Warning, /education/labplot/doc/index.docbook is written in an unsupported language. File is not indexed.
0001 <?xml version="1.0" ?> 0002 <!DOCTYPE book PUBLIC "-//KDE//DTD DocBook XML V4.5-Based Variant V1.1//EN" "dtd/kdedbx45.dtd" [ 0003 <!ENTITY latex "L<superscript>A</superscript>T<subscript>E</subscript>X"> 0004 <!ENTITY tex "T<subscript>E</subscript>X"> 0005 <!ENTITY LabPlot "<application>LabPlot</application>"> 0006 <!ENTITY % addindex "IGNORE"> 0007 <!ENTITY % English "INCLUDE"> 0008 ]> 0009 0010 <book lang="&language;"> 0011 <bookinfo> 0012 <title>The &LabPlot; Handbook</title> 0013 0014 <authorgroup> 0015 <author> 0016 <firstname>Stefan</firstname> 0017 <surname>Gerlach</surname> 0018 <affiliation> 0019 <address><email>stefan.gerlach@uni-konstanz.de</email></address> 0020 </affiliation> 0021 </author> 0022 <author> 0023 <firstname>Alexander</firstname> 0024 <surname>Semke</surname> 0025 <affiliation> 0026 <address><email>Alexander.Semke@web.de</email></address> 0027 </affiliation> 0028 </author> 0029 <author> 0030 <firstname>Yuri</firstname> 0031 <surname>Chornoivan</surname> 0032 <affiliation> 0033 <address><email>yurchor@ukr.net</email></address> 0034 </affiliation> 0035 </author> 0036 <author> 0037 <firstname>Garvit</firstname> 0038 <surname>Khatri</surname> 0039 <affiliation> 0040 <address><email>garvitdelhi@gmail.com</email></address> 0041 </affiliation> 0042 </author> 0043 <!-- TRANS:ROLES_OF_TRANSLATORS --> 0044 </authorgroup> 0045 0046 <copyright> 0047 <year>2007-2016</year> 0048 <holder>Stefan Gerlach</holder> 0049 </copyright> 0050 <copyright> 0051 <year>2008-2015</year> 0052 <holder>Alexander Semke</holder> 0053 </copyright> 0054 <copyright> 0055 <year>2014</year> 0056 <holder>Yuri Chornoivan</holder> 0057 </copyright> 0058 0059 <legalnotice>&FDLNotice;</legalnotice> 0060 <date>2016-12-24</date> 0061 <releaseinfo>3.3.1</releaseinfo> 0062 0063 <abstract> 0064 <para> 0065 &LabPlot; is a program for two-dimensional function plotting and data analysis. 0066 </para> 0067 </abstract> 0068 0069 <keywordset> 0070 <keyword>KDE</keyword> 0071 <keyword>LabPlot</keyword> 0072 <keyword>plot</keyword> 0073 </keywordset> 0074 0075 </bookinfo> 0076 0077 0078 <chapter id="introduction"> 0079 <title>Introduction</title> 0080 <para> 0081 &LabPlot; is a &kde; application for interactive graphing and analysis of scientific data. &LabPlot; provides an easy way to create, manage and edit plots. 0082 </para> 0083 0084 <para> 0085 Features: 0086 <itemizedlist> 0087 <listitem><para>Project-based management of data</para></listitem> 0088 <listitem><para>Project-explorer for management and organization of created objects in different folders and sub-folders</para></listitem> 0089 <listitem><para>Spreadsheet with basic functionality for manual data entry or for generation of uniform and non-uniform random numbers</para></listitem> 0090 <listitem><para>Import of external ASCII-data into the project for further editing and visualization</para></listitem> 0091 <listitem><para>Export of spreadsheet to an ASCII-file</para></listitem> 0092 <listitem><para>Worksheet as the main parent object for plots, labels &etc;, supports different layouts and zooming functions</para></listitem> 0093 <listitem><para>Export of worksheet to different formats (pdf, eps, png and svg)</para></listitem> 0094 <listitem><para>Great variety of editing capabilities for properties of worksheet and its objects</para></listitem> 0095 <listitem><para>Cartesian plots, created either from imported or manually created data sets or via mathematical equation</para></listitem> 0096 <listitem><para>Definition of mathematical formulas is supported by syntax-highlighting and completion and by the list of thematicaly grouped mathematical and physical constants and functions</para></listitem> 0097 <listitem><para>Investigation of plotted data is supported by many zooming and navigation features</para></listitem> 0098 <listitem><para>Several analysis functions and methods for data reduction, differentiation, integration, interpolation, smoothing, (nonlinear) fitting, Fourier filter and Fourier transform</para></listitem> 0099 <listitem><para>Linear and non-linear fits to data, several fit-models are predefined and custom models with arbitrary number of parameters can be provided</para></listitem> 0100 <listitem><para>Supports many CAS backends like Maxima, Python, KAlgebra, Sage</para></listitem> 0101 <listitem><para>Nice Worksheet view for evaluating expressions</para></listitem> 0102 <listitem><para>Easy plugin based structure to add different Backends</para></listitem> 0103 <listitem><para>Plugin based assistant dialogs for common tasks (like integrating a function or entering a matrix)</para></listitem> 0104 <listitem><para>Datapicker for manual or (semi-)automatic data extraction from imported images containing plots and curves.