File indexing completed on 2025-08-03 03:50:00
0001 /* 0002 * Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com 0003 * 0004 * This software is provided 'as-is', without any express or implied 0005 * warranty. In no event will the authors be held liable for any damages 0006 * arising from the use of this software. 0007 * Permission is granted to anyone to use this software for any purpose, 0008 * including commercial applications, and to alter it and redistribute it 0009 * freely, subject to the following restrictions: 0010 * 1. The origin of this software must not be misrepresented; you must not 0011 * claim that you wrote the original software. If you use this software 0012 * in a product, an acknowledgment in the product documentation would be 0013 * appreciated but is not required. 0014 * 2. Altered source versions must be plainly marked as such, and must not be 0015 * misrepresented as being the original software. 0016 * 3. This notice may not be removed or altered from any source distribution. 0017 */ 0018 0019 #include <Box2D/Dynamics/Joints/b2RevoluteJoint.h> 0020 #include <Box2D/Dynamics/b2Body.h> 0021 #include <Box2D/Dynamics/b2TimeStep.h> 0022 0023 // Point-to-point constraint 0024 // C = p2 - p1 0025 // Cdot = v2 - v1 0026 // = v2 + cross(w2, r2) - v1 - cross(w1, r1) 0027 // J = [-I -r1_skew I r2_skew ] 0028 // Identity used: 0029 // w k % (rx i + ry j) = w * (-ry i + rx j) 0030 0031 // Motor constraint 0032 // Cdot = w2 - w1 0033 // J = [0 0 -1 0 0 1] 0034 // K = invI1 + invI2 0035 0036 void b2RevoluteJointDef::Initialize(b2Body* b1, b2Body* b2, const b2Vec2& anchor) 0037 { 0038 bodyA = b1; 0039 bodyB = b2; 0040 localAnchorA = bodyA->GetLocalPoint(anchor); 0041 localAnchorB = bodyB->GetLocalPoint(anchor); 0042 referenceAngle = bodyB->GetAngle() - bodyA->GetAngle(); 0043 } 0044 0045 b2RevoluteJoint::b2RevoluteJoint(const b2RevoluteJointDef* def) 0046 : b2Joint(def) 0047 { 0048 m_localAnchor1 = def->localAnchorA; 0049 m_localAnchor2 = def->localAnchorB; 0050 m_referenceAngle = def->referenceAngle; 0051 0052 m_impulse.SetZero(); 0053 m_motorImpulse = 0.0f; 0054 0055 m_lowerAngle = def->lowerAngle; 0056 m_upperAngle = def->upperAngle; 0057 m_maxMotorTorque = def->maxMotorTorque; 0058 m_motorSpeed = def->motorSpeed; 0059 m_enableLimit = def->enableLimit; 0060 m_enableMotor = def->enableMotor; 0061 m_limitState = e_inactiveLimit; 0062 } 0063 0064 void b2RevoluteJoint::InitVelocityConstraints(const b2TimeStep& step) 0065 { 0066 b2Body* b1 = m_bodyA; 0067 b2Body* b2 = m_bodyB; 0068 0069 if (m_enableMotor || m_enableLimit) 0070 { 0071 // You cannot create a rotation limit between bodies that 0072 // both have fixed rotation. 0073 b2Assert(b1->m_invI > 0.0f || b2->m_invI > 0.0f); 0074 } 0075 0076 // Compute the effective mass matrix. 