File indexing completed on 2025-01-19 03:55:52

0001 /*
0002  * transupp.c
0003  *
0004  * SPDX-FileCopyrightText: 1997, Thomas G. Lane.
0005  * This file is part of the Independent JPEG Group's software.
0006  * For conditions of distribution and use, see the accompanying README file.
0007  *
0008  * This file contains image transformation routines and other utility code
0009  * used by the jpegtran sample application.  These are NOT part of the core
0010  * JPEG library.  But we keep these routines separate from jpegtran.c to
0011  * ease the task of maintaining jpegtran-like programs that have other user
0012  * interfaces.
0013  */
0014 
0015 /* Although this file really shouldn't have access to the library internals,
0016  * it's helpful to let it call jround_up() and jcopy_block_row().
0017  */
0018 #define JPEG_INTERNALS
0019 
0020 #include "jinclude.h"
0021 #include "jpeglib.h"
0022 #include "transupp.h"       /* My own external interface */
0023 
0024 
0025 #if TRANSFORMS_SUPPORTED
0026 
0027 /*
0028  * Lossless image transformation routines.  These routines work on DCT
0029  * coefficient arrays and thus do not require any lossy decompression
0030  * or recompression of the image.
0031  * Thanks to Guido Vollbeding for the initial design and code of this feature.
0032  *
0033  * Horizontal flipping is done in-place, using a single top-to-bottom
0034  * pass through the virtual source array.  It will thus be much the
0035  * fastest option for images larger than main memory.
0036  *
0037  * The other routines require a set of destination virtual arrays, so they
0038  * need twice as much memory as jpegtran normally does.  The destination
0039  * arrays are always written in normal scan order (top to bottom) because
0040  * the virtual array manager expects this.  The source arrays will be scanned
0041  * in the corresponding order, which means multiple passes through the source
0042  * arrays for most of the transforms.  That could result in much thrashing
0043  * if the image is larger than main memory.
0044  *
0045  * Some notes about the operating environment of the individual transform
0046  * routines:
0047  * 1. Both the source and destination virtual arrays are allocated from the
0048  *    source JPEG object, and therefore should be manipulated by calling the
0049  *    source's memory manager.
0050  * 2. The destination's component count should be used.  It may be smaller
0051  *    than the source's when forcing to grayscale.
0052  * 3. Likewise the destination's sampling factors should be used.  When
0053  *    forcing to grayscale the destination's sampling factors will be all 1,
0054  *    and we may as well take that as the effective iMCU size.
0055  * 4. When "trim" is in effect, the destination's dimensions will be the
0056  *    trimmed values but the source's will be untrimmed.
0057  * 5. All the routines assume that the source and destination buffers are
0058  *    padded out to a full iMCU boundary.  This is true, although for the
0059  *    source buffer it is an undocumented property of jdcoefct.c.
0060  * Notes 2,3,4 boil down to this: generally we should use the destination's
0061  * dimensions and ignore the source's.
0062  */
0063 
0064 
0065 LOCAL(void)
0066 do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0067        jvirt_barray_ptr *src_coef_arrays)
0068 /* Horizontal flip; done in-place, so no separate dest array is required */
0069 {
0070   JDIMENSION MCU_cols, comp_width, blk_x, blk_y;
0071   int ci, k, offset_y;
0072   JBLOCKARRAY buffer;
0073   JCOEFPTR ptr1, ptr2;
0074   JCOEF temp1, temp2;
0075   jpeg_component_info *compptr;
0076 
0077   /* Horizontal mirroring of DCT blocks is accomplished by swapping
0078    * pairs of blocks in-place.  Within a DCT block, we perform horizontal
0079    * mirroring by changing the signs of odd-numbered columns.
0080    * Partial iMCUs at the right edge are left untouched.