</para></listitem> 0105 </itemizedlist> 0106 </para> 0107 0108 <para> 0109 &LabPlot; can be found on its homepage at kde.org: 0110 <ulink url="https://labplot.kde.org/">https://labplot.kde.org/</ulink>. 0111 </para> 0112 0113 </chapter> 0114 0115 0116 <chapter id="using-LabPlot"> 0117 <title>Using &LabPlot;</title> 0118 <sect1 id="interface-overview"> 0119 <title>Interface Overview</title> 0120 <para> 0121 &LabPlot; follows the MDI (Multiple Document Interface) philosophy - all the created application objects are placed as sub-windows in the <link linkend="main-area">Main Area</link> of the application window. The <link linkend="project-explorer">Project Explorer</link> serves as the tool to create and organize those objects in a tree-like structure. 0122 0123 The <link linkend="properties-explorer">Properties Explorer</link> is used to modify the properties of the currently selected object(s). 0124 Many functions are reachable via the main menu and via object specific toolbars and context menus. Additional information and application notifications are shown in the status bar. 0125 </para> 0126 0127 <screenshot> 0128 <screeninfo>The default &LabPlot; window</screeninfo> 0129 <mediaobjectco> 0130 <imageobjectco> 0131 <areaspec units="other" otherunits="imagemap"> 0132 <!--these ids are used only internally by DocBook so we keep them short--> 0133 <area id="im-win1a1" linkends="project-explorer" coords="28,69,234,724" /> 0134 <area id="im-win1a2" linkends="worksheet" coords="456,382,804,688" /> 0135 <area id="im-win1a3" linkends="spreadsheet" coords="249,78,553,390" /> 0136 <area id="im-win1a4" linkends="toolbar" coords="1,46,640,68" /> 0137 <area id="im-win1a5" linkends="commands" coords="1,19,432,45" /> 0138 <!-- <area id="im-win1a6" linkends="statusbar" coords="38,742,1294,777" /> --> 0139 <area id="im-win1a7" linkends="properties-explorer" coords="834,69,1279,724" /> 0140 </areaspec> 0141 <imageobject> 0142 <imagedata fileref="labplot.png" format="PNG"/> 0143 </imageobject> 0144 </imageobjectco> 0145 </mediaobjectco> 0146 </screenshot> 0147 <!-- <para> 0148 The default &LabPlot; window has the <link linkend="project-explorer">Project Explorer</link> pane on the left, the <link linkend="properties-explorer">Properties</link> pane on the right, <link linkend="spreadsheet">spreadsheet</link>/<link linkend="worksheet">worksheet</link> area in the center, the <link linkend="toolbar">main toolbar</link> on the top and the status bar on the bottom. 0149 </para>--> 0150 </sect1> 0151 0152 <sect1 id="project-explorer"> 0153 <title>Project Explorer</title> 0154 <para> 0155 The Project Explorer is the main part of &LabPlot; aimed to handle its objects. Objects are organized in a tree-like structure representing the parent-child relations between the different objects. 0156 Folders and sub-folders can introduce additional grouping for the different objects. 0157 </para> 0158 <para> 0159 Project explorer is a dockable window and can be placed at an arbitrary place. The user can determine which columns should be shown by selecting/deselecting the columns of interest in the context menu (&RMB; click on an empty place in the tree-view or its header). Furthermore, the list of shown objects can be reduced by providing a filter in the <guilabel>Search/Filter</guilabel> text field. 0160 </para> 0161 <screenshot><mediaobject><imageobject> 0162 <imagedata fileref="project-explorer.png" format="PNG"/> 0163 </imageobject></mediaobject></screenshot> 0164 </sect1> 0165 0166 <sect1 id="main-area"> 0167 <title>Main Area</title> 0168 <para> 0169 Created objects having a view (like worksheet, spreadsheet &etc;) are placed in the main area of the application. Depending on the current setting for the user interface, windows are placed either as independent and freely moveable sub-windows (interface "Sub-window view") or as tabs in a tabbed view (interface "Tabbed view"). 