0077 b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter()); 0078 b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter()); 0079 0080 // J = [-I -r1_skew I r2_skew] 0081 // [ 0 -1 0 1] 0082 // r_skew = [-ry; rx] 0083 0084 // Matlab 0085 // K = [ m1+r1y^2*i1+m2+r2y^2*i2, -r1y*i1*r1x-r2y*i2*r2x, -r1y*i1-r2y*i2] 0086 // [ -r1y*i1*r1x-r2y*i2*r2x, m1+r1x^2*i1+m2+r2x^2*i2, r1x*i1+r2x*i2] 0087 // [ -r1y*i1-r2y*i2, r1x*i1+r2x*i2, i1+i2] 0088 0089 qreal m1 = b1->m_invMass, m2 = b2->m_invMass; 0090 qreal i1 = b1->m_invI, i2 = b2->m_invI; 0091 0092 m_mass.col1.x = m1 + m2 + r1.y * r1.y * i1 + r2.y * r2.y * i2; 0093 m_mass.col2.x = -r1.y * r1.x * i1 - r2.y * r2.x * i2; 0094 m_mass.col3.x = -r1.y * i1 - r2.y * i2; 0095 m_mass.col1.y = m_mass.col2.x; 0096 m_mass.col2.y = m1 + m2 + r1.x * r1.x * i1 + r2.x * r2.x * i2; 0097 m_mass.col3.y = r1.x * i1 + r2.x * i2; 0098 m_mass.col1.z = m_mass.col3.x; 0099 m_mass.col2.z = m_mass.col3.y; 0100 m_mass.col3.z = i1 + i2; 0101 0102 m_motorMass = i1 + i2; 0103 if (m_motorMass > 0.0f) 0104 { 0105 m_motorMass = 1.0f / m_motorMass; 0106 } 0107 0108 if (m_enableMotor == false) 0109 { 0110 m_motorImpulse = 0.0f; 0111 } 0112 0113 if (m_enableLimit) 0114 { 0115 qreal jointAngle = b2->m_sweep.a - b1->m_sweep.a - m_referenceAngle; 0116 if (b2Abs(m_upperAngle - m_lowerAngle) < 2.0f * b2_angularSlop) 0117 { 0118 m_limitState = e_equalLimits; 0119 } 0120 else if (jointAngle <= m_lowerAngle) 0121 { 0122 if (m_limitState != e_atLowerLimit) 0123 { 0124 m_impulse.z = 0.0f; 0125 } 0126 m_limitState = e_atLowerLimit; 0127 } 0128 else if (jointAngle >= m_upperAngle) 0129 { 0130 if (m_limitState != e_atUpperLimit) 0131 { 0132 m_impulse.z = 0.0f; 0133 } 0134 m_limitState = e_atUpperLimit; 0135 } 0136 else 0137 { 0138 m_limitState = e_inactiveLimit; 0139 m_impulse.z = 0.0f; 0140 } 0141 } 0142 else 0143 { 0144 m_limitState = e_inactiveLimit; 0145 } 0146 0147 if (step.warmStarting) 0148 { 0149 // Scale impulses to support a variable time step. 0150 m_impulse *= step.dtRatio; 0151 m_motorImpulse *= step.dtRatio; 0152 0153 b2Vec2 P(m_impulse.x, m_impulse.y); 0154 0155 b1->m_linearVelocity -= m1 * P; 0156 b1->m_angularVelocity -= i1 * (b2Cross(r1, P) + m_motorImpulse + m_impulse.z); 0157 0158 b2->m_linearVelocity += m2 * P; 0159 b2->m_angularVelocity += i2 * (b2Cross(r2, P) + m_motorImpulse + m_impulse.z); 0160 } 0161 else 0162 { 0163 m_impulse.SetZero(); 0164 m_motorImpulse = 0.0f; 0165 } 0166 } 0167 0168 void b2RevoluteJoint::SolveVelocityConstraints(const b2TimeStep& step) 0169 { 0170 b2Body* b1 = m_bodyA; 0171 b2Body* b2 = m_bodyB; 0172 0173 b2Vec2 v1 = b1->m_linearVelocity; 0174 qreal w1 = b1->m_angularVelocity; 0175 b2Vec2 v2 = b2->m_linearVelocity; 0176 qreal w2 = b2->m_angularVelocity; 0177 0178 qreal m1 = b1->m_invMass, m2 = b2->m_invMass; 0179 qreal i1 = b1->m_invI, i2 = b2->m_invI; 0180 0181 // Solve motor constraint. 