0081    */
0082   MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
0083 
0084   for (ci = 0; ci < dstinfo->num_components; ci++) {
0085     compptr = dstinfo->comp_info + ci;
0086     comp_width = MCU_cols * compptr->h_samp_factor;
0087     for (blk_y = 0; blk_y < compptr->height_in_blocks;
0088      blk_y += compptr->v_samp_factor) {
0089       buffer = (*srcinfo->mem->access_virt_barray)
0090     ((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y,
0091      (JDIMENSION) compptr->v_samp_factor, TRUE);
0092       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0093     for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) {
0094       ptr1 = buffer[offset_y][blk_x];
0095       ptr2 = buffer[offset_y][comp_width - blk_x - 1];
0096       /* this unrolled loop doesn't need to know which row it's on... */
0097       for (k = 0; k < DCTSIZE2; k += 2) {
0098         temp1 = *ptr1;  /* swap even column */
0099         temp2 = *ptr2;
0100         *ptr1++ = temp2;
0101         *ptr2++ = temp1;
0102         temp1 = *ptr1;  /* swap odd column with sign change */
0103         temp2 = *ptr2;
0104         *ptr1++ = -temp2;
0105         *ptr2++ = -temp1;
0106       }
0107     }
0108       }
0109     }
0110   }
0111 }
0112 
0113 
0114 LOCAL(void)
0115 do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0116        jvirt_barray_ptr *src_coef_arrays,
0117        jvirt_barray_ptr *dst_coef_arrays)
0118 /* Vertical flip */
0119 {
0120   JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
0121   int ci, i, j, offset_y;
0122   JBLOCKARRAY src_buffer, dst_buffer;
0123   JBLOCKROW src_row_ptr, dst_row_ptr;
0124   JCOEFPTR src_ptr, dst_ptr;
0125   jpeg_component_info *compptr;
0126 
0127   /* We output into a separate array because we can't touch different
0128    * rows of the source virtual array simultaneously.  Otherwise, this
0129    * is a pretty straightforward analog of horizontal flip.
0130    * Within a DCT block, vertical mirroring is done by changing the signs
0131    * of odd-numbered rows.
0132    * Partial iMCUs at the bottom edge are copied verbatim.
0133    */
0134   MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
0135 
0136   for (ci = 0; ci < dstinfo->num_components; ci++) {
0137     compptr = dstinfo->comp_info + ci;
0138     comp_height = MCU_rows * compptr->v_samp_factor;
0139     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0140      dst_blk_y += compptr->v_samp_factor) {
0141       dst_buffer = (*srcinfo->mem->access_virt_barray)
0142     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0143      (JDIMENSION) compptr->v_samp_factor, TRUE);
0144       if (dst_blk_y < comp_height) {
0145     /* Row is within the mirrorable area. */
0146     src_buffer = (*srcinfo->mem->access_virt_barray)
0147       ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0148        comp_height - dst_blk_y - (JDIMENSION) compptr->v_samp_factor,
0149        (JDIMENSION) compptr->v_samp_factor, FALSE);
0150       } else {
0151     /* Bottom-edge blocks will be copied verbatim. */
0152     src_buffer = (*srcinfo->mem->access_virt_barray)
0153       ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y,
0154        (JDIMENSION) compptr->v_samp_factor, FALSE);
0155       }
0156       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0157     if (dst_blk_y < comp_height) {
0158       /* Row is within the mirrorable area. */
0159       dst_row_ptr = dst_buffer[offset_y];
0160       src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
0161       for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
0162            dst_blk_x++) {
0163         dst_ptr = dst_row_ptr[dst_blk_x];
0164         src_ptr = src_row_ptr[dst_blk_x];
0165         for (i = 0; i < DCTSIZE; i += 2) {
0166           /* copy even row */
0167           for (j = 0; j < DCTSIZE; j++)
0168         *dst_ptr++ = *src_ptr++;
0169           /* copy odd row with sign change */
0170           for (j = 0; j < DCTSIZE; j++)
0171         *dst_ptr++ = - *src_ptr++;
0172         }
0173       }
0174     } else {
0175       /* Just copy row verbatim. */
0176       jcopy_block_row(src_buffer[offset_y], dst_buffer[offset_y],
0177               compptr->width_in_blocks);
0178     }
0179       }
0180     }
0181   }
0182 }
0183 
0184 
0185 LOCAL(void)
0186 do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0187           jvirt_barray_ptr *src_coef_arrays,
0188           jvirt_barray_ptr *dst_coef_arrays)
0189 /* Transpose source into destination */
0190 {
0191   JDIMENSION dst_blk_x, dst_blk_y;
0192   int ci, i, j, offset_x, offset_y;
0193   JBLOCKARRAY src_buffer, dst_buffer;
0194   JCOEFPTR src_ptr, dst_ptr;
0195   jpeg_component_info *compptr;
0196 
0197   /* Transposing pixels within a block just requires transposing the
0198    * DCT coefficients.
0199    * Partial iMCUs at the edges require no special treatment; we simply
0200    * process all the available DCT blocks for every component.
0201    */
0202   for (ci = 0; ci < dstinfo->num_components; ci++) {
0203     compptr = dstinfo->comp_info + ci;
0204     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0205      dst_blk_y += compptr->v_samp_factor) {
0206       dst_buffer = (*srcinfo->mem->access_virt_barray)
0207     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0208      (JDIMENSION) compptr->v_samp_factor, TRUE);
0209       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0210     for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
0211          dst_blk_x += compptr->h_samp_factor) {
0212       src_buffer = (*srcinfo->mem->access_virt_barray)
0213         ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
0214          (JDIMENSION) compptr->h_samp_factor, FALSE);
0215       for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
0216         src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
0217         dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
0218         for (i = 0; i < DCTSIZE; i++)
0219           for (j = 0; j < DCTSIZE; j++)
0220         dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0221       }
0222     }
0223       }
0224     }
0225   }
0226 }
0227 
0228 
0229 LOCAL(void)
0230 do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0231        jvirt_barray_ptr *src_coef_arrays,
0232        jvirt_barray_ptr *dst_coef_arrays)
0233 /* 90 degree rotation is equivalent to
0234  *   1. Transposing the image;
0235  *   2. Horizontal mirroring.
