : Gravitational Constant
0981      t0 : epoch
0982      a : semim-ajor axis
0983      ecc : eccentricity
0984      m0 : Mean Anomaly at epoch (in radians).
0985      The units must be consistent with each other.
0986      */
0987      double m, e, fac, k, c, s;
0988 
0989      if (fabs(a) < 1e-60) a = 1e-60;
0990      k = gm / a;
0991      if (k >= 0) k = sqrt(k);
0992      else k = 0;    // just in case
0993 
0994      m = k * (t - t0) / a + m0;
0995      e = eccanom(m, ecc);
0996      fac = sqrt(1.0 - ecc*ecc);
0997      c = cos(e);
0998      s = sin(e);
0999      r1.assign (a*(c - ecc), a*fac*s, 0.0);
1000      m = 1.0 - ecc*c;
1001      v1.assign (-k*s/m, k*fac*c/m, 0.0);
1002   }
1003 
1004 /*---------------- Function hyperb --------------------------------------*/
1005 
1006 void hyperb (double gm, double t0, double t, double a, double ecc,
1007                  Vec3& r1, Vec3& v1)
1008  {
1009   /*
1010      Calculate position r1 and velocity v1 of for hyperbolic orbit at time t.
1011      gm : Gravitational Constant
1012      t0 : time of perihelion passage
1013      a : semi-major axis
1014      ecc : eccentricity
1015      The units must be consistent with each other.
1016      */
1017      double  mh, h, fac, k, c, s;
1018 
1019      a = fabs(a);
1020      if (a < 1e-60) a = 1e-60;
1021      k = gm / a;
1022      if (k >= 0) k = sqrt(k);
1023      else k = 0;    // just in case
1024 
1025      mh = k * (t - t0) / a;
1026      h = hypanom (mh, ecc);
1027      fac = sqrt(ecc*ecc-1.0);
1028      c = cosh(h);
1029      s = sinh(h);
1030      r1.assign (a*(ecc-c), a*fac*s, 0.0);
1031      mh = ecc*c - 1.0;
1032      v1.assign (-k*s/mh, k*fac*c/mh, 0.0);
1033  }
1034 
1035 /*---------------- Function parab --------------------------------------*/
1036 
1037  void stumpff (double e2, double& c1, double& c2, double& c3)
1038   {
1039     /*
1040       Calculation of Stumpff functions c1=sin(e)/c,
1041       c2=(1-cos(e))/e^2 and c3=(e-sin(e))/e^3 for the
1042       argument e2=e^2  (e: eccentric anomaly)
1043      */
1044   const double  eps=1E-12;
1045   double  n, add;
1046 
1047    c1=0.0; c2=0.0; c3=0.0; add=1.0; n=1.0;
1048    do
1049     {
1050      c1=c1+add; add=add/(2.0*n);
1051      c2=c2+add; add=add/(2.0*n+1);
1052      c3=c3+add; add=-e2*add;
1053      n=n+1.0;
1054     } while (abs(add)>eps);
1055   }
1056 
1057 void parab (double gm, double t0, double t, double q, double ecc,
1058                        Vec3& r1, Vec3& v1)
1059  {
1060   /*
1061     Calculate position r1 and velocity v1 of for parabolic
1062     (or near parabolic) orbit at time t using Stumpff's method.
1063     gm : Gravitational Constant
1064     t0 : time of perihelion passage
1065     q : perihelion distance
1066     ecc : eccentricity
1067     The units must be consistent with each other.
1068    */
1069   const double  eps = 1E-9;
1070   const int  maxit = 15;
1071 
1072   double e2, e20, fac, c1, c2, c3, k, tau, a, u, u2;
1073   double x, y;
1074   int i, fle;
1075 
1076   ecc = fabs(ecc);
1077   e2=0.0; fac=0.5*ecc; i=0;
1078 
1079   q = fabs(q);
1080   if (q < 1e-40) q = 1e-40;
1081   k = gm / (q*(1+ecc));
1082 
1083   if (k >= 0) k = sqrt(k);
1084   else k = 0;    // just in case
1085 
1086   tau = gm / (q*q*q);
1087   if (tau >= 0) tau= 1.5*sqrt(tau)*(t-t0);
1088   else tau = 0;
1089 
1090   do
1091    {
1092     i = i + 1;
1093     e20 = e2;
1094     if (fac < 0.0) a = -1.0;
1095     else a = tau * sqrt(fac);
1096     a = sqrt(a*a+1.0)+a;
1097     if (a > 0.0) a = exp(log(a)/3.0);
1098     if (a == 0.0) u = 0.0;
1099     else u = a - 1.0/a;
1100     u2 = u*u;
1101     if (fac != 0) e2 = u2*(1.0-ecc)/fac;
1102     else e2 = 1;
1103     stumpff (e2, c1, c2, c3);
1104     fac = 3.0*ecc*c3;
1105     fle = (abs(e2-e20) < eps) || (i > maxit);
1106    } while (!fle);
1107 
1108   if (fac != 0)
1109    {
1110     tau = q*(1.0+u2*c2*ecc/fac);
1111     x = q*(1.0-u2*c2/fac);
1112     y = (1.0+ecc)/fac;
1113     if (y >= 0) y = q*sqrt(y)*u*c1;
1114     else y = 0;
1115     r1.assign (x, y, 0.0);
1116     v1.assign (-k*y/tau, k*(x/tau+ecc), 0.0);
1117    }
1118   else  // just in case
1119    {
1120     r1.assign (0, 0, 0);
1121     v1.assign (0, 0, 0);
1122    };
1123  }
1124 
1125 /*---------------- Function kepler --------------------------------------*/
1126 
1127 void kepler (double gm, double t0, double t, double m0, double a, double ecc,
1128                         double ran, double aper, double inc, Vec3& r1, Vec3& v1)
1129  {
1130   /*
1131     Calculate position r1 and velocity v1 of body at time t as an
1132     undisturbed 2-body Kepler problem.
1133 
1134     gm : Gravitational Constant
1135     t0 : time of perihelion passage (hyperbolic or near-parabolic)
1136               epoch of m0 for elliptical orbits.
1137     m0 : Mean Anomaly at epoch for elliptical orbits in degrees in the
1138               range 0 to 360. If m0 < 0 the calculations will be done as
1139               near-parabolic. Set m0 = 0 for hyperbolic orbits.
1140     a : semi-major axis for elliptical (positive) or hyperbolic orbits
1141               (negative). If m0 < 0, a signifies perihelion distance q instead
1142     ecc : eccentricity
1143     ran : Right Ascension of Ascending Node (in degrees)
1144     aper : Argument of Perihelion (in degrees)
1145     inc : Inclination (in degrees)
1146 
1147     The units must be consistent with each other.
1148 
1149     NOTE : If ecc = 1 the orbit will always be calculated as a parabolic one.
1150            If ecc < 1 (elliptical orbits) two possibilities exist:
1151            If m0 >= 0 the calculation will be done in the classical
1152              way with m0 signifying the mean anomaly at time t0 and
1153              a the semi-major axis.
1154            If m0 < 0 the orbit will be calculated as a near-parabolic
1155              orbit with a signifying the perihelion distance at time t0.
1156              (This latter method will be useful for high eccentricity
1157               comet orbits for which typically q is given instead of a)
1158            If ecc > 1 (hyperbolic orbits) two possibilities exist:
1159            If m0 >= 0 (the value is ignored for hyperbolic orbits)
1160                a classical hyperbolic calculation is performed with a
1161                signifying the semi-major axis (negative for hyperbolas).