0170 </para> 0171 <para> 0172 <screenshot><mediaobject><imageobject> 0173 <imagedata fileref="sub_window_tabbed_view_interfaces.png" format="PNG"/> 0174 </imageobject></mediaobject></screenshot> 0175 </para> 0176 0177 <para> 0178 When sub-windows are used, all windows of objects belonging to the currently selected folder only are shown. Alternatively, the visibility of windows can be extended to the currently selected folder and its sub-folders or to all windows in the project. This behaviour is controlled via the parameter "Window visibility policy" accessible via the context menu of the project explorer. 0179 </para> 0180 </sect1> 0181 0182 <sect1 id="properties-explorer"> 0183 <title>Properties Explorer</title> 0184 <para> 0185 Properties explorer allows the user to modify the currently selected object in the project explorer. A great variety of object properties can be edited in undoable/redoable way. Editing of multiple objects of the same time is also possible. 0186 </para> 0187 <para> 0188 Properties explorer is a dockable window and can be placed at an arbitrary place. 0189 </para> 0190 </sect1> 0191 0192 <sect1 id="spreadsheet"> 0193 <title>Spreadsheet</title> 0194 <para> 0195 The spreadsheet is the main part of &LabPlot; when working with data and consists of columns. 0196 Column is the basic data set in &LabPlot; used for plotting and data analysis. 0197 Every column of the spreadsheet is specified by its name and the type - numeric, text, month names, day names and date and time. 0198 Also, for each type different representation formats can be assigned like decimal or scientific format for numeric columns &etc; 0199 </para> 0200 <para> 0201 You can mask selected data points in the spreadsheet (<menuchoice><guimenu>Selection</guimenu><guimenuitem>Mask Selection</guimenuitem></menuchoice> from the spreadsheet cell context menu). 0202 Masked data is not plotted and is also excluded from data analysis functions like fitting &etc; 0203 Alternatively, you can mask or drop values in a column (<menuchoice><guimenu>Mask Values</guimenu></menuchoice> or <menuchoice><guimenu>Drop Values</guimenu></menuchoice> from the column context menu) by specifying a range. 0204 When specifying which values to mask or to drop, several operators (“equal to”, “greater than”, “lesser than”, &etc;) are available. 0205 These operations can help to hide or to remove some outliers in the data set prior to, ⪚, performing a fit to this data set. 0206 </para> 0207 <para> 0208 Any spreadsheet function can be reached via the context menu (&RMB; click). 0209 You can cut, copy and paste between spreadsheets, generate, normalize and sort data and finally make plots out of your data. 0210 </para> 0211 0212 <screenshot><mediaobject><imageobject> 0213 <imagedata fileref="spreadsheet.png" format="PNG"/> 0214 </imageobject></mediaobject></screenshot> 0215 0216 <para> 0217 New data can be produced either by entering it manually in the spreadsheet or by generating the data according to a certain prescription. 0218 &LabPlot; provides 5 different methods to generate data, accessible via the context menu of the column: 0219 0220 <itemizedlist> 0221 <listitem> 0222 <para> 0223 Row Numbers - values in the column are set according to its row number, this provide an easy way to quickly create an index. 0224 </para> 0225 </listitem> 0226 0227 <listitem> 0228 <para> 0229 Const Values - values in the column are set to a constant value provided by the user. 0230 </para> 0231 </listitem> 0232 0233 <listitem> 0234 <para> 0235 Equidistant values (for numeric columns only) - given the minimal and the maximal values, the equidistant values can be either generated 0236 by fixing the total number of values in that range or by fixing the increment (distance). 0237 <screenshot><mediaobject><imageobject> 0238 <imagedata fileref="spreadsheet_generate_equidistant_values.png" format="PNG"/> 0239 </imageobject></mediaobject></screenshot> 0240 </para> 0241 </listitem> 0242 0243 <listitem> 0244 <para> 0245 Random values (for numeric columns only) - values are randomly generated according to the selected distribution. 0246 To generate uniformly distributed random numbers, select "Flat" distribution. 