0236  * These two steps are merged into a single processing routine.
0237  */
0238 {
0239   JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y;
0240   int ci, i, j, offset_x, offset_y;
0241   JBLOCKARRAY src_buffer, dst_buffer;
0242   JCOEFPTR src_ptr, dst_ptr;
0243   jpeg_component_info *compptr;
0244 
0245   /* Because of the horizontal mirror step, we can't process partial iMCUs
0246    * at the (output) right edge properly.  They just get transposed and
0247    * not mirrored.
0248    */
0249   MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
0250 
0251   for (ci = 0; ci < dstinfo->num_components; ci++) {
0252     compptr = dstinfo->comp_info + ci;
0253     comp_width = MCU_cols * compptr->h_samp_factor;
0254     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0255      dst_blk_y += compptr->v_samp_factor) {
0256       dst_buffer = (*srcinfo->mem->access_virt_barray)
0257     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0258      (JDIMENSION) compptr->v_samp_factor, TRUE);
0259       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0260     for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
0261          dst_blk_x += compptr->h_samp_factor) {
0262       src_buffer = (*srcinfo->mem->access_virt_barray)
0263         ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
0264          (JDIMENSION) compptr->h_samp_factor, FALSE);
0265       for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
0266         src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
0267         if (dst_blk_x < comp_width) {
0268           /* Block is within the mirrorable area. */
0269           dst_ptr = dst_buffer[offset_y]
0270         [comp_width - dst_blk_x - offset_x - 1];
0271           for (i = 0; i < DCTSIZE; i++) {
0272         for (j = 0; j < DCTSIZE; j++)
0273           dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0274         i++;
0275         for (j = 0; j < DCTSIZE; j++)
0276           dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
0277           }
0278         } else {
0279           /* Edge blocks are transposed but not mirrored. */
0280           dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
0281           for (i = 0; i < DCTSIZE; i++)
0282         for (j = 0; j < DCTSIZE; j++)
0283           dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0284         }
0285       }
0286     }
0287       }
0288     }
0289   }
0290 }
0291 
0292 
0293 LOCAL(void)
0294 do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0295         jvirt_barray_ptr *src_coef_arrays,
0296         jvirt_barray_ptr *dst_coef_arrays)
0297 /* 270 degree rotation is equivalent to
0298  *   1. Horizontal mirroring;
0299  *   2. Transposing the image.
0300  * These two steps are merged into a single processing routine.
0301  */
0302 {
0303   JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
0304   int ci, i, j, offset_x, offset_y;
0305   JBLOCKARRAY src_buffer, dst_buffer;
0306   JCOEFPTR src_ptr, dst_ptr;
0307   jpeg_component_info *compptr;
0308 
0309   /* Because of the horizontal mirror step, we can't process partial iMCUs
0310    * at the (output) bottom edge properly.  They just get transposed and
0311    * not mirrored.
0312    */
0313   MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
0314 
0315   for (ci = 0; ci < dstinfo->num_components; ci++) {
0316     compptr = dstinfo->comp_info + ci;
0317     comp_height = MCU_rows * compptr->v_samp_factor;
0318     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0319      dst_blk_y += compptr->v_samp_factor) {
0320       dst_buffer = (*srcinfo->mem->access_virt_barray)
0321     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0322      (JDIMENSION) compptr->v_samp_factor, TRUE);
0323       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0324     for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
0325          dst_blk_x += compptr->h_samp_factor) {
0326       src_buffer = (*srcinfo->mem->access_virt_barray)
0327         ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
0328          (JDIMENSION) compptr->h_samp_factor, FALSE);
0329       for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
0330         dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
0331         if (dst_blk_y < comp_height) {
0332           /* Block is within the mirrorable area. */
0333           src_ptr = src_buffer[offset_x]
0334         [comp_height - dst_blk_y - offset_y - 1];
0335           for (i = 0; i < DCTSIZE; i++) {
0336         for (j = 0; j < DCTSIZE; j++) {
0337           dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0338           j++;
0339           dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
0340         }
0341           }
0342         } else {
0343           /* Edge blocks are transposed but not mirrored. */
0344           src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
0345           for (i = 0; i < DCTSIZE; i++)
0346         for (j = 0; j < DCTSIZE; j++)
0347           dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0348         }
0349       }
0350     }
0351       }
0352     }
0353   }
0354 }
0355 
0356 
0357 LOCAL(void)
0358 do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0359         jvirt_barray_ptr *src_coef_arrays,
0360         jvirt_barray_ptr *dst_coef_arrays)
0361 /* 180 degree rotation is equivalent to
0362  *   1. Vertical mirroring;
0363  *   2. Horizontal mirroring.