1162            If m0 < 0 the orbit will be calculated as a near-parabolic
1163                orbit with a signifying the perihelion distance. (This can
1164                be useful for comet orbits which would rarely have an
1165                eccentricity >> 1)
1166                In either case t0 signifies the time of perihelion passage.
1167    */
1168   const double  dgrd = M_PI / 180.0;
1169   enum {ell, par, hyp} kepc;
1170   Mat3 m1,m2;
1171 
1172   kepc = ell;  // just to keep the compiler happy
1173 
1174   // convert into radians
1175   m0 *= dgrd;
1176   ran *= dgrd;
1177   aper *= dgrd;
1178   inc *= dgrd;
1179 
1180   // calculate the position and velocity within the orbit plane
1181   if (ecc == 1.0) kepc = par;
1182   if (ecc < 1.0)
1183    {
1184     if (m0 < 0.0) kepc = par;
1185     else kepc = ell;
1186    }
1187   if (ecc > 1.0)
1188    {
1189     if (m0 < 0.0) kepc = par;
1190     else kepc = hyp;
1191    }
1192 
1193   switch (kepc)
1194    {
1195     case ell : ellip (gm, t0, t, a, ecc, m0, r1, v1); break;
1196     case par : parab (gm, t0, t, a, ecc, r1, v1); break;
1197     case hyp : hyperb (gm, t0, t, a, ecc, r1, v1); break;
1198    }
1199 
1200   // convert into reference plane
1201   m1 = zrot (-aper);
1202   m2 = xrot (-inc);
1203   m1 *= m2;
1204   m2 = zrot (-ran);
1205   m2 = m2 * m1;
1206 
1207   r1 = mxvct (m2, r1);
1208   v1 = mxvct (m2, v1);
1209  }
1210 
1211 /*---------------- Function oscelm --------------------------------------*/
1212 
1213 void oscelm (double gm, double t, Vec3& r1, Vec3& v1,
1214              double& t0, double& m0, double& a, double& ecc,
1215              double& ran, double& aper, double& inc)
1216  {
1217   /*
1218      Get the osculating Kepler elements at epoch t from position r1 and
1219      velocity v1 of body.
1220 
1221      gm : Gravitational Constant. If set negative, its absolute value will
1222             be taken as gm and the perihelion distance will be returned
1223             instead of the semimajor axis.
1224      t0 : time of perihelion passage
1225      m0 : Mean Anomaly at epoch for elliptical orbits in degrees in the
1226             range 0 to 360. Set m0 = 0 for hyperbolic orbits.
1227             m0 will be set to -1 if perihelion distance is to be returned
1228             instead of a.
1229      a : semi-major axis for elliptical (positive) or hyperbolic orbits
1230           (negative). If m0 < 0, a signifies perihelion distance q instead.
1231           If gm is negative, the perihelion distance q will be returned
1232      ecc : eccentricity
1233      ran : Right Ascension of Ascending Node (in degrees)
1234      aper : Argument of Perihelion (in degrees)
1235      inc : Inclination (in degrees)
1236 
1237      The units must be consistent with each other.
1238     */
1239      const double rddg = 180.0/M_PI;
1240      const double p2 = 2.0*M_PI;
1241 
1242      Vec3 c;
1243      double cabs, u, cu, su, p, r;
1244      int pflg;  // 1, if perihelion distance to be returned
1245 
1246         pflg = 0;
1247         if (gm < 0.0)
1248          {
1249           gm = -gm;
1250           pflg = 1;
1251          };
1252 
1253         if (gm < 1e-60) gm = 1e-60;
1254         c = r1 * v1;
1255         cabs = abs(c);
1256         if (fabs(cabs) < 1e-40) cabs = 1e-40;
1257         ran = atan20 (c[0], -c[1]);
1258         inc = c[2]/cabs;
1259         if (fabs(inc) <= 1.0) inc = acos (inc);
1260         else inc = 0;
1261 
1262         r = abs(r1);
1263         if (fabs(r) < 1e-40) r = 1e-40;
1264         su = sin(inc);
1265         if (su != 0.0) su = r1[2]/su;
1266         cu = r1[0]*cos(ran)+r1[1]*sin(ran);
1267         u = atan20 (su, cu);   // argument of latitude
1268 
1269         a = abs(v1);
1270         a = 2.0/r - a*a/gm;
1271         if (fabs(a) < 1.0E-30) ecc = 1.0;  // parabolic
1272         else
1273          {
1274           a = 1.0/a;         // semimajor axis
1275           ecc = 0;
1276          };
1277 
1278         p = cabs*cabs/gm;  // semilatum rectum
1279 
1280         if (ecc == 1.0)
1281          {
1282             p = p / 2.0;  // perihelion distance
1283             a = 2*p;
1284           }
1285         else
1286          {
1287           ecc = 1.0 - p/a;
1288           if (ecc >= 0) ecc = sqrt(ecc);
1289           else ecc = 0;
1290           p = p / (1.0 + ecc);  // perihelion distance
1291          }
1292 
1293         if (fabs(a) > 1e-60) cu = (1.0 - r/a);
1294         else cu = 0;   // just in case
1295         su = dot(r1,v1) / sqrt(fabs(a)*gm);
1296         if (ecc < 1.0)
1297          {
1298           m0 = atan20(su,cu);  // eccentric anomaly
1299           su = sin(m0);
1300           cu = cos(m0);
1301           aper = 1.0-ecc*ecc;
1302           if (aper >= 0) aper = atan20(sqrt(aper)*su,(cu-ecc)); // true anomaly
1303           m0 = m0 - ecc*su;   // mean anomaly
1304          }
1305         else if (ecc > 1.0)
1306          {
1307           su = su / ecc;
1308           m0 = su + sqrt(su*su + 1.0);
1309           if (m0 >= 0) m0 = log(m0);  // = asinh (su); hyperbolic anomaly
1310           aper = (ecc+1.0)/(ecc-1.0);
1311           if (aper >= 0) aper = 2.0 * atan(sqrt(aper)*tanh(m0/2.0));
1312           m0 = ecc*su-m0;
1313          }
1314 
1315         if (ecc != 1.0)
1316          {
1317           aper = u - aper;    // argument of perihelion
1318           u = fabs(a);
1319           t0 = u/gm;
1320           if (t0 >= 0) t0 = t - u*sqrt(t0)*m0;  // time of perihelion transit
1321           else t0 = t;
1322          }
1323         else     // parabolic
1324          {
1325           pflg = 1;
1326 
1327           aper = 2.0 * atan(su);   // true anomaly
1328           aper = u - aper;    // argument of perihelion
1329           t0 = 2.0*p*p*p/gm;
1330           if (t0 >= 0) t0 = t - sqrt(t0) * (su*su*su/3.0 + su);
1331           else t0 = t;
1332          }
1333 
1334         if (m0 < 0.0) m0 = m0 + p2;
1335         if (ran < 0.0) ran = ran + p2;
1336         if (aper < 0.0) aper = aper + p2;
1337         m0 = rddg * m0;
1338         ran = rddg * ran;
1339         aper = rddg * aper;
1340         inc = rddg * inc;
1341 
1342         if (ecc > 1.0) m0 = 0.0;
1343         if (pflg)
1344          {
1345              a = p;
1346              m0 = -1.0;
1347          }
1348  }
1349 
1350 /*-------------------- QuickSun --------------------------------------*/
1351 
1352 Vec3 QuickSun (double t)   // low precision position of the Sun at time t
1353  {
1354   /* Low precision position of the Sun at time t given in
1355       Julian centuries since J2000.
1356       Valid only between 1950 and 2050.
1357 
1358       Returns the position vector (in A.U.) in ecliptic coordinates
1359 
1360   */
1361   double n, g, l;
1362   Vec3 rs;
1363 
1364   n = 36525.0 * t;
1365   l = 280.460 + 0.9856474*n;   // mean longitude
1366   g = 357.528 + 0.9856003*n;   // mean anomaly
1367   l = 2.0*M_PI * frac(l/360.0);
1368   g = 2.0*M_PI * frac(g/360.0);
1369   l = l + (1.915*sin(g) + 0.020*sin(2.0*g)) * 1.74532925199e-2; // ecl.long.
1370   g = 1.00014 - 0.01671*cos(g) - 0.00014*cos(2.0*g);  // radius
1371   rs[0] = g * cos(l);
1372   rs[1] = g * sin(l);
1373   rs[2] = 0;
1374 
1375   return rs;
1376  }
1377 
1378 /*-------------------- Class Sun200 --------------------------------------*/
1379  /*
1380      Ecliptic coordinates (in A.U.) and velocity (in A.U./day)
1381      of the sun for Equinox of Date given in Julian centuries since J2000.