0247 </para> 0248 <screenshot><mediaobject><imageobject> 0249 <imagedata fileref="spreadsheet_generate_random_values.png" format="PNG"/> 0250 </imageobject></mediaobject></screenshot> 0251 <para> 0252 In the simplest cases a non-uniform distribution is calculated analytically from the uniform distribution of a random number generator by applying 0253 an appropriate transformation. More complicated distributions are created by the acceptance-rejection method, which compares the desired distribution 0254 against a distribution which is similar and known analytically. 0255 </para> 0256 </listitem> 0257 0258 <listitem> 0259 <para> 0260 Function values (for numeric columns only) - values are generated according to a mathematical function provided by the user, 0261 a column (data set) containing the function arguments has to be provided. 0262 It is possible to define a multivariant function and to provide a data set (a column in a spreadsheet) for each of the variables. 0263 The corresponding dialog supports the creation of arbitrary number of variables. 0264 <screenshot><mediaobject><imageobject> 0265 <imagedata fileref="spreadsheet_generate_multivariant_function_values.png" format="PNG"/> 0266 </imageobject></mediaobject></screenshot> 0267 </para> 0268 </listitem> 0269 0270 </itemizedlist> 0271 0272 </para> 0273 0274 0275 <para> 0276 Already existing data can be imported into a spreadsheet from external files via the <link linkend="importdialog">"Import Data" dialog</link>. 0277 Imported data will be stored in the project file. Changes on data, performed either in the spreadsheet or in the external file after the import, are not synchronized anymore. 0278 </para> 0279 0280 <para> 0281 The data in the spreadsheet can be exported to an external file (see <link linkend="exportdialog">Export Dialog</link>). 0282 </para> 0283 </sect1> 0284 0285 <sect1 id="matrix"> 0286 <title>Matrix</title> 0287 <para> 0288 Matrix is another container for matrix-like data. This container is presented like a table or, alternatively, as a two-dimensional greyscale image. 0289 The elements of such a table/matrix can be thought as being the Z-values, Z=Z(X,Y), with X and Y values being the row and column numbers, respectively. 0290 The transition from the row and column numbers to the logical coordinates is done via an explicit user-defined mapping of both representations. 0291 <screenshot><mediaobject><imageobject> 0292 <imagedata fileref="matrix.png" format="PNG"/> 0293 </imageobject></mediaobject></screenshot> 0294 </para> 0295 0296 <para> 0297 The matrix data can either be entered manually or via an import from an external file. 0298 Similar to the data generation for a column in a spreadsheet, the matrix can be filled with constant values or via a formula, too. 0299 The screenshot below shows the image view of a matrix together with the formula that was used to generate the matrix elements: 0300 <screenshot><mediaobject><imageobject> 0301 <imagedata fileref="matrix_function_values.png" format="PNG"/> 0302 </imageobject></mediaobject></screenshot> 0303 </para> 0304 0305 </sect1> 0306 0307 0308 <sect1 id="workbook"> 0309 <title>Workbook</title> 0310 <para> 0311 Workbook helps the user to better organize and to group different data containers (Spreadsheet and Matrix). 0312 This object serves as the parent container for multiple Spreadsheet- and/or Matrix-objects and puts them together in a view with multiple tabs: 0313 <screenshot><mediaobject><imageobject> 0314 <imagedata fileref="workbook.png" format="PNG"/> 0315 </imageobject></mediaobject></screenshot> 0316 </para> 0317 <para> 0318 With folders it is already possible to bring some structure in the <link linkend="project-explorer">Project Explorer</link> and to group together several related objects 0319 (spreadsheets with data stemming from text files of similar origin, red, green and blue values of an image imported into three different matrices, &etc;). 0320 With Workbook the user has the possibility for another additional grouping. 