0364  * These two steps are merged into a single processing routine.
0365  */
0366 {
0367   JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
0368   int ci, i, j, offset_y;
0369   JBLOCKARRAY src_buffer, dst_buffer;
0370   JBLOCKROW src_row_ptr, dst_row_ptr;
0371   JCOEFPTR src_ptr, dst_ptr;
0372   jpeg_component_info *compptr;
0373 
0374   MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
0375   MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
0376 
0377   for (ci = 0; ci < dstinfo->num_components; ci++) {
0378     compptr = dstinfo->comp_info + ci;
0379     comp_width = MCU_cols * compptr->h_samp_factor;
0380     comp_height = MCU_rows * compptr->v_samp_factor;
0381     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0382      dst_blk_y += compptr->v_samp_factor) {
0383       dst_buffer = (*srcinfo->mem->access_virt_barray)
0384     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0385      (JDIMENSION) compptr->v_samp_factor, TRUE);
0386       if (dst_blk_y < comp_height) {
0387     /* Row is within the vertically mirrorable area. */
0388     src_buffer = (*srcinfo->mem->access_virt_barray)
0389       ((j_common_ptr) srcinfo, src_coef_arrays[ci],
0390        comp_height - dst_blk_y - (JDIMENSION) compptr->v_samp_factor,
0391        (JDIMENSION) compptr->v_samp_factor, FALSE);
0392       } else {
0393     /* Bottom-edge rows are only mirrored horizontally. */
0394     src_buffer = (*srcinfo->mem->access_virt_barray)
0395       ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y,
0396        (JDIMENSION) compptr->v_samp_factor, FALSE);
0397       }
0398       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0399     if (dst_blk_y < comp_height) {
0400       /* Row is within the mirrorable area. */
0401       dst_row_ptr = dst_buffer[offset_y];
0402       src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
0403       /* Process the blocks that can be mirrored both ways. */
0404       for (dst_blk_x = 0; dst_blk_x < comp_width; dst_blk_x++) {
0405         dst_ptr = dst_row_ptr[dst_blk_x];
0406         src_ptr = src_row_ptr[comp_width - dst_blk_x - 1];
0407         for (i = 0; i < DCTSIZE; i += 2) {
0408           /* For even row, negate every odd column. */
0409           for (j = 0; j < DCTSIZE; j += 2) {
0410         *dst_ptr++ = *src_ptr++;
0411         *dst_ptr++ = - *src_ptr++;
0412           }
0413           /* For odd row, negate every even column. */
0414           for (j = 0; j < DCTSIZE; j += 2) {
0415         *dst_ptr++ = - *src_ptr++;
0416         *dst_ptr++ = *src_ptr++;
0417           }
0418         }
0419       }
0420       /* Any remaining right-edge blocks are only mirrored vertically. */
0421       for (; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
0422         dst_ptr = dst_row_ptr[dst_blk_x];
0423         src_ptr = src_row_ptr[dst_blk_x];
0424         for (i = 0; i < DCTSIZE; i += 2) {
0425           for (j = 0; j < DCTSIZE; j++)
0426         *dst_ptr++ = *src_ptr++;
0427           for (j = 0; j < DCTSIZE; j++)
0428         *dst_ptr++ = - *src_ptr++;
0429         }
0430       }
0431     } else {
0432       /* Remaining rows are just mirrored horizontally. */
0433       dst_row_ptr = dst_buffer[offset_y];
0434       src_row_ptr = src_buffer[offset_y];
0435       /* Process the blocks that can be mirrored. */
0436       for (dst_blk_x = 0; dst_blk_x < comp_width; dst_blk_x++) {
0437         dst_ptr = dst_row_ptr[dst_blk_x];
0438         src_ptr = src_row_ptr[comp_width - dst_blk_x - 1];
0439         for (i = 0; i < DCTSIZE2; i += 2) {
0440           *dst_ptr++ = *src_ptr++;
0441           *dst_ptr++ = - *src_ptr++;
0442         }
0443       }
0444       /* Any remaining right-edge blocks are only copied. */
0445       for (; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
0446         dst_ptr = dst_row_ptr[dst_blk_x];
0447         src_ptr = src_row_ptr[dst_blk_x];
0448         for (i = 0; i < DCTSIZE2; i++)
0449           *dst_ptr++ = *src_ptr++;
0450       }
0451     }
0452       }
0453     }
0454   }
0455 }
0456 
0457 
0458 LOCAL(void)
0459 do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0460            jvirt_barray_ptr *src_coef_arrays,
0461            jvirt_barray_ptr *dst_coef_arrays)
0462 /* Transverse transpose is equivalent to
0463  *   1. 180 degree rotation;
0464  *   2. Transposition;
0465  * or
0466  *   1. Horizontal mirroring;
0467  *   2. Transposition;
0468  *   3. Horizontal mirroring.