0182 if (m_enableMotor && m_limitState != e_equalLimits) 0183 { 0184 qreal Cdot = w2 - w1 - m_motorSpeed; 0185 qreal impulse = m_motorMass * (-Cdot); 0186 qreal oldImpulse = m_motorImpulse; 0187 qreal maxImpulse = step.dt * m_maxMotorTorque; 0188 m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); 0189 impulse = m_motorImpulse - oldImpulse; 0190 0191 w1 -= i1 * impulse; 0192 w2 += i2 * impulse; 0193 } 0194 0195 // Solve limit constraint. 0196 if (m_enableLimit && m_limitState != e_inactiveLimit) 0197 { 0198 b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter()); 0199 b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter()); 0200 0201 // Solve point-to-point constraint 0202 b2Vec2 Cdot1 = v2 + b2Cross(w2, r2) - v1 - b2Cross(w1, r1); 0203 qreal Cdot2 = w2 - w1; 0204 b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2); 0205 0206 b2Vec3 impulse = m_mass.Solve33(-Cdot); 0207 0208 if (m_limitState == e_equalLimits) 0209 { 0210 m_impulse += impulse; 0211 } 0212 else if (m_limitState == e_atLowerLimit) 0213 { 0214 qreal newImpulse = m_impulse.z + impulse.z; 0215 if (newImpulse < 0.0f) 0216 { 0217 b2Vec2 reduced = m_mass.Solve22(-Cdot1); 0218 impulse.x = reduced.x; 0219 impulse.y = reduced.y; 0220 impulse.z = -m_impulse.z; 0221 m_impulse.x += reduced.x; 0222 m_impulse.y += reduced.y; 0223 m_impulse.z = 0.0f; 0224 } 0225 } 0226 else if (m_limitState == e_atUpperLimit) 0227 { 0228 qreal newImpulse = m_impulse.z + impulse.z; 0229 if (newImpulse > 0.0f) 0230 { 0231 b2Vec2 reduced = m_mass.Solve22(-Cdot1); 0232 impulse.x = reduced.x; 0233 impulse.y = reduced.y; 0234 impulse.z = -m_impulse.z; 0235 m_impulse.x += reduced.x; 0236 m_impulse.y += reduced.y; 0237 m_impulse.z = 0.0f; 0238 } 0239 } 0240 0241 b2Vec2 P(impulse.x, impulse.y); 0242 0243 v1 -= m1 * P; 0244 w1 -= i1 * (b2Cross(r1, P) + impulse.z); 0245 0246 v2 += m2 * P; 0247 w2 += i2 * (b2Cross(r2, P) + impulse.z); 0248 } 0249 else 0250 { 0251 b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter()); 0252 b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter()); 0253 0254 // Solve point-to-point constraint 0255 b2Vec2 Cdot = v2 + b2Cross(w2, r2) - v1 - b2Cross(w1, r1); 0256 b2Vec2 impulse = m_mass.Solve22(-Cdot); 0257 0258 m_impulse.x += impulse.x; 0259 m_impulse.y += impulse.y; 0260 0261 v1 -= m1 * impulse; 0262 w1 -= i1 * b2Cross(r1, impulse); 0263 0264 v2 += m2 * impulse; 0265 w2 += i2 * b2Cross(r2, impulse); 0266 } 0267 0268 b1->m_linearVelocity = v1; 0269 b1->m_angularVelocity = w1; 0270 b2->m_linearVelocity = v2; 0271 b2->m_angularVelocity = w2; 0272 } 0273 0274 bool b2RevoluteJoint::SolvePositionConstraints(qreal baumgarte) 0275 { 0276 // TODO_ERIN block solve with limit. 