1382      ======================================================================
1383   */
1384 Sun200::Sun200 ()
1385   { }
1386 
1387 Vec3 Sun200::position (double t)   // position of the Sun at time t
1388  {
1389   Vec3 rs, vs;
1390 
1391   state (t, rs, vs);
1392 
1393   return rs;
1394  }
1395 
1396 void Sun200::state (double t, Vec3& rs, Vec3& vs)
1397  {
1398   /* State vector rs (position) and vs (velocity) of the Sun in
1399       ecliptic of date coordinates at time t (in Julian Centuries
1400       since J2000).
1401      */
1402      const double  p2 = 2.0 * M_PI;
1403 
1404      double l, b, r;
1405      int    i;
1406 
1407      tt = t;
1408 
1409      dl = 0.0; dr = 0.0; db = 0.0;
1410      m2 = p2 * frac(0.1387306 + 162.5485917*t);
1411      m3 = p2 * frac(0.9931266 + 99.9973604*t);
1412      m4 = p2 * frac(0.0543250 + 53.1666028*t);
1413      m5 = p2 * frac(0.0551750 + 8.4293972*t);
1414      m6 = p2 * frac(0.8816500 + 3.3938722*t);
1415      d = p2 * frac(0.8274 + 1236.8531*t);
1416      a= p2 * frac(0.3749 + 1325.5524*t);
1417      uu = p2 * frac(0.2591 + 1342.2278*t);
1418 
1419      c3[1] = 1.0; s3[1] = 0.0;
1420      c3[2] = cos(m3); s3[2] = sin(m3);
1421      c3[0] = c3[2]; s3[0] = -s3[2];
1422 
1423      for (i=3; i<9; i++)
1424         addthe(c3[i-1],s3[i-1],c3[2],s3[2],c3[i],s3[i]);
1425      pertven(); pertmar(); pertjup(); pertsat(); pertmoo();
1426 
1427      dl = dl + 6.4 * sin(p2*(0.6983 + 0.0561*t))
1428                  + 1.87 * sin(p2*(0.5764 + 0.4174*t))
1429                  + 0.27 * sin(p2*(0.4189 + 0.3306*t))
1430                  + 0.20 * sin(p2*(0.3581 + 2.4814*t));
1431      l = p2 * frac(0.7859453 + m3/p2 +((6191.2+1.1*t)*t+dl)/1296.0E3);
1432      r = 1.0001398 - 0.0000007*t + dr*1E-6;
1433      b = db * 4.8481368111E-6;
1434 
1435      cl= cos(l); sl=sin(l); cb=cos(b); sb=sin(b);
1436      rs[0]=r*cl*cb; rs[1]=r*sl*cb; rs[2]=r*sb;
1437 
1438   /* velocity calculation
1439          gms=2.9591202986e-4 AU^3/d^2
1440          e=0.0167086
1441          sqrt(gms/a)=1.7202085e-2 AU/d
1442          sqrt(gms/a)*sqrt(1-e^2)=1.71996836e-2 AU/d
1443          nu=M + 2e*sin(M) = M + 0.0334172 * sin(M)  */
1444 
1445      uu = m3 + 0.0334172*sin(m3);  // eccentric Anomaly E
1446      d = cos(uu);
1447      uu = sin(uu);
1448      a = 1.0 - 0.0167086*d;
1449      vs[0] = -1.7202085e-2*uu/a;   // velocity in orbit plane
1450      vs[1] = 1.71996836e-2*d/a;
1451      uu = atan2 (0.9998604*uu, (d-0.0167086));  // true anomaly
1452      d = cos(uu);
1453      uu = sin(uu);
1454      dr = d*vs[0]+uu*vs[1];
1455      dl = (d*vs[1]-uu*vs[0]) / r;
1456 
1457      vs[0] = dr*cl*cb - dl*r*sl*cb;
1458      vs[1] = dr*sl*cb + dl*r*cl*cb;
1459      vs[2] = dr*sb;
1460  }
1461 
1462 void Sun200::addthe (double c1, double s1, double c2, double s2,
1463                             double& cc, double& ss)
1464  {
1465     cc=c1*c2-s1*s2;
1466     ss=s1*c2+c1*s2;
1467  }
1468 
1469 void Sun200::term (int i1, int i, int it, double dlc, double dls, double drc,
1470               double drs, double dbc, double dbs)
1471  {
1472      if (it == 0) addthe (c3[i1+1],s3[i1+1],c[i+8],s[i+8],u,v);
1473      else
1474       {
1475         u=u*tt;
1476         v=v*tt;
1477       }
1478      dl = dl + dlc*u + dls*v;
1479      dr = dr + drc*u + drs*v;
1480      db = db + dbc*u + dbs*v;
1481  }
1482 
1483 void Sun200::pertven()   // Kepler terms and perturbations by Venus
1484  {
1485     int i;
1486 
1487       c[8]=1.0; s[8]=0.0; c[7]=cos(m2); s[7]=-sin(m2);
1488       for (i=7; i>2; i--)
1489          addthe(c[i],s[i],c[7],s[7],c[i-1],s[i-1]);
1490 
1491       term (1, 0, 0, -0.22, 6892.76, -16707.37, -0.54, 0.0, 0.0);
1492       term (1, 0, 1, -0.06, -17.35, 42.04, -0.15, 0.0, 0.0);
1493       term (1, 0, 2, -0.01, -0.05, 0.13, -0.02, 0.0, 0.0);
1494       term (2, 0, 0, 0.0, 71.98, -139.57, 0.0, 0.0, 0.0);
1495       term (2, 0, 1, 0.0, -0.36, 0.7, 0.0, 0.0, 0.0);
1496       term (3, 0, 0, 0.0, 1.04, -1.75, 0.0, 0.0, 0.0);
1497       term (0, -1, 0, 0.03, -0.07, -0.16, -0.07, 0.02, -0.02);
1498       term (1, -1, 0, 2.35, -4.23, -4.75, -2.64, 0.0, 0.0);
1499       term (1, -2, 0, -0.1, 0.06, 0.12, 0.2, 0.02, 0.0);
1500       term (2, -1, 0, -0.06, -0.03, 0.2, -0.01, 0.01, -0.09);
1501       term (2, -2, 0, -4.7, 2.9, 8.28, 13.42, 0.01, -0.01);
1502       term (3, -2, 0, 1.8, -1.74, -1.44, -1.57, 0.04, -0.06);
1503       term (3, -3, 0, -0.67, 0.03, 0.11, 2.43, 0.01, 0.0);
1504       term (4, -2, 0, 0.03, -0.03, 0.1, 0.09, 0.01, -0.01);
1505       term (4, -3, 0, 1.51, -0.4, -0.88, -3.36, 0.18, -0.1);
1506       term (4, -4, 0, -0.19, -0.09, -0.38, 0.77, 0.0, 0.0);
1507       term (5, -3, 0, 0.76, -0.68, 0.3, 0.37, 0.01, 0.0);
1508       term (5, -4, 0, -0.14, -0.04, -0.11, 0.43, -0.03, 0.0);
1509       term (5, -5, 0, -0.05, -0.07, -0.31, 0.21, 0.0, 0.0);
1510       term (6, -4, 0, 0.15, -0.04, -0.06, -0.21, 0.01, 0.0);
1511       term (6, -5, 0, -0.03, -0.03, -0.09, 0.09, -0.01, 0.0);
1512       term (6, -6, 0, 0.0, -0.04, -0.18, 0.02, 0.0, 0.0);
1513       term (7, -5, 0, -0.12, -0.03, -0.08, 0.31, -0.02, -0.01);
1514  }
1515 
1516 void Sun200::pertmar()    // Kepler terms and perturbations by Mars
1517  {
1518     int i;
1519 
1520       c[7] = cos(m4); s[7] = -sin(m4);
1521       for (i=7; i>0; i--)
1522           addthe(c[i],s[i],c[7],s[7],c[i-1],s[i-1]);
1523       term (1, -1, 0, -0.22, 0.17, -0.21, -0.27, 0.0, 0.0);
1524       term (1, -2, 0, -1.66, 0.62, 0.16, 0.28, 0.0, 0.0);
1525       term (2, -2, 0, 1.96, 0.57, -1.32, 4.55, 0.0, 0.01);
1526       term (2, -3, 0, 0.4, 0.15, -0.17, 0.46, 0.0, 0.0);
1527       term (2, -4, 0, 0.53, 0.26, 0.09, -0.22, 0.0, 0.0);
1528       term (3, -3, 0, 0.05, 0.12, -0.35, 0.15, 0.0, 0.0);
1529       term (3, -4, 0, -0.13, -0.48, 1.06, -0.29, 0.01, 0.0);
1530       term (3, -5, 0, -0.04, -0.2, 0.2, -0.04, 0.0, 0.0);
1531       term (4, -4, 0, 0.0, -0.03, 0.1, 0.04, 0.0, 0.0);
1532       term (4, -5, 0, 0.05, -0.07, 0.2, 0.14, 0.0, 00);
1533       term (4, -6, 0, -0.1, 0.11, -0.23, -0.22, 0.0, 0.0);
