File indexing completed on 2025-08-03 03:49:55

0001 /*
0002 * Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
0003 *
0004 * This software is provided 'as-is', without any express or implied
0005 * warranty.  In no event will the authors be held liable for any damages
0006 * arising from the use of this software.
0007 * Permission is granted to anyone to use this software for any purpose,
0008 * including commercial applications, and to alter it and redistribute it
0009 * freely, subject to the following restrictions:
0010 * 1. The origin of this software must not be misrepresented; you must not
0011 * claim that you wrote the original software. If you use this software
0012 * in a product, an acknowledgment in the product documentation would be
0013 * appreciated but is not required.
0014 * 2. Altered source versions must be plainly marked as such, and must not be
0015 * misrepresented as being the original software.
0016 * 3. This notice may not be removed or altered from any source distribution.
0017 */
0018 
0019 #include <Box2D/Collision/Shapes/b2PolygonShape.h>
0020 #include <new>
0021 
0022 b2Shape* b2PolygonShape::Clone(b2BlockAllocator* allocator) const
0023 {
0024     void* mem = allocator->Allocate(sizeof(b2PolygonShape));
0025     b2PolygonShape* clone = new (mem) b2PolygonShape;
0026     *clone = *this;
0027     return clone;
0028 }
0029 
0030 void b2PolygonShape::SetAsBox(qreal hx, qreal hy)
0031 {
0032     m_vertexCount = 4;
0033     m_vertices[0].Set(-hx, -hy);
0034     m_vertices[1].Set( hx, -hy);
0035     m_vertices[2].Set( hx,  hy);
0036     m_vertices[3].Set(-hx,  hy);
0037     m_normals[0].Set(0.0f, -1.0f);
0038     m_normals[1].Set(1.0f, 0.0f);
0039     m_normals[2].Set(0.0f, 1.0f);
0040     m_normals[3].Set(-1.0f, 0.0f);
0041     m_centroid.SetZero();
0042 }
0043 
0044 void b2PolygonShape::SetAsBox(qreal hx, qreal hy, const b2Vec2& center, qreal angle)
0045 {
0046     m_vertexCount = 4;
0047     m_vertices[0].Set(-hx, -hy);
0048     m_vertices[1].Set( hx, -hy);
0049     m_vertices[2].Set( hx,  hy);
0050     m_vertices[3].Set(-hx,  hy);
0051     m_normals[0].Set(0.0f, -1.0f);
0052     m_normals[1].Set(1.0f, 0.0f);
0053     m_normals[2].Set(0.0f, 1.0f);
0054     m_normals[3].Set(-1.0f, 0.0f);
0055     m_centroid = center;
0056 
0057     b2Transform xf;
0058     xf.position = center;
0059     xf.R.Set(angle);
0060 
0061     // Transform vertices and normals.
0062     for (int32 i = 0; i < m_vertexCount; ++i)
0063     {
0064         m_vertices[i] = b2Mul(xf, m_vertices[i]);
0065         m_normals[i] = b2Mul(xf.R, m_normals[i]);
0066     }
0067 }
0068 
0069 int32 b2PolygonShape::GetChildCount() const
0070 {
0071     return 1;
0072 }
0073 
0074 static b2Vec2 ComputeCentroid(const b2Vec2* vs, int32 count)
0075 {
0076     b2Assert(count >= 3);
0077 
0078     b2Vec2 c; c.Set(0.0f, 0.0f);
0079     qreal area = 0.0f;
0080 
0081     // pRef is the reference point for forming triangles.
0082     // It's location doesn't change the result (except for rounding error).
0083     b2Vec2 pRef(0.0f, 0.0f);
0084 #if 0
0085     // This code would put the reference point inside the polygon.
0086     for (int32 i = 0; i < count; ++i)
0087     {
0088         pRef += vs[i];
0089     }
0090     pRef *= 1.0f / count;
0091 #endif
0092 
0093     const qreal inv3 = 1.0f / 3.0f;
0094 
0095     for (int32 i = 0; i < count; ++i)
0096     {
0097         // Triangle vertices.
0098         b2Vec2 p1 = pRef;
0099         b2Vec2 p2 = vs[i];
0100         b2Vec2 p3 = i + 1 < count ? vs[i+1] : vs[0];
0101 
0102         b2Vec2 e1 = p2 - p1;
0103         b2Vec2 e2 = p3 - p1;
0104 
0105         qreal D = b2Cross(e1, e2);
0106 
0107         qreal triangleArea = qAbs(0.5f * D);
0108         area += triangleArea;
0109 
0110         // Area weighted centroid
0111         c += triangleArea * inv3 * (p1 + p2 + p3);
0112     }
0113 
0114     // Centroid
0115     b2Assert(area > b2_epsilon);
0116     c *= 1.0f / area;
0117     return c;
0118 }
0119 
0120 void b2PolygonShape::Set(const b2Vec2* vertices, int32 count)
0121 {
0122     b2Assert(3 <= count && count <= b2_maxPolygonVertices);
0123     m_vertexCount = count;
0124 
0125     // Copy vertices.