0321 </para> 0322 0323 </sect1> 0324 0325 0326 <sect1 id="worksheet"> 0327 <title>Worksheet</title> 0328 <para> 0329 The worksheet is, besides the data containers <link linkend="spreadsheet">Spreadsheet</link> and <link linkend="matrix">Matrix</link>, another central part of the application and provides an area for showing and grouping together different kinds of worksheet objects - plots, labels &etc; 0330 </para> 0331 <para> 0332 Worksheets can either have a fixed size (a user defined size or one of the predefined sizes like A4, Letter &etc;) or they can fill out the complete available area for the worksheet window. Multiple plots can be arranged on the worksheet in a vertical, horizontal or grid layouts. 0333 </para> 0334 <para> 0335 Many properties of the worksheet like size, background colour and layout settings can be changed in the "Worksheet properties" pane. 0336 </para> 0337 0338 <para> 0339 <screenshot><mediaobject><imageobject> 0340 <imagedata fileref="worksheet.png" format="PNG"/> 0341 </imageobject></mediaobject></screenshot> 0342 </para> 0343 0344 <para> 0345 Different worksheet actions dealing with the creation of new objects, changing of the current mouse mode or zooming can be accessed via the toolbar, main menu or the context menu of the worksheet in the <link linkend="project-explorer">project explorer</link>. 0346 </para> 0347 0348 <para> 0349 The results shown on the worksheet can be exported to different formats via the <link linkend="exportdialog">export dialog</link>. 0350 </para> 0351 </sect1> 0352 0353 <sect1 id="CASworksheet"> 0354 <title>CAS Worksheet</title> 0355 <para> 0356 The CAS worksheet is, besides the <link linkend="worksheet">worksheet</link>, the third central part of the application and provides an area to you use your favorite mathematical applications from within an elegant Worksheet Interface. 0357 </para> 0358 <para> 0359 &LabPlot; offers you several choices for the backends you wish to use with it. The choice to make depends on what you want to achieve. 0360 </para> 0361 <para> 0362 <screenshot><mediaobject><imageobject> 0363 <imagedata fileref="worksheet.png" format="PNG"/> 0364 </imageobject></mediaobject></screenshot> 0365 </para> 0366 <para> 0367 Currently the following backends are available: 0368 <variablelist> 0369 <varlistentry> 0370 <term>Sage:</term> 0371 <listitem> 0372 <para> 0373 Sage is a free open-source mathematics software system licensed under the GPL. 0374 It combines the power of many existing open-source packages, within a common Python-based interface. 0375 See <ulink url="http://sagemath.org">http://sagemath.org</ulink> for more information. 0376 </para> 0377 </listitem> 0378 </varlistentry> 0379 <varlistentry> 0380 <term>Maxima:</term> 0381 <listitem> 0382 <para> 0383 Maxima is a system for the manipulation of symbolic and numeric expressions, 0384 including differentiation, integration, Taylor series, Laplace transforms, 0385 ordinary differential equations, systems of linear equations, polynomials, sets, 0386 lists, vectors, matrices, and tensors. Maxima yields high-precision numeric results 0387 by using exact fractions, arbitrary precision integers, and variable precision 0388 floating point numbers. Maxima can plot functions and data in two and three dimensions. 0389 See <ulink url="http://maxima.sourceforge.net">http://maxima.sourceforge.net</ulink> for more information. 0390 </para> 0391 </listitem> 0392 </varlistentry> 0393 <varlistentry> 0394 <term>R:</term> 0395 <listitem> 0396 <para> 0397 R is a language and environment for statistical computing and graphics, similar to the S language and environment. 0398 It provides a wide variety of statistical (linear and nonlinear modelling, 0399 classical statistical tests, time-series analysis, classification, clustering, ...) 0400 and graphical techniques, and is highly extensible. The S language is often the 0401 vehicle of choice for research in statistical methodology, 0402 and R provides an open-source route to this. 0403 See <ulink url="http://www.r-project.org">http://www.r-project.org</ulink> for more information. 0404 </para> 0405 </listitem> 0406 </varlistentry> 0407 <varlistentry> 0408 <term>&kalgebra;:</term> 0409 <listitem> 0410 <para> 0411 &kalgebra; is a MathML-based graph calculator, that ships with &kde; Education project. 0412 See <ulink url="http://edu.kde.org/kalgebra/">http://edu.kde.org/kalgebra/</ulink> for more information. 