1534       term (5, -7, 0, -0.05, 0.0, 0.01, -0.14,  0.0, 0.0);
1535       term (5, -8, 0, 0.05, 0.01, -0.02, 0.1, 0.0, 0.0);
1536  }
1537 
1538 void Sun200::pertjup()    // Kepler terms and perturbations by Jupiter
1539  {
1540     int i;
1541 
1542       c[7] = cos(m5); s[7] = -sin(m5);
1543       for (i=7; i>4; i--)
1544           addthe(c[i],s[i],c[7],s[7],c[i-1],s[i-1]);
1545       term (1, -1, 0, 0.01, 0.07, 0.18, -0.02, 0.0, -0.02);
1546       term (0, -1, 0, -0.31, 2.58, 0.52, 0.34, 0.02, 0.0);
1547       term (1, -1, 0, -7.21, -0.06, 0.13, -16.27, 0.0, -0.02);
1548       term (1, -2, 0, -0.54, -1.52, 3.09, -1.12, 0.01, -0.17);
1549       term (1, -3, 0, -0.03, -0.21, 0.38, -0.06, 0.0, -0.02);
1550       term (2, -1, 0, -0.16, 0.05, -0.18, -0.31, 0.01, 0.0);
1551       term (2, -2, 0, 0.14, -2.73, 9.23, 0.48, 0.0, 0.0);
1552       term (2, -3, 0, 0.07, -0.55, 1.83, 0.25, 0.01,  0.0);
1553       term (2, -4, 0, 0.02, -0.08, 0.25, 0.06, 0.0, 0.0);
1554       term (3, -2, 0, 0.01, -0.07, 0.16, 0.04, 0.0, 0.0);
1555       term (3, -3, 0, -0.16, -0.03, 0.08, -0.64, 0.0, 0.0);
1556       term (3, -4, 0, -0.04, -0.01, 0.03, -0.17, 0.0, 0.0);
1557   }
1558 
1559 void Sun200::pertsat()  // Kepler terms and perturbations by Saturn
1560  {
1561   c[7] = cos(m6); s[7] = -sin(m6);
1562   addthe(c[7],s[7],c[7],s[7],c[6],s[6]);
1563   term (0, -1, 0, 0.0, 0.32, 0.01, 0.0, 0.0, 0.0);
1564   term (1, -1, 0, -0.08, -0.41, 0.97, -0.18, 0.0, -0.01);
1565   term (1, -2, 0, 0.04, 0.1, -0.23, 0.1, 0.0, 0.0);
1566   term (2, -2, 0, 0.04, 0.1, -0.35, 0.13, 0.0, 0.0);
1567  }
1568 
1569 void Sun200::pertmoo()   // corrections for Earth-Moon center of gravity
1570  {
1571   dl = dl + 6.45*sin(d) - 0.42*sin(d-a) + 0.18*sin(d+a) + 0.17*sin(d-m3) - 0.06*sin(d+m3);
1572   dr = dr + 30.76*cos(d) - 3.06*cos(d-a) + 0.85*cos(d+a) - 0.58*cos(d+m3) + 0.57*cos(d-m3);
1573   db = db + 0.576*sin(uu);
1574  }
1575 
1576 /*--------------------- Class moon200 ----------------------------------*/
1577 
1578     /*
1579      Position vector (in Earth radii) of the Moon referred to Ecliptic
1580      for Equinox of Date.
1581      t is the time in Julian centuries since J2000.
1582     */
1583 
1584 Moon200::Moon200 ()
1585   { }
1586 
1587 Vec3 Moon200::position (double t)   // position of the Moon at time t
1588  {
1589   Vec3 rm;
1590 
1591      const double arc = 206264.81;    // 3600*180/pi = ''/r
1592      const double pi2 = M_PI * 2.0;
1593 
1594      double lambda, beta, r, fac;
1595 
1596     minit(t);
1597     solar1(); solar2(); solar3(); solarn(n); planetary(t);
1598 
1599     lambda =  pi2 * frac ((l0+dlam/arc) / pi2);
1600     if (lambda < 0) lambda = lambda + pi2;
1601     s = f + ds / arc;
1602 
1603     fac = 1.000002708 + 139.978 * dgam;
1604     beta = (fac*(18518.511+1.189+gam1c)*sin(s)-6.24*sin(3*s)+n);
1605     beta = beta * 4.8481368111e-6;
1606     sinpi = sinpi * 0.999953253;
1607     r = arc / sinpi;
1608 
1609     rm.assign (r, lambda, beta);
1610     rm = polcar(rm);
1611 
1612         return rm;
1613  }
1614 
1615 
1616 void Moon200::addthe (double c1, double s1, double c2, double s2,
1617                              double& c, double& s)
1618  {
1619     c=c1*c2-s1*s2;
1620     s=s1*c2+c1*s2;
1621  }
1622 
1623 double Moon200::sinus (double phi)
1624  {
1625      /* sin(phi) in units of 1r = 360ø */
1626     return sin (2.0*M_PI * frac(phi));
1627  }
1628 
1629 void Moon200::long_periodic (double t)
1630  {
1631    /* long periodic changes of mean elements */
1632 
1633   double  s1, s2, s3, s4, s5, s6, s7;
1634 
1635   s1 = sinus (0.19833 + 0.05611*t);
1636   s2 = sinus (0.27869 + 0.04508*t);
1637   s3 = sinus (0.16827 - 0.36903*t);
1638   s4 = sinus (0.34734 - 5.37261*t);
1639   s5 = sinus (0.10498 - 5.37899*t);
1640   s6 = sinus (0.42681 - 0.41855*t);
1641   s7 = sinus (0.14943 - 5.37511*t);
1642   dl0 = 0.84*s1 + 0.31*s2 + 14.27*s3 + 7.26*s4 + 0.28*s5 + 0.24*s6;
1643   dl = 2.94*s1 + 0.31*s2 + 14.27*s3 + 9.34*s4 + 1.12*s5 + 0.83*s6;
1644   dls = -6.4*s1 - 1.89*s6;
1645   df = 0.21*s1+0.31*s2+14.27*s3-88.7*s4-15.3*s5+0.24*s6-1.86*s7;
1646   dd = dl0 - dls;
1647   dgam = -3332E-9 * sinus (0.59734 - 5.37261*t)
1648                     -539E-9 * sinus (0.35498 - 5.37899*t)
1649                     -64E-9 * sinus (0.39943 - 5.37511*t);
1650  }
1651 
1652 void Moon200::minit(double t)
1653  {
1654   /* calculate mean elements l (moon), F (node distance)
1655         l' (sun) and D (moon's elongation) */
1656 
1657   const double arc = 206264.81;    // 3600*180/pi = ''/r
1658   const double pi2 = M_PI * 2.0;
1659 
1660   int i, j, max;
1661   double t2, arg, fac;
1662 
1663   max = 0; // just to keep the compiler happy
1664   arg = 0;
1665   fac = 0;
1666 
1667   t2 = t * t;
1668   dlam = 0; ds = 0; gam1c = 0; sinpi = 3422.7;
1669   long_periodic (t);
1670   l0 = pi2*frac(0.60643382+1336.85522467*t-0.00000313*t2) + dl0/arc;
1671   l = pi2*frac(0.37489701+1325.55240982*t+0.00002565*t2)  + dl/arc;
1672   ls = pi2*frac(0.99312619+99.99735956*t-0.00000044*t2)   + dls/arc;
1673   f = pi2*frac(0.25909118+1342.22782980*t-0.00000892*t2)  + df/arc;
1674   d = pi2*frac(0.82736186+1236.85308708*t-0.00000397*t2)  + dd/arc;
1675   for (i=0; i<4; i++)
1676    {
1677     switch (i)
1678      {
1679       case 0: arg=l; max=4; fac=1.000002208; break;
1680       case 1: arg=ls; max=3; fac=0.997504612-0.002495388*t; break;
1681       case 2: arg=f; max=4; fac=1.000002708+139.978*dgam; break;
1682       case 3: arg=d; max=6; fac=1.0; break;
1683      }
1684     co[6][i] = 1.0; co[7][i] = cos (arg) * fac;
1685     si[6][i] = 0.0; si[7][i] = sin (arg) * fac;
1686     for (j = 2; j <= max; j++)
1687            addthe(co[j+5][i],si[j+5][i],co[7][i],si[7][i],co[j+6][i],si[j+6][i]);
1688     for (j = 1; j <= max; j++)
1689      {
1690       co[6-j][i]=co[j+6][i];
1691       si[6-j][i]=-si[j+6][i];
1692      }
1693    }
1694  }
1695 
1696 void Moon200::term (int p, int q, int r, int s, double& x, double& y)
1697  {
1698   // calculate x=cos(p*arg1+q*arg2...); y=sin(p*arg1+q*arg2...)
