Warning, /education/labplot/tests/analysis/fit/data/NIST/linear/Longley.dat is written in an unsupported language. File is not indexed.

0001 NIST/ITL StRD
0002 Dataset Name:  Longley (Longley.dat)
0003 
0004 File Format:   ASCII
0005                Certified Values  (lines 31 to 51)
0006                Data              (lines 61 to 76)
0007 
0008 Procedure:     Linear Least Squares Regression
0009 
0010 Reference:     Longley, J. W. (1967).  
0011                An Appraisal of Least Squares Programs for the 
0012                Electronic Computer from the Viewpoint of the User.
0013                Journal of the American Statistical Association, 62, pp. 819-841.
0014 
0015 Data:          1 Response Variable (y)
0016                6 Predictor Variable (x)
0017                16 Observations
0018                Higher Level of Difficulty
0019                Observed Data
0020 
0021 Model:         Polynomial Class
0022                7 Parameters (B0,B1,...,B7)
0023 
0024                y = B0 + B1*x1 + B2*x2 + B3*x3 + B4*x4 + B5*x5 + B6*x6 + e
0025 
0026                Certified Regression Statistics
0027 
0028                                           Standard Deviation
0029      Parameter         Estimate              of Estimate
0030 
0031         B0       -3482258.63459582         890420.383607373
0032         B1        15.0618722713733         84.9149257747669
0033         B2       -0.358191792925910E-01    0.334910077722432E-01
0034         B3       -2.02022980381683         0.488399681651699
0035         B4       -1.03322686717359         0.214274163161675
0036         B5       -0.511041056535807E-01    0.226073200069370
0037         B6        1829.15146461355         455.478499142212
0038 
0039      Residual
0040      Standard Deviation   304.854073561965
0041 
0042      R-Squared            0.995479004577296
0043 
0044 
0045                Certified Analysis of Variance Table
0046 
0047 Source of Degrees of     Sums of             Mean  
0048 Variation  Freedom       Squares            Squares          F Statistic
0049               
0050 Regression    6      184172401.944494   30695400.3240823   330.285339234588
0051 Residual      9      836424.055505915   92936.0061673238
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 Data:     y       x1      x2      x3       x4       x5     x6
0061         60323    83.0   234289   2356     1590    107608  1947
0062         61122    88.5   259426   2325     1456    108632  1948
0063         60171    88.2   258054   3682     1616    109773  1949
0064         61187    89.5   284599   3351     1650    110929  1950
0065         63221    96.2   328975   2099     3099    112075  1951
0066         63639    98.1   346999   1932     3594    113270  1952
0067         64989    99.0   365385   1870     3547    115094  1953
0068         63761   100.0   363112   3578     3350    116219  1954
0069         66019   101.2   397469   2904     3048    117388  1955
0070         67857   104.6   419180   2822     2857    118734  1956
0071         68169   108.4   442769   2936     2798    120445  1957
0072         66513   110.8   444546   4681     2637    121950  1958
0073         68655   112.6   482704   3813     2552    123366  1959
0074         69564   114.2   502601   3931     2514    125368  1960
0075         69331   115.7   518173   4806     2572    127852  1961
0076         70551   116.9   554894   4007     2827    130081  1962