0469  * These steps are merged into a single processing routine.
0470  */
0471 {
0472   JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
0473   int ci, i, j, offset_x, offset_y;
0474   JBLOCKARRAY src_buffer, dst_buffer;
0475   JCOEFPTR src_ptr, dst_ptr;
0476   jpeg_component_info *compptr;
0477 
0478   MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
0479   MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
0480 
0481   for (ci = 0; ci < dstinfo->num_components; ci++) {
0482     compptr = dstinfo->comp_info + ci;
0483     comp_width = MCU_cols * compptr->h_samp_factor;
0484     comp_height = MCU_rows * compptr->v_samp_factor;
0485     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
0486      dst_blk_y += compptr->v_samp_factor) {
0487       dst_buffer = (*srcinfo->mem->access_virt_barray)
0488     ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
0489      (JDIMENSION) compptr->v_samp_factor, TRUE);
0490       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
0491     for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
0492          dst_blk_x += compptr->h_samp_factor) {
0493       src_buffer = (*srcinfo->mem->access_virt_barray)
0494         ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
0495          (JDIMENSION) compptr->h_samp_factor, FALSE);
0496       for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
0497         if (dst_blk_y < comp_height) {
0498           src_ptr = src_buffer[offset_x]
0499         [comp_height - dst_blk_y - offset_y - 1];
0500           if (dst_blk_x < comp_width) {
0501         /* Block is within the mirrorable area. */
0502         dst_ptr = dst_buffer[offset_y]
0503           [comp_width - dst_blk_x - offset_x - 1];
0504         for (i = 0; i < DCTSIZE; i++) {
0505           for (j = 0; j < DCTSIZE; j++) {
0506             dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0507             j++;
0508             dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
0509           }
0510           i++;
0511           for (j = 0; j < DCTSIZE; j++) {
0512             dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
0513             j++;
0514             dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0515           }
0516         }
0517           } else {
0518         /* Right-edge blocks are mirrored in y only */
0519         dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
0520         for (i = 0; i < DCTSIZE; i++) {
0521           for (j = 0; j < DCTSIZE; j++) {
0522             dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0523             j++;
0524             dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
0525           }
0526         }
0527           }
0528         } else {
0529           src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
0530           if (dst_blk_x < comp_width) {
0531         /* Bottom-edge blocks are mirrored in x only */
0532         dst_ptr = dst_buffer[offset_y]
0533           [comp_width - dst_blk_x - offset_x - 1];
0534         for (i = 0; i < DCTSIZE; i++) {
0535           for (j = 0; j < DCTSIZE; j++)
0536             dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0537           i++;
0538           for (j = 0; j < DCTSIZE; j++)
0539             dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
0540         }
0541           } else {
0542         /* At lower right corner, just transpose, no mirroring */
0543         dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
0544         for (i = 0; i < DCTSIZE; i++)
0545           for (j = 0; j < DCTSIZE; j++)
0546             dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
0547           }
0548         }
0549       }
0550     }
0551       }
0552     }
0553   }
0554 }
0555 
0556 
0557 /* Request any required workspace.
0558  *
0559  * We allocate the workspace virtual arrays from the source decompression
0560  * object, so that all the arrays (both the original data and the workspace)
0561  * will be taken into account while making memory management decisions.
0562  * Hence, this routine must be called after jpeg_read_header (which reads
0563  * the image dimensions) and before jpeg_read_coefficients (which realizes
0564  * the source's virtual arrays).
0565  */
0566 
0567 GLOBAL(void)
0568 jtransform_request_workspace (j_decompress_ptr srcinfo,
0569                   jpeg_transform_info *info)
0570 {
0571   jvirt_barray_ptr *coef_arrays = NULL;
0572   jpeg_component_info *compptr;
0573   int ci;
0574 
0575   if (info->force_grayscale &&
0576       srcinfo->jpeg_color_space == JCS_YCbCr &&
0577       srcinfo->num_components == 3) {
0578     /* We'll only process the first component */
0579     info->num_components = 1;
0580   } else {
0581     /* Process all the components */
0582     info->num_components = srcinfo->num_components;
0583   }
0584 
0585   switch (info->transform) {
0586   case JXFORM_NONE:
0587   case JXFORM_FLIP_H:
0588     /* Don't need a workspace array */
0589     break;
0590   case JXFORM_FLIP_V:
0591   case JXFORM_ROT_180:
0592     /* Need workspace arrays having same dimensions as source image.