1699   int i[4];
1700   int k;
1701 
1702   i[0]=p; i[1]=q; i[2]=r; i[3]=s; x=1.0; y=0.0;
1703   for (k=0; k<4; k++)
1704    if (i[k]!=0) addthe(x,y,co[i[k]+6][k],si[i[k]+6][k],x,y);
1705  }
1706 
1707 void Moon200::addsol(double coeffl, double coeffs, double coeffg,
1708                      double coeffp, int p, int q, int r, int s)
1709  {
1710   double x, y;
1711   term (p,q,r,s,x,y);
1712   dlam = dlam + coeffl*y; ds = ds + coeffs*y;
1713   gam1c = gam1c + coeffg*x; sinpi = sinpi + coeffp*x;
1714  }
1715 
1716 void Moon200::solar1()
1717  {
1718       addsol ( 13.902, 14.06, -0.001, 0.2607, 0, 0, 0, 4);
1719       addsol ( 0.403, -4.01, 0.394, 0.0023, 0, 0, 0, 3);
1720       addsol ( 2369.912, 2373.36, 0.601, 28.2333, 0, 0, 0, 2);
1721       addsol ( -125.154, -112.79, -0.725, -0.9781, 0, 0, 0, 1);
1722       addsol ( 1.979, 6.98, -0.445, 0.0433, 1, 0, 0, 4);
1723       addsol (191.953, 192.72, 0.029, 3.0861, 1, 0, 0, 2);
1724       addsol (-8.466, -13.51, 0.455, -0.1093, 1, 0, 0, 1);
1725       addsol (22639.5, 22609.07, 0.079, 186.5398, 1, 0, 0, 0);
1726       addsol (18.609, 3.59, -0.094, 0.0118, 1, 0, 0, -1);
1727       addsol (-4586.465, -4578.13, -0.077, 34.3117, 1, 0, 0, -2);
1728       addsol (3.215, 5.44, 0.192, -0.0386, 1, 0, 0, -3);
1729       addsol (-38.428, -38.64, 0.001, 0.6008, 1, 0, 0, -4);
1730       addsol (-0.393, -1.43, -0.092, 0.0086, 1, 0, 0, -6);
1731       addsol (-0.289, -1.59, 0.123, -0.0053, 0, 1, 0, 4);
1732       addsol (-24.420, -25.1, 0.04, -0.3, 0, 1, 0, 2);
1733       addsol (18.023, 17.93, 0.007, 0.1494, 0, 1, 0, 1);
1734       addsol (-668.146, -126.98, -1.302, -0.3997, 0, 1, 0, 0);
1735       addsol (0.56, 0.32, -0.001, -0.0037, 0, 1, 0, -1);
1736       addsol (-165.145, -165.06, 0.054, 1.9178, 0, 1, 0, -2);
1737       addsol (-1.877, -6.46, -0.416, 0.0339, 0, 1, 0, -4);
1738       addsol (0.213, 1.02, -0.074, 0.0054, 2, 0, 0, 4);
1739       addsol (14.387, 14.78, -0.017, 0.2833, 2, 0, 0, 2);
1740       addsol (-0.586, -1.2, 0.054, -0.01, 2, 0, 0, 1);
1741       addsol (769.016, 767.96, 0.107, 10.1657, 2, 0, 0, 0);
1742       addsol (1.75, 2.01, -0.018, 0.0155, 2, 0, 0, -1);
1743       addsol (-211.656, -152.53, 5.679, -0.3039, 2, 0, 0, -2);
1744       addsol (1.225, 0.91, -0.03, -0.0088, 2, 0, 0, -3);
1745       addsol (-30.773, -34.07, -0.308, 0.3722, 2, 0, 0, -4);
1746       addsol (-0.57, -1.4, -0.074, 0.0109, 2, 0, 0, -6);
1747       addsol (-2.921, -11.75, 0.787, -0.0484, 1, 1, 0, 2);
1748       addsol (1.267, 1.52, -0.022, 0.0164, 1, 1, 0, 1);
1749       addsol (-109.673, -115.18, 0.461, -0.949, 1, 1, 0, 0);
1750       addsol (-205.962, -182.36, 2.056, 1.4437, 1, 1, 0, -2);
1751       addsol (0.233, 0.36, 0.012, -0.0025, 1, 1, 0, -3);
1752       addsol (-4.391, -9.66, -0.471, 0.0673, 1, 1, 0, -4);
1753  }
1754 
1755 void Moon200::solar2()
1756  {
1757       addsol (0.283, 1.53, -0.111, 0.006, 1, -1, 0, 4);
1758       addsol (14.577, 31.7, -1.54, 0.2302, 1, -1, 0, 2);
1759       addsol (147.687, 138.76, 0.679, 1.1528, 1, -1, 0, 0);
1760       addsol (-1.089, 0.55, 0.021, 0.0, 1, -1, 0, -1);
1761       addsol (28.475, 23.59, -0.443, -0.2257, 1, -1, 0, -2);
1762       addsol (-0.276, -0.38, -0.006, -0.0036, 1, -1, 0, -3);
1763       addsol (0.636, 2.27, 0.146, -0.0102, 1, -1, 0, -4);
1764       addsol (-0.189, -1.68, 0.131, -0.0028, 0, 2, 0, 2);
1765       addsol (-7.486, -0.66, -0.037, -0.0086, 0, 2, 0, 0);
1766       addsol (-8.096, -16.35, -0.74, 0.0918, 0, 2, 0, -2);
1767       addsol (-5.741, -0.04, 0.0, -0.0009, 0, 0, 2, 2);
1768       addsol (0.255, 0.0, 0.0, 0.0, 0, 0, 2, 1);
1769       addsol (-411.608, -0.2, 0.0, -0.0124, 0, 0, 2, 0);
1770       addsol (0.584, 0.84, 0.0, 0.0071, 0, 0, 2, -1);
1771       addsol (-55.173, -52.14, 0.0, -0.1052, 0, 0, 2, -2);
1772       addsol (0.254, 0.25, 0.0, -0.0017, 0, 0, 2, -3);
1773       addsol (0.025, -1.67, 0.0, 0.0031, 0, 0, 2, -4);
1774       addsol (1.06, 2.96, -0.166, 0.0243, 3, 0, 0, 2);
1775       addsol (36.124, 50.64, -1.3, 0.6215, 3, 0, 0, 0);
1776       addsol (-13.193, -16.4, 0.258, -0.1187, 3, 0, 0, -2);
1777       addsol (-1.187, -0.74, 0.042, 0.0074, 3, 0, 0, -4);
1778       addsol (-0.293, -0.31, -0.002, 0.0046, 3, 0, 0, -6);
1779       addsol (-0.29, -1.45, 0.116, -0.0051, 2, 1, 0, 2);
1780       addsol (-7.649, -10.56, 0.259, -0.1038, 2, 1, 0, 0);
1781       addsol (-8.627, -7.59, 0.078, -0.0192, 2, 1, 0, -2);
1782       addsol (-2.74, -2.54, 0.022, 0.0324, 2, 1, 0, -4);
1783       addsol (1.181, 3.32, -0.212, 0.0213, 2, -1, 0, 2);