0413 </para> 0414 </listitem> 0415 </varlistentry> 0416 <varlistentry> 0417 <term>Qalculate!:</term> 0418 <listitem> 0419 <para> 0420 Qalculate! is not your regular software replication of the cheapest 0421 available calculator. Qalculate! aims to make full use of the superior 0422 interface, power and flexibility of modern computers. The center of 0423 attention in Qalculate! is the expression entry. Instead of entering each 0424 number in a mathematical expression separately, you can directly write the 0425 whole expression and later modify it. The interpretation of expressions is 0426 flexible and fault tolerant, and if you nevertheless do something wrong, 0427 Qalculate! will tell you so. Not fully solvable expressions are however not 0428 errors. Qalculate! will simplify as far as it can and answer with an 0429 expression. In addition to numbers and arithmetic operators, an expression 0430 may contain any combination of variables, units, and functions. 0431 See <ulink url="http://qalculate.sourceforge.net/">http://qalculate.sourceforge.net/</ulink> for more information. 0432 </para> 0433 </listitem> 0434 </varlistentry> 0435 <varlistentry> 0436 <term>Python2:</term> 0437 <listitem> 0438 <para> 0439 Python is a remarkably powerful dynamic programming language that is used 0440 in a wide variety of application domains. There are several Python packages 0441 to scientific programming. 0442 </para> 0443 <para>Python is distributed under Python Software Foundation license (GPL compatible). 0444 See the <ulink url="http://www.python.org/">official website</ulink> for more information. 0445 </para> 0446 <note> 0447 <para> 0448 This backend adds an additional item to the &cantor;'s main menu, <guimenu>Package</guimenu>. The only item of this menu is <menuchoice><guimenu>Package</guimenu><guimenuitem>Import Package</guimenuitem></menuchoice>. This item can be used to import Python packages to the worksheet. 0449 </para> 0450 </note> 0451 <warning> 0452 <para> 0453 This backend supports Python 2 only. 0454 </para> 0455 </warning> 0456 </listitem> 0457 </varlistentry> 0458 <varlistentry> 0459 <term>Scilab:</term> 0460 <listitem> 0461 <para> 0462 Scilab is an free software, cross-platform numerical computational package 0463 and a high-level, numerically oriented programming language. 0464 </para> 0465 <para>Scilab is distributed under CeCILL license (GPL compatible). 0466 See <ulink url="http://www.scilab.org/">http://www.scilab.org/</ulink> for more information. 0467 </para> 0468 <warning> 0469 <para> 0470 You need Scilab version 5.5 or higher to be installed in your system to make this backend usable. 0471 </para> 0472 </warning> 0473 </listitem> 0474 </varlistentry> 0475 <varlistentry> 0476 <term>Octave:</term> 0477 <listitem> 0478 <para> 0479 &GNU; Octave is a high-level language, primarily intended for numerical 0480 computations. It provides a convenient command line interface for 0481 solving linear and nonlinear problems numerically, and for performing other 0482 numerical experiments using a language that is mostly compatible with <ulink url="http://www.mathworks.com/products/matlab/">MATLAB</ulink>. 0483 See <ulink url="http://www.gnu.org/software/octave/">http://www.gnu.org/software/octave/</ulink> for more information. 0484 </para> 0485 </listitem> 0486 </varlistentry> 0487 <varlistentry> 0488 <term>Lua:</term> 0489 <listitem> 0490 <para> 0491 Lua is a fast and lightweight scripting language, with a simple procedural syntax. There are several libraries in Lua aimed at math and science. 0492 </para> 0493 <para> 0494 See <ulink url="http://www.lua.org/">http://www.lua.org/</ulink> for more information. 0495 </para> 0496 <para> 0497 This backend supports <ulink url="http://luajit.org/">luajit 2</ulink>. 0498 </para> 0499 </listitem> 0500 </varlistentry> 0501 </variablelist> 0502 </para> 0503 </sect1> 0504 0505 0506 <sect1 id="file_data_source"> 0507 <title>File Data Source</title> 0508 <para> 0509 A file data source is very similar in spirit to a spreadsheet with imported data from an external file. The difference is that the imported data cannot be shown and edited in &LabPlot; after the import anymore. This can be sufficient ⪚ if you only want to plot the data stemming from a calculation in an external program (and exported to an ASCII-file afterwards). 0510 </para> 0511 <para> 0512 Since no spreadsheet has to be filled with the imported data, the import into a file data source is faster than into a spreadsheet which can be advantageously when dealing with big files. 