0593      * Note that we allocate arrays padded out to the next iMCU boundary,
0594      * so that transform routines need not worry about missing edge blocks.
0595      */
0596     coef_arrays = (jvirt_barray_ptr *)
0597       (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE,
0598     SIZEOF(jvirt_barray_ptr) * info->num_components);
0599     for (ci = 0; ci < info->num_components; ci++) {
0600       compptr = srcinfo->comp_info + ci;
0601       coef_arrays[ci] = (*srcinfo->mem->request_virt_barray)
0602     ((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE,
0603      (JDIMENSION) jround_up((long) compptr->width_in_blocks,
0604                 (long) compptr->h_samp_factor),
0605      (JDIMENSION) jround_up((long) compptr->height_in_blocks,
0606                 (long) compptr->v_samp_factor),
0607      (JDIMENSION) compptr->v_samp_factor);
0608     }
0609     break;
0610   case JXFORM_TRANSPOSE:
0611   case JXFORM_TRANSVERSE:
0612   case JXFORM_ROT_90:
0613   case JXFORM_ROT_270:
0614     /* Need workspace arrays having transposed dimensions.
0615      * Note that we allocate arrays padded out to the next iMCU boundary,
0616      * so that transform routines need not worry about missing edge blocks.
0617      */
0618     coef_arrays = (jvirt_barray_ptr *)
0619       (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE,
0620     SIZEOF(jvirt_barray_ptr) * info->num_components);
0621     for (ci = 0; ci < info->num_components; ci++) {
0622       compptr = srcinfo->comp_info + ci;
0623       coef_arrays[ci] = (*srcinfo->mem->request_virt_barray)
0624     ((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE,
0625      (JDIMENSION) jround_up((long) compptr->height_in_blocks,
0626                 (long) compptr->v_samp_factor),
0627      (JDIMENSION) jround_up((long) compptr->width_in_blocks,
0628                 (long) compptr->h_samp_factor),
0629      (JDIMENSION) compptr->h_samp_factor);
0630     }
0631     break;
0632   }
0633   info->workspace_coef_arrays = coef_arrays;
0634 }
0635 
0636 
0637 /* Transpose destination image parameters */
0638 
0639 LOCAL(void)
0640 transpose_critical_parameters (j_compress_ptr dstinfo)
0641 {
0642   int tblno, i, j, ci, itemp;
0643   jpeg_component_info *compptr;
0644   JQUANT_TBL *qtblptr;
0645   JDIMENSION dtemp;
0646   UINT16 qtemp;
0647 
0648   /* Transpose basic image dimensions */
0649   dtemp = dstinfo->image_width;
0650   dstinfo->image_width = dstinfo->image_height;
0651   dstinfo->image_height = dtemp;
0652 
0653   /* Transpose sampling factors */
0654   for (ci = 0; ci < dstinfo->num_components; ci++) {
0655     compptr = dstinfo->comp_info + ci;
0656     itemp = compptr->h_samp_factor;
0657     compptr->h_samp_factor = compptr->v_samp_factor;
0658     compptr->v_samp_factor = itemp;
0659   }
0660 
0661   /* Transpose quantization tables */
0662   for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
0663     qtblptr = dstinfo->quant_tbl_ptrs[tblno];
0664     if (qtblptr != NULL) {
0665       for (i = 0; i < DCTSIZE; i++) {
0666     for (j = 0; j < i; j++) {
0667       qtemp = qtblptr->quantval[i*DCTSIZE+j];
0668       qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i];
0669       qtblptr->quantval[j*DCTSIZE+i] = qtemp;
0670     }
0671       }
0672     }
0673   }
0674 }
0675 
0676 
0677 /* Trim off any partial iMCUs on the indicated destination edge */
0678 
0679 LOCAL(void)
0680 trim_right_edge (j_compress_ptr dstinfo)
0681 {
0682   int ci, max_h_samp_factor;
0683   JDIMENSION MCU_cols;
0684 
0685   /* We have to compute max_h_samp_factor ourselves,
0686    * because it hasn't been set yet in the destination
0687    * (and we don't want to use the source's value).