1784       addsol (9.703, 11.67, -0.151, 0.1268, 2, -1, 0, 0);
1785       addsol (-0.352, -0.37, 0.001, -0.0028, 2, -1, 0, -1);
1786       addsol (-2.494, -1.17, -0.003, -0.0017, 2, -1, 0, -2);
1787       addsol (0.36, 0.2, -0.012, -0.0043, 2, -1, 0, -4);
1788       addsol (-1.167, -1.25, 0.008, -0.0106, 1, 2, 0, 0);
1789       addsol (-7.412, -6.12, 0.117, 0.0484, 1, 2, 0, -2);
1790       addsol (-0.311, -0.65, -0.032, 0.0044, 1, 2, 0, -4);
1791       addsol (0.757, 1.82, -0.105, 0.0112, 1, -2, 0, 2);
1792       addsol (2.58, 2.32, 0.027, 0.0196, 1, -2, 0, 0);
1793       addsol (2.533, 2.4, -0.014, -0.0212, 1, -2, 0, -2);
1794       addsol (-0.344, -0.57, -0.025, 0.0036, 0, 3, 0, -2);
1795       addsol (-0.992, -0.02, 0.0, 0.0, 1, 0, 2, 2);
1796       addsol (-45.099, -0.02, 0.0, -0.0010, 1, 0, 2, 0);
1797       addsol (-0.179, -9.52, 0.0, -0.0833, 1, 0, 2, -2);
1798       addsol (-0.301, -0.33, 0.0, 0.0014, 1, 0, 2, -4);
1799       addsol (-6.382, -3.37, 0.0, -0.0481, 1, 0, -2, 2);
1800       addsol (39.528, 85.13, 0.0, -0.7136, 1, 0, -2, 0);
1801       addsol (9.366, 0.71, 0.0, -0.0112, 1, 0, -2, -2);
1802       addsol (0.202, 0.02, 0.0, 0.0, 1, 0, -2, -4);
1803  }
1804 
1805 void Moon200::solar3()
1806  {
1807       addsol (0.415, 0.1, 0.0, 0.0013, 0, 1, 2, 0);
1808       addsol (-2.152, -2.26, 0.0, -0.0066, 0, 1, 2, -2);
1809       addsol (-1.44, -1.3, 0.0, 0.0014, 0, 1, -2, 2);
1810       addsol (0.384, -0.04, 0.0, 0.0, 0, 1, -2, -2);
1811       addsol (1.938, 3.6, -0.145, 0.0401, 4, 0, 0, 0);
1812       addsol (-0.952, -1.58, 0.052, -0.0130, 4, 0, 0, -2);
1813       addsol (-0.551, -0.94, 0.032, -0.0097, 3, 1, 0, 0);
1814       addsol (-0.482, -0.57, 0.005, -0.0045, 3, 1, 0, -2);
1815       addsol (0.681, 0.96, -0.026, 0.0115, 3, -1, 0, 0);
1816       addsol (-0.297, -0.27, 0.002, -0.0009, 2, 2, 0, -2);
1817       addsol (0.254, 0.21, -0.003, 0.0, 2, -2, 0, -2);
1818       addsol (-0.25, -0.22, 0.004, 0.0014, 1, 3, 0, -2);
1819       addsol (-3.996, 0.0, 0.0, 0.0004, 2, 0, 2, 0);
1820       addsol (0.557, -0.75, 0.0, -0.009, 2, 0, 2, -2);
1821       addsol (-0.459, -0.38, 0.0, -0.0053, 2, 0, -2, 2);
1822       addsol (-1.298, 0.74, 0.0, 0.0004, 2, 0, -2, 0);
1823       addsol (0.538, 1.14, 0.0, -0.0141, 2, 0, -2, -2);
1824       addsol (0.263, 0.02, 0.0, 0.0, 1, 1, 2, 0);
1825       addsol (0.426, 0.07, 0.0, -0.0006, 1, 1, -2, -2);
1826       addsol (-0.304, 0.03, 0.0, 0.0003, 1, -1, 2, 0);
1827       addsol (-0.372, -0.19, 0.0, -0.0027, 1, -1, -2, 2);
1828       addsol (0.418, 0.0, 0.0, 0.0, 0, 0, 4, 0);
1829       addsol (-0.330, -0.04, 0.0, 0.0, 3, 0, 2, 0);
1830  }
1831 
1832 void Moon200::addn (double coeffn, int p, int q, int r, int s,
1833                     double& n, double&x, double& y)
1834  {
1835   term (p,q,r,s,x,y);
1836   n=n+coeffn*y;
1837  }
1838 
1839 void Moon200::solarn (double& n)
1840  {
1841   // perturbation N of ecliptic latitude
1842   double x, y;
1843 
1844   n = 0.0;
1845   addn (-526.069, 0, 0, 1, -2, n, x, y);
1846   addn (-3.352, 0, 0, 1, -4, n, x, y);
1847   addn (44.297, 1, 0, 1, -2,  n, x, y);
1848   addn (-6.0, 1, 0, 1, -4, n, x, y);
1849   addn (20.599, -1, 0, 1, 0, n, x, y);
1850   addn (-30.598, -1, 0, 1, -2, n, x, y);
1851   addn (-24.649, -2, 0, 1, 0, n, x, y);
1852   addn (-2.0, -2, 0, 1, -2, n, x, y);
1853   addn (-22.571, 0, 1, 1, -2, n, x, y);
1854   addn (10.985, 0, -1, 1, -2, n, x, y);
1855  }
1856 
1857 void Moon200::planetary (double t)
1858  {
1859   // perturbations of the ecliptic longitude by Venus and Jupiter
1860 
1861   dlam = dlam
1862             + 0.82*sinus(0.7736 -62.5512*t)+0.31*sinus(0.0466-125.1025*t)
1863             + 0.35*sinus(0.5785-25.1042*t)+0.66*sinus(0.4591+1335.8075*t)
1864             + 0.64*sinus(0.313-91.568*t)+1.14*sinus(0.148+1331.2898*t)
1865             + 0.21*sinus(0.5918+1056.5859*t)+0.44*sinus(0.5784+1322.8595*t)
1866             + 0.24*sinus(0.2275-5.7374*t)+0.28*sinus(0.2965+2.6929*t)
1867             + 0.33*sinus(0.3132+6.3368*t);
1868  }
1869 
1870 /*-------------------- Class Eclipse --------------------------------------*/
1871 /*
1872     Calculalations for Solar and Lunar Eclipses
1873   */
1874 
1875 Eclipse::Eclipse()
1876  {
1877   // some assignments just in case
1878   rs.assign(1,0,0);
1879   rm.assign(1,0,0);
1880   eshadow.assign (1,0,0);
1881   rint.assign (1,0,0);
1882   d_umbra = 0;
1883   ep2 = 0;
1884   }
1885 
1886 int Eclipse::solar (double jd, double tdut, double& phi, double& lamda)
1887  {
1888   /* Calculates various items about a solar eclipse.
