File indexing completed on 2025-08-03 03:49:55

0001 /*
0002 * Copyright (c) 2007-2009 Erin Catto http://www.gphysics.com
0003 *
0004 * This software is provided 'as-is', without any express or implied
0005 * warranty.  In no event will the authors be held liable for any damages
0006 * arising from the use of this software.
0007 * Permission is granted to anyone to use this software for any purpose,
0008 * including commercial applications, and to alter it and redistribute it
0009 * freely, subject to the following restrictions:
0010 * 1. The origin of this software must not be misrepresented; you must not
0011 * claim that you wrote the original software. If you use this software
0012 * in a product, an acknowledgment in the product documentation would be
0013 * appreciated but is not required.
0014 * 2. Altered source versions must be plainly marked as such, and must not be
0015 * misrepresented as being the original software.
0016 * 3. This notice may not be removed or altered from any source distribution.
0017 */
0018 
0019 #include <Box2D/Collision/b2Collision.h>
0020 #include <Box2D/Collision/b2Distance.h>
0021 
0022 void b2WorldManifold::Initialize(const b2Manifold* manifold,
0023                           const b2Transform& xfA, qreal radiusA,
0024                           const b2Transform& xfB, qreal radiusB)
0025 {
0026     if (manifold->pointCount == 0)
0027     {
0028         return;
0029     }
0030 
0031     switch (manifold->type)
0032     {
0033     case b2Manifold::e_circles:
0034         {
0035             normal.Set(1.0f, 0.0f);
0036             b2Vec2 pointA = b2Mul(xfA, manifold->localPoint);
0037             b2Vec2 pointB = b2Mul(xfB, manifold->points[0].localPoint);
0038             if (b2DistanceSquared(pointA, pointB) > b2_epsilon * b2_epsilon)
0039             {
0040                 normal = pointB - pointA;
0041                 normal.Normalize();
0042             }
0043 
0044             b2Vec2 cA = pointA + radiusA * normal;
0045             b2Vec2 cB = pointB - radiusB * normal;
0046             points[0] = 0.5f * (cA + cB);
0047         }
0048         break;
0049 
0050     case b2Manifold::e_faceA:
0051         {
0052             normal = b2Mul(xfA.R, manifold->localNormal);
0053             b2Vec2 planePoint = b2Mul(xfA, manifold->localPoint);
0054             
0055             for (int32 i = 0; i < manifold->pointCount; ++i)
0056             {
0057                 b2Vec2 clipPoint = b2Mul(xfB, manifold->points[i].localPoint);
0058                 b2Vec2 cA = clipPoint + (radiusA - b2Dot(clipPoint - planePoint, normal)) * normal;
0059                 b2Vec2 cB = clipPoint - radiusB * normal;
0060                 points[i] = 0.5f * (cA + cB);
0061             }
0062         }
0063         break;
0064 
0065     case b2Manifold::e_faceB:
0066         {
0067             normal = b2Mul(xfB.R, manifold->localNormal);
0068             b2Vec2 planePoint = b2Mul(xfB, manifold->localPoint);
0069 
0070             for (int32 i = 0; i < manifold->pointCount; ++i)
0071             {
0072                 b2Vec2 clipPoint = b2Mul(xfA, manifold->points[i].localPoint);
0073                 b2Vec2 cB = clipPoint + (radiusB - b2Dot(clipPoint - planePoint, normal)) * normal;
0074                 b2Vec2 cA = clipPoint - radiusA * normal;
0075                 points[i] = 0.5f * (cA + cB);
0076             }
0077 
0078             // Ensure normal points from A to B.
0079             normal = -normal;
0080         }
0081         break;
0082     }
0083 }
0084 
0085 void b2GetPointStates(b2PointState state1[b2_maxManifoldPoints], b2PointState state2[b2_maxManifoldPoints],
0086                       const b2Manifold* manifold1, const b2Manifold* manifold2)
0087 {
0088     for (int32 i = 0; i < b2_maxManifoldPoints; ++i)
0089     {
0090         state1[i] = b2_nullState;
0091         state2[i] = b2_nullState;
0092     }
0093 
0094     // Detect persists and removes.
0095     for (int32 i = 0; i < manifold1->pointCount; ++i)
0096     {
0097         b2ContactID id = manifold1->points[i].id;
0098 
0099         state1[i] = b2_removeState;
0100 
0101         for (int32 j = 0; j < manifold2->pointCount; ++j)
0102         {
0103             if (manifold2->points[j].id.key == id.key)
0104             {
0105                 state1[i] = b2_persistState;
0106                 break;
0107             }
0108         }
0109     }
0110 
0111     // Detect persists and adds.