0277 0278 B2_NOT_USED(baumgarte); 0279 0280 b2Body* b1 = m_bodyA; 0281 b2Body* b2 = m_bodyB; 0282 0283 qreal angularError = 0.0f; 0284 qreal positionError = 0.0f; 0285 0286 // Solve angular limit constraint. 0287 if (m_enableLimit && m_limitState != e_inactiveLimit) 0288 { 0289 qreal angle = b2->m_sweep.a - b1->m_sweep.a - m_referenceAngle; 0290 qreal limitImpulse = 0.0f; 0291 0292 if (m_limitState == e_equalLimits) 0293 { 0294 // Prevent large angular corrections 0295 qreal C = b2Clamp(angle - m_lowerAngle, -b2_maxAngularCorrection, b2_maxAngularCorrection); 0296 limitImpulse = -m_motorMass * C; 0297 angularError = b2Abs(C); 0298 } 0299 else if (m_limitState == e_atLowerLimit) 0300 { 0301 qreal C = angle - m_lowerAngle; 0302 angularError = -C; 0303 0304 // Prevent large angular corrections and allow some slop. 0305 C = b2Clamp(C + b2_angularSlop, -b2_maxAngularCorrection, 0.0f); 0306 limitImpulse = -m_motorMass * C; 0307 } 0308 else if (m_limitState == e_atUpperLimit) 0309 { 0310 qreal C = angle - m_upperAngle; 0311 angularError = C; 0312 0313 // Prevent large angular corrections and allow some slop. 0314 C = b2Clamp(C - b2_angularSlop, 0.0f, b2_maxAngularCorrection); 0315 limitImpulse = -m_motorMass * C; 0316 } 0317 0318 b1->m_sweep.a -= b1->m_invI * limitImpulse; 0319 b2->m_sweep.a += b2->m_invI * limitImpulse; 0320 0321 b1->SynchronizeTransform(); 0322 b2->SynchronizeTransform(); 0323 } 0324 0325 // Solve point-to-point constraint. 0326 { 0327 b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter()); 0328 b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter()); 0329 0330 b2Vec2 C = b2->m_sweep.c + r2 - b1->m_sweep.c - r1; 0331 positionError = C.Length(); 0332 0333 qreal invMass1 = b1->m_invMass, invMass2 = b2->m_invMass; 0334 qreal invI1 = b1->m_invI, invI2 = b2->m_invI; 0335 0336 // Handle large detachment. 0337 const qreal k_allowedStretch = 10.0f * b2_linearSlop; 0338 if (C.LengthSquared() > k_allowedStretch * k_allowedStretch) 0339 { 0340 // Use a particle solution (no rotation). 0341 b2Vec2 u = C; u.Normalize(); 0342 qreal m = invMass1 + invMass2; 0343 if (m > 0.0f) 0344 { 0345 m = 1.0f / m; 0346 } 0347 b2Vec2 impulse = m * (-C); 0348 const qreal k_beta = 0.5f; 0349 b1->m_sweep.c -= k_beta * invMass1 * impulse; 0350 b2->m_sweep.c += k_beta * invMass2 * impulse; 0351 0352 C = b2->m_sweep.c + r2 - b1->m_sweep.c - r1; 0353 } 0354 0355 b2Mat22 K1; 0356 K1.col1.x = invMass1 + invMass2; K1.col2.x = 0.0f; 0357 K1.col1.y = 0.0f; K1.col2.y = invMass1 + invMass2; 0358 0359 b2Mat22 K2; 0360 K2.col1.x = invI1 * r1.y * r1.y; K2.col2.x = -invI1 * r1.x * r1.y; 0361 K2.col1.y = -invI1 * r1.x * r1.y; K2.col2.y = invI1 * r1.x * r1.x; 0362 0363 b2Mat22 K3; 0364 K3.col1.x = invI2 * r2.y * r2.y; K3.col2.x = -invI2 * r2.x * r2.y; 0365 K3.col1.y = -invI2 * r2.x * r2.y; K3.col2.y = invI2 * r2.x * r2.x; 0366 0367 b2Mat22 K = K1 + K2 + K3; 0368 b2Vec2 impulse = K.Solve(-C); 0369 0370 b1->m_sweep.c -= b1->m_invMass * impulse; 0371 b1->m_sweep.a -= b1->m_invI * b2Cross(r1, impulse); 0372 0373 b2->m_sweep.c += b2->m_invMass * impulse; 0374 b2->m_sweep.a += b2->m_invI * b2Cross(r2, impulse); 0375 0376 b1->SynchronizeTransform(); 0377 b2->SynchronizeTransform(); 0378 } 0379 0380 return positionError <= b2_linearSlop && angularError <= b2_angularSlop; 0381 } 0382 0383 b2Vec2 b2RevoluteJoint::GetAnchorA() const 0384 { 0385 return m_bodyA->GetWorldPoint(m_localAnchor1); 0386 } 0387 0388 b2Vec2 b2RevoluteJoint::GetAnchorB() const 0389 { 0390 return m_bodyB->GetWorldPoint(m_localAnchor2); 0391 } 0392 0393 b2Vec2 b2RevoluteJoint::GetReactionForce(qreal inv_dt) const 0394 { 0395 b2Vec2 P(m_impulse.x, m_impulse.y); 0396 return inv_dt * P; 0397 } 0398 0399 qreal b2RevoluteJoint::GetReactionTorque(qreal inv_dt) const 0400 { 0401 return inv_dt * m_impulse.z; 0402 } 0403 0404 qreal b2RevoluteJoint::GetJointAngle() const 0405 { 0406 b2Body* b1 = m_bodyA; 0407 b2Body* b2 = m_bodyB; 0408 return b2->m_sweep.a - b1->m_sweep.a - m_referenceAngle; 0409 } 0410 0411 qreal b2RevoluteJoint::GetJointSpeed() const 0412 { 0413 b2Body* b1 = m_bodyA; 0414 b2Body* b2 = m_bodyB; 0415 return b2->m_angularVelocity - b1->m_angularVelocity; 0416 } 0417 0418 bool b2RevoluteJoint::IsMotorEnabled() const 0419 { 0420 return m_enableMotor; 0421 } 0422 0423 void b2RevoluteJoint::EnableMotor(bool flag) 0424 { 0425 m_bodyA->SetAwake(true); 0426 m_bodyB->SetAwake(true); 0427 m_enableMotor = flag; 0428 } 0429 0430 qreal b2RevoluteJoint::GetMotorTorque(qreal inv_dt) const 0431 { 0432 return inv_dt * m_motorImpulse; 0433 } 0434 0435 void b2RevoluteJoint::SetMotorSpeed(qreal speed) 0436 { 0437 m_bodyA->SetAwake(true); 0438 m_bodyB->SetAwake(true); 0439 m_motorSpeed = speed; 0440 } 0441 0442 void b2RevoluteJoint::SetMaxMotorTorque(qreal torque) 0443 { 0444 m_bodyA->SetAwake(true); 0445 m_bodyB->SetAwake(true); 0446 m_maxMotorTorque = torque; 0447 } 0448 0449 bool b2RevoluteJoint::IsLimitEnabled() const 0450 { 0451 return m_enableLimit; 0452 } 0453 0454 void b2RevoluteJoint::EnableLimit(bool flag) 0455 { 0456 m_bodyA->SetAwake(true); 0457 m_bodyB->SetAwake(true); 0458 m_enableLimit = flag; 0459 } 0460 0461 qreal b2RevoluteJoint::GetLowerLimit() const 0462 { 0463 return m_lowerAngle; 0464 } 0465 0466 qreal b2RevoluteJoint::GetUpperLimit() const 0467 { 0468 return m_upperAngle; 0469 } 0470 0471 void b2RevoluteJoint::SetLimits(qreal lower, qreal upper) 0472 { 0473 b2Assert(lower <= upper); 0474 m_bodyA->SetAwake(true); 0475 m_bodyB->SetAwake(true); 0476 m_lowerAngle = lower; 0477 m_upperAngle = upper; 0478 }