1889       INPUT:
1890       jd = Modified Julian Date (UT)
1891       tdut = TDT - UT in sec
1892 
1893       OUTPUT:
1894       phi, lamda: Geographic latitude and longitude (in radians)
1895                       of center of shadow if central eclipse
1896 
1897       RETURN:
1898       0 : No eclipse
1899       1 : Partial eclipse
1900       2 : Non-central annular eclipse
1901       3 : Non-central total eclipse
1902       4 : Annular eclipse
1903       5 : Total eclipse
1904      */
1905 
1906     const double flat = 0.996633;  // flatting of the Earth
1907     const double ds = 218.245445;  // diameter of Sun in Earth radii
1908     const double dm = 0.544986;   // diameter of Moon in Earth radii
1909     double s0, s, dlt, r2, r0;
1910     int phase;
1911     Vec3 ve;
1912 
1913     // get the apparent equatorial coordinates of the sun and the moon
1914     equ_sun_moon(jd, tdut);
1915 
1916     rs[2]/=flat;  // adjust for flatting of the Earth
1917     rm[2]/=flat;
1918     rint.assign ();
1919     lamda = 0;
1920     phi = 0;
1921 
1922     // intersect shadow axis with Earth
1923     eshadow = rm - rs;
1924     eshadow = vnorm(eshadow);    // direction vector of shadow
1925 
1926     s0 = - dot(rm, eshadow);   // distance Moon - fundamental plane
1927     r2 = dot (rm,rm);
1928     dlt = s0*s0 + 1.0 - r2;
1929     r0 = 1.0 - dlt;
1930     if (r0 > 0) r0 = sqrt (r0);
1931     else r0 = 0;      // distance center of Earth - shadow axis
1932 
1933     r2 = abs(rs - rm);
1934     d_umbra = (ds - dm) * s0 / r2 - dm;// diameter of umbra at fundamental plane
1935     d_penumbra = (ds + dm) * s0 / r2 + dm;
1936 
1937     // get phase of eclipse
1938     if (r0 < 1.0)
1939      {
1940       if (dlt > 0) dlt = sqrt(dlt);
1941       else dlt = 0;
1942       s = s0 - dlt;  // distance Moon - fundamental plane
1943       d_umbra = (ds - dm) * s / r2 - dm; // diameter of umbra at surface
1944       rint = rm + s * eshadow;
1945       rint[2] *= flat;    // vector to intersection
1946       ve = carpol(rint);
1947       lamda = ve[1] - lsidtim(jd,0,ep2)*0.261799387799; // geographic coordinates
1948       if (lamda > M_PI) lamda -= 2.0*M_PI;
1949       if (lamda < (-M_PI)) lamda += 2.0*M_PI;
1950       phi = sqrt(rint[0]*rint[0] + rint[1]*rint[1])*0.993305615;
1951       phi = atan2(rint[2],phi);
1952 
1953       if (d_umbra > 0) phase = 4;  // central annular eclipse
1954       else phase = 5;              // central total eclipse
1955      }
1956     else
1957      {
1958       if (r0 < (1.0 + 0.5 * fabs(d_umbra)))
1959            {
1960             if (d_umbra > 0) phase = 2;  // non-central annular eclipse
1961             else phase = 3;     // non-central total eclipse
1962            }
1963       else
1964            {
1965             if (r0 < (1.0 + 0.5*d_penumbra)) phase = 1;   // partial eclipse
1966             else phase = 0;   // no eclipse
1967            }
1968      }
1969 
1970     rs[2]*=flat;  // restore from flatting of the Earth
1971     rm[2]*=flat;
1972 
1973     return phase;
1974  }
1975 
1976 void Eclipse::maxpos (double jd, double tdut, double& phi, double& lamda)
1977  {
1978   /* Calculates the geographic position of the place of maximum eclipse
1979       at the time jd for a non-central eclipse. (NOTE that in case of
1980       a central eclipse the maximum position will be calculated by
1981       function solar. Do not use this function in that case as the
1982       result would be incorrect! No check is being done in this routine
1983       whether an eclipse is visible at all. Use maxpos only in case of a
1984       confirmed partial or non-central eclipse.
1985 
1986       INPUT:
1987       jd = Modified Julian Date (UT)
1988       tdut = TDT - UT in sec
1989 
1990       OUTPUT:
1991       phi, lamda: Geographic latitude and longitude (in radians)
1992                       of maximum eclipse at the time
1993      */
1994 
1995     const double flat = 0.996633;  // flatting of the Earth
1996     double s0;
1997     Vec3 ve;
1998 
1999     // get the apparent equatorial coordinates of the sun and the moon
2000     equ_sun_moon(jd, tdut);
2001 
2002     rs[2]/=flat;  // adjust for flatting of the Earth
2003     rm[2]/=flat;
2004     rint.assign ();
2005     lamda = 0;
2006     phi = 0;
2007 
2008     // intersect shadow axis with Earth
2009     eshadow = rm - rs;
2010     eshadow = vnorm(eshadow);    // direction vector of shadow
2011 
2012     s0 = - dot(rm, eshadow);   // distance Moon - fundamental plane
2013     rint = rm + s0 * eshadow;
2014     rint = vnorm(rint); // normalize to 1 Earth radius
2015     rint[2] *= flat;    // vector to position of maximum eclipse
2016     ve = carpol(rint);
2017 
2018     lamda = ve[1] - lsidtim(jd,0,ep2)*0.261799387799; // geographic coordinates
2019     if (lamda > M_PI) lamda -= 2.0*M_PI;
2020     if (lamda < (-M_PI)) lamda += 2.0*M_PI;
2021     phi = sqrt(rint[0]*rint[0] + rint[1]*rint[1])*0.993305615;
2022     phi = atan2(rint[2],phi);
2023 
2024     rs[2]*=flat;  // restore from flatting of the Earth
2025     rm[2]*=flat;
2026  }
2027 
2028 void Eclipse::penumd (double jd, double tdut, Vec3& vrm, Vec3& ves,
2029                              double& dpn, double& pang)
2030  {
2031   /* Calculates various items needed for finding out the northern and
2032       southern border of the penumbra during a solar eclipse.
2033 
2034       INPUT:
2035       jd = Modified Julian Date (UT)
2036       tdut = TDT - UT in sec
2037 
2038       OUTPUT:
2039       vrm = position vector of Moon adjusted for flattening
2040       ves = unit vector pointing into the direction of the center of the shadow
2041       dpn = diameter of the penumbra at the fundamental plane
2042       pang = angle of penumbral half-cone in radians
2043      */
2044 
2045     const double flat = 0.996633;  // flatting of the Earth
2046     const double ds = 218.245445;  // diameter of Sun in Earth radii
2047     const double dm = 0.544986;   // diameter of Moon in Earth radii
2048     double s0, r2;
2049 
2050     // get the apparent equatorial coordinates of the sun and the moon
2051     equ_sun_moon(jd, tdut);
2052     rs[2]/=flat;  // adjust for flatting of the Earth
2053     rm[2]/=flat;
2054 
2055     // intersect shadow axis with Earth
2056     eshadow = rm - rs;
2057     pang = abs(eshadow);
2058     eshadow = vnorm(eshadow);    // direction vector of shadow
2059     ves = eshadow;
2060     vrm = rm;
2061 
2062     s0 = - dot(rm, eshadow);   // distance Moon - fundamental plane
2063 
2064     r2 = abs(rs - rm);
2065     dpn = (ds + dm) * s0 / r2 + dm;
2066 
2067     // penumbral angle
2068     pang = asin((dm + ds) / (2.0 * pang));
2069 
2070     rs[2]*=flat;  // restore from flatting of the Earth
2071     rm[2]*=flat;
2072  }
2073 
2074 void Eclipse::umbra (double jd, double tdut, Vec3& vrm, Vec3& ves,
2075                                                          double& dpn, double& pang)
2076  {
2077   /* Calculates various items needed for finding out the northern and
2078           southern border of the umbra during a solar eclipse.