0688    */
0689   max_h_samp_factor = 1;
0690   for (ci = 0; ci < dstinfo->num_components; ci++) {
0691     int h_samp_factor = dstinfo->comp_info[ci].h_samp_factor;
0692     max_h_samp_factor = MAX(max_h_samp_factor, h_samp_factor);
0693   }
0694   MCU_cols = dstinfo->image_width / (max_h_samp_factor * DCTSIZE);
0695   if (MCU_cols > 0)     /* can't trim to 0 pixels */
0696     dstinfo->image_width = MCU_cols * (max_h_samp_factor * DCTSIZE);
0697 }
0698 
0699 LOCAL(void)
0700 trim_bottom_edge (j_compress_ptr dstinfo)
0701 {
0702   int ci, max_v_samp_factor;
0703   JDIMENSION MCU_rows;
0704 
0705   /* We have to compute max_v_samp_factor ourselves,
0706    * because it hasn't been set yet in the destination
0707    * (and we don't want to use the source's value).
0708    */
0709   max_v_samp_factor = 1;
0710   for (ci = 0; ci < dstinfo->num_components; ci++) {
0711     int v_samp_factor = dstinfo->comp_info[ci].v_samp_factor;
0712     max_v_samp_factor = MAX(max_v_samp_factor, v_samp_factor);
0713   }
0714   MCU_rows = dstinfo->image_height / (max_v_samp_factor * DCTSIZE);
0715   if (MCU_rows > 0)     /* can't trim to 0 pixels */
0716     dstinfo->image_height = MCU_rows * (max_v_samp_factor * DCTSIZE);
0717 }
0718 
0719 
0720 /* Adjust output image parameters as needed.
0721  *
0722  * This must be called after jpeg_copy_critical_parameters()
0723  * and before jpeg_write_coefficients().
0724  *
0725  * The return value is the set of virtual coefficient arrays to be written
0726  * (either the ones allocated by jtransform_request_workspace, or the
0727  * original source data arrays).  The caller will need to pass this value
0728  * to jpeg_write_coefficients().
0729  */
0730 
0731 GLOBAL(jvirt_barray_ptr *)
0732 jtransform_adjust_parameters (j_decompress_ptr srcinfo,
0733                   j_compress_ptr dstinfo,
0734                   jvirt_barray_ptr *src_coef_arrays,
0735                   jpeg_transform_info *info)
0736 {
0737   /* If force-to-grayscale is requested, adjust destination parameters */
0738   if (info->force_grayscale) {
0739     /* We use jpeg_set_colorspace to make sure subsidiary settings get fixed
0740      * properly.  Among other things, the target h_samp_factor & v_samp_factor
0741      * will get set to 1, which typically won't match the source.
0742      * In fact we do this even if the source is already grayscale; that
0743      * provides an easy way of coercing a grayscale JPEG with funny sampling
0744      * factors to the customary 1,1.  (Some decoders fail on other factors.)
0745      */
0746     if ((dstinfo->jpeg_color_space == JCS_YCbCr &&
0747      dstinfo->num_components == 3) ||
0748     (dstinfo->jpeg_color_space == JCS_GRAYSCALE &&
0749      dstinfo->num_components == 1)) {
0750       /* We have to preserve the source's quantization table number. */
0751       int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no;
0752       jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE);
0753       dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no;
0754     } else {
0755       /* Sorry, can't do it */
0756       ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL);
0757     }
0758   }
0759 
0760   /* Correct the destination's image dimensions etc if necessary */
0761   switch (info->transform) {
0762   case JXFORM_NONE:
0763     /* Nothing to do */
0764     break;
0765   case JXFORM_FLIP_H:
0766     if (info->trim)
0767       trim_right_edge(dstinfo);
0768     break;
0769   case JXFORM_FLIP_V:
0770     if (info->trim)
0771       trim_bottom_edge(dstinfo);
0772     break;
0773   case JXFORM_TRANSPOSE:
0774     transpose_critical_parameters(dstinfo);
0775     /* transpose does NOT have to trim anything */
0776     break;
0777   case JXFORM_TRANSVERSE:
0778     transpose_critical_parameters(dstinfo);
0779     if (info->trim) {
0780       trim_right_edge(dstinfo);
0781       trim_bottom_edge(dstinfo);
0782     }
0783     break;
0784   case JXFORM_ROT_90:
0785     transpose_critical_parameters(dstinfo);
0786     if (info->trim)
0787       trim_right_edge(dstinfo);
0788     break;
0789   case JXFORM_ROT_180:
0790     if (info->trim) {
0791       trim_right_edge(dstinfo);
0792       trim_bottom_edge(dstinfo);
0793     }
0794     break;
0795   case JXFORM_ROT_270:
0796     transpose_critical_parameters(dstinfo);
0797     if (info->trim)
0798       trim_bottom_edge(dstinfo);
0799     break;
0800   }
0801 
0802   /* Return the appropriate output data set */
0803   if (info->workspace_coef_arrays != NULL)
0804     return info->workspace_coef_arrays;
0805   return src_coef_arrays;
0806 }
0807 
0808 
0809 /* Execute the actual transformation, if any.
