File indexing completed on 2024-04-21 03:48:28

0001 /* adler32.c -- compute the Adler-32 checksum of a data stream
0002  * Copyright (C) 1995-2011 Mark Adler
0003  * For conditions of distribution and use, see copyright notice in zlib.h
0004  */
0005 
0006 /* @(#) $Id$ */
0007 
0008 #include "zutil.h"
0009 
0010 #define local static
0011 
0012 local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
0013 
0014 #define BASE 65521      /* largest prime smaller than 65536 */
0015 #define NMAX 5552
0016 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
0017 
0018 #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
0019 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
0020 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
0021 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
0022 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
0023 
0024 /* use NO_DIVIDE if your processor does not do division in hardware --
0025    try it both ways to see which is faster */
0026 #ifdef NO_DIVIDE
0027 /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
0028    (thank you to John Reiser for pointing this out) */
0029 #  define CHOP(a) \
0030     do { \
0031         unsigned long tmp = a >> 16; \
0032         a &= 0xffffUL; \
0033         a += (tmp << 4) - tmp; \
0034     } while (0)
0035 #  define MOD28(a) \
0036     do { \
0037         CHOP(a); \
0038         if (a >= BASE) a -= BASE; \
0039     } while (0)
0040 #  define MOD(a) \
0041     do { \
0042         CHOP(a); \
0043         MOD28(a); \
0044     } while (0)
0045 #  define MOD63(a) \
0046     do { /* this assumes a is not negative */ \
0047         z_off64_t tmp = a >> 32; \
0048         a &= 0xffffffffL; \
0049         a += (tmp << 8) - (tmp << 5) + tmp; \
0050         tmp = a >> 16; \
0051         a &= 0xffffL; \
0052         a += (tmp << 4) - tmp; \
0053         tmp = a >> 16; \
0054         a &= 0xffffL; \
0055         a += (tmp << 4) - tmp; \
0056         if (a >= BASE) a -= BASE; \
0057     } while (0)
0058 #else
0059 #  define MOD(a) a %= BASE
0060 #  define MOD28(a) a %= BASE
0061 #  define MOD63(a) a %= BASE
0062 #endif
0063 
0064 /* ========================================================================= */
0065 uLong ZEXPORT adler32(adler, buf, len)
0066     uLong adler;
0067     const Bytef *buf;
0068     uInt len;
0069 {
0070     unsigned long sum2;
0071     unsigned n;
0072 
0073     /* split Adler-32 into component sums */
0074     sum2 = (adler >> 16) & 0xffff;
0075     adler &= 0xffff;
0076 
0077     /* in case user likes doing a byte at a time, keep it fast */
0078     if (len == 1) {
0079         adler += buf[0];
0080         if (adler >= BASE)
0081             adler -= BASE;
0082         sum2 += adler;
0083         if (sum2 >= BASE)
0084             sum2 -= BASE;
0085         return adler | (sum2 << 16);
0086     }
0087 
0088     /* initial Adler-32 value (deferred check for len == 1 speed) */
0089     if (buf == Z_NULL)
0090         return 1L;
0091 
0092     /* in case short lengths are provided, keep it somewhat fast */
0093     if (len < 16) {
0094         while (len--) {
0095             adler += *buf++;
0096             sum2 += adler;
0097         }
0098         if (adler >= BASE)
0099             adler -= BASE;
0100         MOD28(sum2);            /* only added so many BASE's */
0101         return adler | (sum2 << 16);
0102     }
0103 
0104     /* do length NMAX blocks -- requires just one modulo operation */
0105     while (len >= NMAX) {
0106         len -= NMAX;
0107         n = NMAX / 16;          /* NMAX is divisible by 16 */
0108         do {
0109             DO16(buf);          /* 16 sums unrolled */
0110             buf += 16;
0111         } while (--n);
0112         MOD(adler);
0113         MOD(sum2);
0114     }
0115 
0116     /* do remaining bytes (less than NMAX, still just one modulo) */
0117     if (len) {                  /* avoid modulos if none remaining */
0118         while (len >= 16) {
0119             len -= 16;
0120             DO16(buf);
0121             buf += 16;
0122         }
0123         while (len--) {
0124             adler += *buf++;
0125             sum2 += adler;
0126         }
0127         MOD(adler);
0128         MOD(sum2);
0129     }
0130 
0131     /* return recombined sums */
0132     return adler | (sum2 << 16);
0133 }
0134 
0135 /* ========================================================================= */
0136 local uLong adler32_combine_(adler1, adler2, len2)
0137     uLong adler1;
0138     uLong adler2;
0139     z_off64_t len2;
0140 {
0141     unsigned long sum1;
0142     unsigned long sum2;
0143     unsigned rem;
0144 
0145     /* for negative len, return invalid adler32 as a clue for debugging */
0146     if (len2 < 0)
0147         return 0xffffffffUL;
0148 
0149     /* the derivation of this formula is left as an exercise for the reader */
0150     MOD63(len2);                /* assumes len2 >= 0 */
0151     rem = (unsigned)len2;
0152     sum1 = adler1 & 0xffff;
0153     sum2 = rem * sum1;
0154     MOD(sum2);
0155     sum1 += (adler2 & 0xffff) + BASE - 1;
0156     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
0157     if (sum1 >= BASE) sum1 -= BASE;
0158     if (sum1 >= BASE) sum1 -= BASE;
0159     if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1);
0160     if (sum2 >= BASE) sum2 -= BASE;
0161     return sum1 | (sum2 << 16);
0162 }
0163 
0164 /* ========================================================================= */
0165 uLong ZEXPORT adler32_combine(adler1, adler2, len2)
0166     uLong adler1;
0167     uLong adler2;
0168     z_off_t len2;
0169 {
0170     return adler32_combine_(adler1, adler2, len2);
0171 }
0172 
0173 uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
0174     uLong adler1;
0175     uLong adler2;
0176     z_off64_t len2;
0177 {
0178     return adler32_combine_(adler1, adler2, len2);
0179 }