0126     for (int32 i = 0; i < m_vertexCount; ++i)
0127     {
0128         m_vertices[i] = vertices[i];
0129     }
0130 
0131     // Compute normals. Ensure the edges have non-zero length.
0132     for (int32 i = 0; i < m_vertexCount; ++i)
0133     {
0134         int32 i1 = i;
0135         int32 i2 = i + 1 < m_vertexCount ? i + 1 : 0;
0136         b2Vec2 edge = m_vertices[i2] - m_vertices[i1];
0137         b2Assert(edge.LengthSquared() > b2_epsilon * b2_epsilon);
0138         m_normals[i] = b2Cross(edge, 1.0f);
0139         m_normals[i].Normalize();
0140     }
0141 
0142 #ifdef _DEBUG
0143     // Ensure the polygon is convex and the interior
0144     // is to the left of each edge.
0145     for (int32 i = 0; i < m_vertexCount; ++i)
0146     {
0147         int32 i1 = i;
0148         int32 i2 = i + 1 < m_vertexCount ? i + 1 : 0;
0149         b2Vec2 edge = m_vertices[i2] - m_vertices[i1];
0150 
0151         for (int32 j = 0; j < m_vertexCount; ++j)
0152         {
0153             // Don't check vertices on the current edge.
0154             if (j == i1 || j == i2)
0155             {
0156                 continue;
0157             }
0158             
0159             b2Vec2 r = m_vertices[j] - m_vertices[i1];
0160 
0161             // Your polygon is non-convex (it has an indentation) or
0162             // has collinear edges.
0163             qreal s = b2Cross(edge, r);
0164             b2Assert(s > 0.0f);
0165         }
0166     }
0167 #endif
0168 
0169     // Compute the polygon centroid.
0170     m_centroid = ComputeCentroid(m_vertices, m_vertexCount);
0171 }
0172 
0173 bool b2PolygonShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const
0174 {
0175     b2Vec2 pLocal = b2MulT(xf.R, p - xf.position);
0176 
0177     for (int32 i = 0; i < m_vertexCount; ++i)
0178     {
0179         qreal dot = b2Dot(m_normals[i], pLocal - m_vertices[i]);
0180         if (dot > 0.0f)
0181         {
0182             return false;
0183         }
0184     }
0185 
0186     return true;
0187 }
0188 
0189 bool b2PolygonShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
0190                                 const b2Transform& xf, int32 childIndex) const
0191 {
0192     B2_NOT_USED(childIndex);
0193 
0194     // Put the ray into the polygon's frame of reference.
0195     b2Vec2 p1 = b2MulT(xf.R, input.p1 - xf.position);
0196     b2Vec2 p2 = b2MulT(xf.R, input.p2 - xf.position);
0197     b2Vec2 d = p2 - p1;
0198 
0199     qreal lower = 0.0f, upper = input.maxFraction;
0200 
0201     int32 index = -1;
0202 
0203     for (int32 i = 0; i < m_vertexCount; ++i)
0204     {
0205         // p = p1 + a * d
0206         // dot(normal, p - v) = 0
0207         // dot(normal, p1 - v) + a * dot(normal, d) = 0
0208         qreal numerator = b2Dot(m_normals[i], m_vertices[i] - p1);
0209         qreal denominator = b2Dot(m_normals[i], d);
0210 
0211         if (denominator == 0.0f)
0212         {   
0213             if (numerator < 0.0f)
0214             {
0215                 return false;
0216             }
0217         }
0218         else
0219         {
0220             // Note: we want this predicate without division:
0221             // lower < numerator / denominator, where denominator < 0
0222             // Since denominator < 0, we have to flip the inequality:
0223             // lower < numerator / denominator <==> denominator * lower > numerator.
0224             if (denominator < 0.0f && numerator < lower * denominator)
0225             {
0226                 // Increase lower.
0227                 // The segment enters this half-space.
0228                 lower = numerator / denominator;
0229                 index = i;
0230             }
0231             else if (denominator > 0.0f && numerator < upper * denominator)
0232             {
0233                 // Decrease upper.
0234                 // The segment exits this half-space.
0235                 upper = numerator / denominator;
0236             }
0237         }
0238 
0239         // The use of epsilon here causes the assert on lower to trip
0240         // in some cases. Apparently the use of epsilon was to make edge
0241         // shapes work, but now those are handled separately.