0112     for (int32 i = 0; i < manifold2->pointCount; ++i)
0113     {
0114         b2ContactID id = manifold2->points[i].id;
0115 
0116         state2[i] = b2_addState;
0117 
0118         for (int32 j = 0; j < manifold1->pointCount; ++j)
0119         {
0120             if (manifold1->points[j].id.key == id.key)
0121             {
0122                 state2[i] = b2_persistState;
0123                 break;
0124             }
0125         }
0126     }
0127 }
0128 
0129 // From Real-time Collision Detection, p179.
0130 bool b2AABB::RayCast(b2RayCastOutput* output, const b2RayCastInput& input) const
0131 {
0132     qreal tmin = -b2_maxFloat;
0133     qreal tmax = b2_maxFloat;
0134 
0135     b2Vec2 p = input.p1;
0136     b2Vec2 d = input.p2 - input.p1;
0137     b2Vec2 absD = b2Abs(d);
0138 
0139     b2Vec2 normal;
0140 
0141     for (int32 i = 0; i < 2; ++i)
0142     {
0143         if (absD(i) < b2_epsilon)
0144         {
0145             // Parallel.
0146             if (p(i) < lowerBound(i) || upperBound(i) < p(i))
0147             {
0148                 return false;
0149             }
0150         }
0151         else
0152         {
0153             qreal inv_d = 1.0f / d(i);
0154             qreal t1 = (lowerBound(i) - p(i)) * inv_d;
0155             qreal t2 = (upperBound(i) - p(i)) * inv_d;
0156 
0157             // Sign of the normal vector.
0158             qreal s = -1.0f;
0159 
0160             if (t1 > t2)
0161             {
0162                 b2Swap(t1, t2);
0163                 s = 1.0f;
0164             }
0165 
0166             // Push the min up
0167             if (t1 > tmin)
0168             {
0169                 normal.SetZero();
0170                 normal(i) = s;
0171                 tmin = t1;
0172             }
0173 
0174             // Pull the max down
0175             tmax = b2Min(tmax, t2);
0176 
0177             if (tmin > tmax)
0178             {
0179                 return false;
0180             }
0181         }
0182     }
0183 
0184     // Does the ray start inside the box?
0185     // Does the ray intersect beyond the max fraction?
0186     if (tmin < 0.0f || input.maxFraction < tmin)
0187     {
0188         return false;
0189     }
0190 
0191     // Intersection.
0192     output->fraction = tmin;
0193     output->normal = normal;
0194     return true;
0195 }
0196 
0197 // Sutherland-Hodgman clipping.
0198 int32 b2ClipSegmentToLine(b2ClipVertex vOut[2], const b2ClipVertex vIn[2],
0199                         const b2Vec2& normal, qreal offset, int32 vertexIndexA)
0200 {
0201     // Start with no output points
0202     int32 numOut = 0;
0203 
0204     // Calculate the distance of end points to the line
0205     qreal distance0 = b2Dot(normal, vIn[0].v) - offset;
0206     qreal distance1 = b2Dot(normal, vIn[1].v) - offset;
0207 
0208     // If the points are behind the plane
0209     if (distance0 <= 0.0f) vOut[numOut++] = vIn[0];
0210     if (distance1 <= 0.0f) vOut[numOut++] = vIn[1];
0211 
0212     // If the points are on different sides of the plane
0213     if (distance0 * distance1 < 0.0f)
0214     {
0215         // Find intersection point of edge and plane
0216         qreal interp = distance0 / (distance0 - distance1);
0217         vOut[numOut].v = vIn[0].v + interp * (vIn[1].v - vIn[0].v);
0218 
0219         // VertexA is hitting edgeB.
0220         vOut[numOut].id.cf.indexA = vertexIndexA;
0221         vOut[numOut].id.cf.indexB = vIn[0].id.cf.indexB;
0222         vOut[numOut].id.cf.typeA = b2ContactFeature::e_vertex;
0223         vOut[numOut].id.cf.typeB = b2ContactFeature::e_face;
0224         ++numOut;
0225     }
0226 
0227     return numOut;
0228 }
0229 
0230 bool b2TestOverlap( const b2Shape* shapeA, int32 indexA,
0231                     const b2Shape* shapeB, int32 indexB,
0232                     const b2Transform& xfA, const b2Transform& xfB)
0233 {
0234     b2DistanceInput input;
0235     input.proxyA.Set(shapeA, indexA);
0236     input.proxyB.Set(shapeB, indexB);
0237     input.transformA = xfA;
0238     input.transformB = xfB;
0239     input.useRadii = true;
0240 
0241     b2SimplexCache cache;
0242     cache.count = 0;
0243 
0244     b2DistanceOutput output;
0245 
0246     b2Distance(&output, &cache, &input);
0247 
0248     return output.distance < 10.0f * b2_epsilon;
0249 }