2079 
2080           INPUT:
2081           jd = Modified Julian Date (UT)
2082           tdut = TDT - UT in sec
2083 
2084           OUTPUT:
2085           vrm = position vector of Moon adjusted for flattening
2086           ves = unit vector pointing into the direction of the center of the shadow
2087           dpn = diameter of the umbra at the fundamental plane
2088           pang = angle of umbral half-cone in radians
2089          */
2090 
2091         const double flat = 0.996633;  // flatting of the Earth
2092         const double ds = 218.245445;  // diameter of Sun in Earth radii
2093         const double dm = 0.544986;   // diameter of Moon in Earth radii
2094         double s0, r2;
2095 
2096         // get the apparent equatorial coordinates of the sun and the moon
2097         equ_sun_moon(jd, tdut);
2098         rs[2]/=flat;  // adjust for flatting of the Earth
2099         rm[2]/=flat;
2100 
2101         // intersect shadow axis with Earth
2102         eshadow = rm - rs;
2103         pang = abs(eshadow);
2104         eshadow = vnorm(eshadow);    // direction vector of shadow
2105         ves = eshadow;
2106         vrm = rm;
2107 
2108         s0 = - dot(rm, eshadow);   // distance Moon - fundamental plane
2109 
2110         r2 = abs(rs - rm);
2111         dpn = (ds - dm) * s0 / r2 - dm;
2112 
2113         // umbral angle
2114         pang = asin((ds - dm) / (2.0 * pang));
2115 
2116         rs[2]*=flat;  // restore from flatting of the Earth
2117         rm[2]*=flat;
2118  }
2119 
2120 void Eclipse::equ_sun_moon(double jd, double tdut)
2121  {
2122   /* Get the equatorial coordinates of the Sun and the Moon and
2123       store them in rs and rm.
2124       Also store the time t in Julian Centuries and the correction
2125       ep2 for the Apparent Sidereal Time.
2126       jd = Modified Julian Date (UT)
2127       tdut = TDT - UT in sec
2128     */
2129     double ae = 23454.77992; // 149597870.0/6378.14 =  1AE -> Earth Radii
2130     Mat3 mx;
2131 
2132     t = julcent (jd) + tdut / 3.15576e9;  // =(86400.0 * 36525.0);
2133     rs = sun.position(t);
2134     rm = moon.position(t);
2135     rs = eclequ(t,rs);
2136     rm = eclequ(t,rm);
2137 
2138     // correct Moon coordinates for center of figure
2139     mx = zrot(-2.4240684e-6); // +0.5" in longitude
2140     rm = mxvct(mx,rm);
2141     mx = yrot(-1.2120342e-6); // -0.25" in latitude
2142     rm = mxvct(mx,rm);
2143     mx = nutmat(t,ep2);   // nutation
2144     rs = mxvct(mx,rs);    // apparent coordinates
2145     rs = aberrat(t,rs);
2146     rs *= ae;
2147     rm = mxvct(mx,rm);
2148  }
2149 
2150 double Eclipse::duration (double jd, double tdut, double& width)
2151  {
2152   /* Get the duration of a central eclipse at the center point
2153      for MJD jd and TDT-UT tdut in seconds.
2154      Also return the width of the umbra in km.
2155      A call to solar with the respective jd must have been done
2156      prior to calling this function !!!
2157  */
2158   const double omega = 4.3755e-3;  // radial velocity of Earth in rad/min.
2159 
2160   double dur, lm, pa, umbold;
2161   Vec3 rold, eold, rsold, rmold;
2162   Mat3 mx;
2163 
2164   // save old values for jd
2165   rold = rint;
2166   eold = eshadow;
2167   umbold = d_umbra;
2168   rsold = rs;
2169   rmold = rm;
2170 
2171   dur = 0.1;  // 0.1 min
2172   if (solar(jd+dur/1440.0,tdut, lm, pa) > 3)
2173    {
2174     mx = zrot(dur*omega);
2175     rint = mxvct(mx,rint);
2176     rint -= rold;
2177     pa = dot (rint, eold);
2178     lm = dot (rint, rint) - pa*pa;
2179     if (lm > 0) lm = sqrt(lm);
2180     else lm = 0;
2181     if (lm > 0) dur = fabs(umbold) / lm * dur * 60.0;
2182     else dur = 0;
2183    }
2184 
2185   else dur = -1;
2186 
2187   // restore old values for jd
2188   d_umbra = umbold;
2189   eshadow = eold;
2190   eold = rold*rint;  // direction perpendicular of apparent shadow movement
2191   rint = rold;
2192   rs = rsold;
2193   rm = rmold;
2194 
2195   // get width of umbra at center location
2196   rold = vnorm (rint);
2197   pa = dot(rold,eshadow);
2198   if (pa > 1.0) pa = 1.0;
2199   if (pa < -1.0) pa = -1.0;
2200   if (fabs(pa) < 1.0e-15) lm = fabs(d_umbra);  // just in case
2201   else lm = fabs(d_umbra / pa);  // projection along shadow vector
2202 
2203   rsold = vnorm(rint*eshadow);
2204   rmold = vnorm(eold);
2205   pa = dot(rsold,rmold); // cos of projection shadow - perperndicular
2206   if (pa > 1.0) pa = 1.0;
2207   if (pa < -1.0) pa = -1.0;
2208   umbold = fabs(sin(acos(pa)));
2209 
2210   // this is for very slant shadow angles respective to movement
2211   lm = lm * umbold;
2212   umbold = fabs(pa * d_umbra);
2213   if (umbold > lm) width = umbold;
2214   else width = lm;
2215 
2216   // this is the normal case
2217   rold = vnorm (eold);
2218   pa = dot(rold,eshadow);
2219   if (pa > 1.0) pa = 1.0;
2220   if (pa < -1.0) pa = -1.0;
2221   pa = fabs(sin(acos(pa)));
2222   if (pa < 0.00001) pa = 0.00001;
2223   lm = d_umbra / pa;  // allow for projection
2224   lm = fabs(lm);
2225 
2226   if (lm > width) width = lm;
2227   width = width * 6378.14;
2228 
2229   return dur;
2230  }
2231 
2232 Vec3 Eclipse::GetRSun ()    // get Earth - Sun vector in Earth radii
2233  {
2234   return rs;
2235  }
2236 
2237 Vec3 Eclipse::GetRMoon ()   // get Earth - Moon vector in Earth radii
2238  {
2239   return rm;
2240  }
2241 
2242 double Eclipse::GetEp2 ()   // get the ep2 value
2243  {
2244   return ep2;
2245  }
2246 
2247 int Eclipse::lunar (double jd, double tdut)
2248  {
2249   /* check whether lunar eclipse is in progress at
2250       Modified Julian Date jd (UT).
2251       tdut = TDT - UT in sec
2252 
2253       RETURN:
2254       0 : No eclipse
2255       1 : Partial Penumbral Eclipse
2256       2 : Total Penumbral Eclipse
2257       3 : Partial Umbral Eclipse
2258       4 : Total Umbral Eclipse
2259      */
2260 
2261     const double dm = 0.544986;   // diameter of Moon in Earth radii
2262     const double ds = 218.245445;  // diameter of Sun in Earth radii
2263 
2264     double umbra, penumbra;
2265     double r2, s0, sep;
2266     int phase;
2267     Vec3 v1, v2;
2268 
2269     // get position of Sun and Moon
2270     equ_sun_moon(jd, tdut);
2271 
2272     // get radius of umbra and penumbra
2273     r2 = abs(rs);
2274     s0 = abs (rm);
2275     umbra = 1.02*fabs((ds - 2.0) * s0 / r2 - 2.0)*0.5; // radius of umbra
2276     penumbra = 1.02*fabs((ds + 2.0) * s0 / r2 + 2.0)*0.5;//radius of penumbra
2277     /* (the factor 1.02 allows for enlargment of shadow due to
2278          Earth's atmosphere) */
2279 
2280     // get angular separation of center of shadow and Moon
2281     r2 = abs(rm);
2282     sep = dot(rs,rm)/(abs(rs)*r2);
2283     if (fabs(sep) > 1.0) sep = 1.0;
2284     sep = acos(sep);  // in radians
2285     sep = fabs(tan(sep)*r2);  // distance of Moon and shadow in Earth radii
2286 
2287     // Now check the kind of eclipse
2288     if (sep < (umbra - dm/2.0)) phase = 4;
2289     else if (sep < (umbra + dm/2.0)) phase = 3;
2290     else if (sep < (penumbra - dm/2.0)) phase = 2;
2291     else if (sep < (penumbra + dm/2.0)) phase = 1;
2292     else phase = 0;
2293 
2294     return phase;
2295  }
2296 
2297