0242         //if (upper < lower - b2_epsilon)
0243         if (upper < lower)
0244         {
0245             return false;
0246         }
0247     }
0248 
0249     b2Assert(0.0f <= lower && lower <= input.maxFraction);
0250 
0251     if (index >= 0)
0252     {
0253         output->fraction = lower;
0254         output->normal = b2Mul(xf.R, m_normals[index]);
0255         return true;
0256     }
0257 
0258     return false;
0259 }
0260 
0261 void b2PolygonShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const
0262 {
0263     B2_NOT_USED(childIndex);
0264 
0265     b2Vec2 lower = b2Mul(xf, m_vertices[0]);
0266     b2Vec2 upper = lower;
0267 
0268     for (int32 i = 1; i < m_vertexCount; ++i)
0269     {
0270         b2Vec2 v = b2Mul(xf, m_vertices[i]);
0271         lower = b2Min(lower, v);
0272         upper = b2Max(upper, v);
0273     }
0274 
0275     b2Vec2 r(m_radius, m_radius);
0276     aabb->lowerBound = lower - r;
0277     aabb->upperBound = upper + r;
0278 }
0279 
0280 void b2PolygonShape::ComputeMass(b2MassData* massData, qreal density) const
0281 {
0282     // Polygon mass, centroid, and inertia.
0283     // Let rho be the polygon density in mass per unit area.
0284     // Then:
0285     // mass = rho * int(dA)
0286     // centroid.x = (1/mass) * rho * int(x * dA)
0287     // centroid.y = (1/mass) * rho * int(y * dA)
0288     // I = rho * int((x*x + y*y) * dA)
0289     //
0290     // We can compute these integrals by summing all the integrals
0291     // for each triangle of the polygon. To evaluate the integral
0292     // for a single triangle, we make a change of variables to
0293     // the (u,v) coordinates of the triangle:
0294     // x = x0 + e1x * u + e2x * v
0295     // y = y0 + e1y * u + e2y * v
0296     // where 0 <= u && 0 <= v && u + v <= 1.
0297     //
0298     // We integrate u from [0,1-v] and then v from [0,1].
0299     // We also need to use the Jacobian of the transformation:
0300     // D = cross(e1, e2)
0301     //
0302     // Simplification: triangle centroid = (1/3) * (p1 + p2 + p3)
0303     //
0304     // The rest of the derivation is handled by computer algebra.
0305 
0306     b2Assert(m_vertexCount >= 3);
0307 
0308     b2Vec2 center; center.Set(0.0f, 0.0f);
0309     qreal area = 0.0f;
0310     qreal I = 0.0f;
0311 
0312     // pRef is the reference point for forming triangles.
0313     // It's location doesn't change the result (except for rounding error).
0314     b2Vec2 pRef(0.0f, 0.0f);
0315 #if 0
0316     // This code would put the reference point inside the polygon.
0317     for (int32 i = 0; i < m_vertexCount; ++i)
0318     {
0319         pRef += m_vertices[i];
0320     }
0321     pRef *= 1.0f / count;
0322 #endif
0323 
0324     const qreal k_inv3 = 1.0f / 3.0f;
0325 
0326     for (int32 i = 0; i < m_vertexCount; ++i)
0327     {
0328         // Triangle vertices.
0329         b2Vec2 p1 = pRef;
0330         b2Vec2 p2 = m_vertices[i];
0331         b2Vec2 p3 = i + 1 < m_vertexCount ? m_vertices[i+1] : m_vertices[0];
0332 
0333         b2Vec2 e1 = p2 - p1;
0334         b2Vec2 e2 = p3 - p1;
0335 
0336         qreal D = b2Cross(e1, e2);
0337 
0338         qreal triangleArea = 0.5f * D;
0339         area += triangleArea;
0340 
0341         // Area weighted centroid
0342         center += triangleArea * k_inv3 * (p1 + p2 + p3);
0343 
0344         qreal px = p1.x, py = p1.y;
0345         qreal ex1 = e1.x, ey1 = e1.y;
0346         qreal ex2 = e2.x, ey2 = e2.y;
0347 
0348         qreal intx2 = k_inv3 * (0.25f * (ex1*ex1 + ex2*ex1 + ex2*ex2) + (px*ex1 + px*ex2)) + 0.5f*px*px;
0349         qreal inty2 = k_inv3 * (0.25f * (ey1*ey1 + ey2*ey1 + ey2*ey2) + (py*ey1 + py*ey2)) + 0.5f*py*py;
0350 
0351         I += D * (intx2 + inty2);
0352     }
0353 
0354     // Total mass
0355     massData->mass = density * area;
0356 
0357     // Center of mass
0358     b2Assert(area > b2_epsilon);
0359     center *= 1.0f / area;
0360     massData->center = center;
0361 
0362     // Inertia tensor relative to the local origin.
0363     massData->I = density * I;
0364 }