0810  *
0811  * This must be called *after* jpeg_write_coefficients, because it depends
0812  * on jpeg_write_coefficients to have computed subsidiary values such as
0813  * the per-component width and height fields in the destination object.
0814  *
0815  * Note that some transformations will modify the source data arrays!
0816  */
0817 
0818 GLOBAL(void)
0819 jtransform_execute_transformation (j_decompress_ptr srcinfo,
0820                    j_compress_ptr dstinfo,
0821                    jvirt_barray_ptr *src_coef_arrays,
0822                    jpeg_transform_info *info)
0823 {
0824   jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays;
0825 
0826   switch (info->transform) {
0827   case JXFORM_NONE:
0828     break;
0829   case JXFORM_FLIP_H:
0830     do_flip_h(srcinfo, dstinfo, src_coef_arrays);
0831     break;
0832   case JXFORM_FLIP_V:
0833     do_flip_v(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
0834     break;
0835   case JXFORM_TRANSPOSE:
0836     do_transpose(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
0837     break;
0838   case JXFORM_TRANSVERSE:
0839     do_transverse(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
0840     break;
0841   case JXFORM_ROT_90:
0842     do_rot_90(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
0843     break;
0844   case JXFORM_ROT_180:
0845     do_rot_180(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
0846     break;
0847   case JXFORM_ROT_270:
0848     do_rot_270(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
0849     break;
0850   }
0851 }
0852 
0853 #endif /* TRANSFORMS_SUPPORTED */
0854 
0855 
0856 /* Setup decompression object to save desired markers in memory.
0857  * This must be called before jpeg_read_header() to have the desired effect.
0858  */
0859 
0860 GLOBAL(void)
0861 jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option)
0862 {
0863 #ifdef SAVE_MARKERS_SUPPORTED
0864   int m;
0865 
0866   /* Save comments except under NONE option */
0867   if (option != JCOPYOPT_NONE) {
0868     jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF);
0869   }
0870   /* Save all types of APPn markers iff ALL option */
0871   if (option == JCOPYOPT_ALL) {
0872     for (m = 0; m < 16; m++)
0873       jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF);
0874   }
0875 #endif /* SAVE_MARKERS_SUPPORTED */
0876 }
0877 
0878 /* Copy markers saved in the given source object to the destination object.
0879  * This should be called just after jpeg_start_compress() or
0880  * jpeg_write_coefficients().
0881  * Note that those routines will have written the SOI, and also the
0882  * JFIF APP0 or Adobe APP14 markers if selected.
0883  */
0884 
0885 GLOBAL(void)
0886 jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
0887                JCOPY_OPTION option)
0888 {
0889   jpeg_saved_marker_ptr marker;
0890 
0891   /* In the current implementation, we don't actually need to examine the
0892    * option flag here; we just copy everything that got saved.
0893    * But to avoid confusion, we do not output JFIF and Adobe APP14 markers
0894    * if the encoder library already wrote one.
0895    */
0896   for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) {
0897     if (dstinfo->write_JFIF_header &&
0898     marker->marker == JPEG_APP0 &&
0899     marker->data_length >= 5 &&
0900     GETJOCTET(marker->data[0]) == 0x4A &&
0901     GETJOCTET(marker->data[1]) == 0x46 &&
0902     GETJOCTET(marker->data[2]) == 0x49 &&
0903     GETJOCTET(marker->data[3]) == 0x46 &&
0904     GETJOCTET(marker->data[4]) == 0)
0905       continue;         /* reject duplicate JFIF */
0906     if (dstinfo->write_Adobe_marker &&
0907     marker->marker == JPEG_APP0+14 &&
0908     marker->data_length >= 5 &&
0909     GETJOCTET(marker->data[0]) == 0x41 &&
0910     GETJOCTET(marker->data[1]) == 0x64 &&
0911     GETJOCTET(marker->data[2]) == 0x6F &&
0912     GETJOCTET(marker->data[3]) == 0x62 &&
0913     GETJOCTET(marker->data[4]) == 0x65)
0914       continue;         /* reject duplicate Adobe */
0915 #ifdef NEED_FAR_POINTERS
0916     /* We could use jpeg_write_marker if the data weren't FAR... */
0917     {
0918       unsigned int i;
0919       jpeg_write_m_header(dstinfo, marker->marker, marker->data_length);
0920       for (i = 0; i < marker->data_length; i++)
0921     jpeg_write_m_byte(dstinfo, marker->data[i]);
0922     }
0923 #else
0924     jpeg_write_marker(dstinfo, marker->marker,
0925               marker->data, marker->data_length);
0926 #endif
0927   }
0928 }