0513 </para> 0514 <para> 0515 It is possible to store the link to the external file in the project file only and not its content. Each time the project file is opened in &LabPlot;, the content is read from the external file again. Also, it is possible to let &LabPlot; watch the file for changes - the content of the file data source is updated if the external file was changed. 0516 </para> 0517 <para> 0518 <screenshot><mediaobject><imageobject> 0519 <imagedata fileref="file_data_source.png" format="PNG"/> 0520 </imageobject></mediaobject></screenshot> 0521 </para> 0522 <para> 0523 The additional options determining the import of the data are equivalent to those provided in <link linkend="importdialog">Import Dialog</link>. 0524 </para> 0525 </sect1> 0526 0527 0528 <sect1 id="datapicker"> 0529 <title>Datapicker</title> 0530 <para> 0531 Datapicker is a tool that allows you to easily extract data from image files. The process of extraction consists mainly out of the following steps: 0532 <itemizedlist> 0533 <listitem><para>Import an image containing plots and curves where you want to read the data points from.</para></listitem> 0534 <listitem><para>Select the plot type (cartesian, polar, &etc;).</para></listitem> 0535 <listitem><para>Select tree reference points and provide values for them. With the help of these points the logical coordinate system is determined.</para></listitem> 0536 <listitem><para>Create a new datapicker curve and set the type of the error bars.</para></listitem> 0537 <listitem><para>Switch to the mouse mode "Set Curve Points" and start selecting points on the imported image - the coordinates for the selected points are determined and added to the spreadsheet "Data".</para></listitem> 0538 </itemizedlist> 0539 </para> 0540 0541 <para> 0542 It is possible to add more then one datapicker curve. This is useful in case the imported image contains several curves that need to be digitized. 0543 The datapicker curve that is currently being selected in the <link linkend="project-explorer">Project Explorer </link> is the "active" one - points clicked on the datapicker image will be calculated and added to its data spreadsheet. 0544 <screenshot><mediaobject><imageobject> 0545 <imagedata fileref="datapicker_active_curve_data_spreadsheet.png" format="PNG"/> 0546 </imageobject></mediaobject></screenshot> 0547 </para> 0548 0549 <para> 0550 Calculated values are stored in different columns in data spreadsheets in the datapicker. These columns behave exactly the same like other columns 0551 in usual spreadsheets and can be directly used as source columns for curves in your own plots. 0552 </para> 0553 0554 <para> 0555 Datapicker supports the process of the data extraction with several helpers. To place the points more precisely, a magnification glass with different magnification levels is available. 0556 Also, the last selected point can be shifted with the help of the navigation keys. 0557 Furthermore, when reading data points having error bars, datapicker automatically creates bars indicating the end points of the error bars. 0558 Those bars can be pulled with the mouse until the required length (the distance to the data point) is reached. 0559 </para> 0560 0561 0562 <para> 0563 The procedure for the extraction of data from an imported plot as described above is feasible when dealing with a limited number of points. 0564 In case the curves in the imported image are given as solid lines, the datapicker tool in &LabPlot; allows to read them (semi-)automatically. 0565 For this, after a new datapicker curve was added as described above, switch to the mouse mode "Select Curve Segments". The curves on the plot are recognized and highlighted. 0566 By clicking on a highlighted curve (or one of its segments), points along this curve are created. 0567 The length of a segment and the density of created points (separation between two points) are adjustable parameters. 0568 On the screenshots below, after switching to the segment mode all black lines were highlighted (green colour). 0569 In this specific case, the curve was recognized as a single segment and a single mouse-click on this segment is sufficient to digitize this curve and to automatically place points along the curve. 0570 <screenshot><mediaobject><imageobject> 0571 <imagedata fileref="datapicker_segments.png" format="PNG"/> 0572 </imageobject></mediaobject></screenshot> 0573 </para> 0574 0575 <para> 0576 In many cases the plot is not as simple as above (single black curve on white background) and contains grid lines, many curves of different colour and thinness and a non-white background. 0577 In such a case the automatic detection fails (too many or no objects are highlighted). To help the datapicker to determine the curve(s) correctly, the user has to limit the allowed ranges in the HSV (or HSI) colour spaces. 0578 To subtract the non-white background it is possible to limit the range for the foreground colour, too. 0579 Internally, each pixel of the image is converted to black and white where only the points fitting into the user-defined ranges for hue, saturation, value, intensity and foreground are set to black. 0580 </para> 0581 0582 <para> 0583 On the screenshots below, the blue curves in the original image were projected onto by having appropriately reduced the allowed ranges in the colour space (note the peak for blue in the histogram for the hue). 0584 The transformed black and white image contains only the curves the user is interested in and it is now an easy task for the datapicker to determine the curves and to place points on them. 0585 <screenshot><mediaobject><imageobject> 0586 <imagedata fileref="datapicker_original_transformed_segments.png" format="PNG"/> 0587 </imageobject></mediaobject></screenshot> 0588 </para> 0589 0590 <para> 0591 Similar to <link linkend="worksheet">Worksheet</link>, the currently visible area in the datapicker can be exported. 0592 The supported image formats as described in the section <link linkend="exportdialog">Export Dialog</link>. 0593 </para> 0594 </sect1> 0595 0596 <sect1 id="importdialog"> 0597 <title>Import Dialog</title> 0598 <para> 0599 In the import dialog you can import data into one of the available spreadsheets or matrices in &LabPlot;. 0600 The supported data formats are 0601 <itemizedlist> 0602 <listitem><para>ASCII</para></listitem> 0603 <listitem><para>Binary</para></listitem> 0604 <listitem><para>Image</para></listitem> 0605 <listitem><para>NetCDF</para></listitem> 0606 <listitem><para>HDF5</para></listitem> 0607 <listitem><para>FITS</para></listitem> 0608 </itemizedlist> 0609 Preview of all supported file types is available in the import dialog. 0610 For data formats with complex internal structures (like NetCDF, HDF5 and FITS), 0611 the content of the file is presented in a tree view that allows comfortable navigation 0612 through the file. A versatile dialog to edit the headers (keywords) of a FITS file is also 0613 provided. 0614 </para> 0615 0616 <para> 0617 Import of ascii and binary data compressed with gzip, bzip2 or xz can be done directly as the decompression happens transparently for the user. 0618 </para> 0619 0620 0621 <para> 0622 The name of the file containing the data to import has to be provided. The <guibutton>File Info</guibutton> button opens a dialog where some information about the selected file is shown. The type of the data can be specified - currently, only ASCII files containing several data sets (vectors) stored as columns are supported. 0623 The filter - automatic or custom - determines how the file has to be parsed. Selecting the filter "custom", several parameters like separating character &etc; can be provided manually in this case. 0624 </para> 0625 <para> 0626 The start and end row to read can be customized using the <guilabel>Data portion to read</guilabel> tab. To read all data specify <userinput>-1</userinput> as an end row or column. 0627 </para> 0628 <screenshot> 0629 <screeninfo>Importing data into &LabPlot;</screeninfo> 0630 <mediaobject> 0631 <imageobject> 0632 <imagedata fileref="import-dialog.png" format="PNG" /> 0633 </imageobject> 0634 <textobject> 0635 <phrase>Importing data into &LabPlot;</phrase> 0636 </textobject> 0637 </mediaobject> 0638 </screenshot> 0639 0640 </sect1> 0641 0642 0643 <sect1 id="exportdialog"> 0644 <title>Export Dialog</title> 0645 <para> 0646 A worksheet can be exported to several graphics format (vector and raster). 0647 The export is done via the export dialog reachable via the 0648 <guibutton>Export</guibutton> in the main toolbar or 0649 <menuchoice><guimenu>File</guimenu><guimenuitem>Export</guimenuitem></menuchoice> 0650 in the main menu. 0651 </para> 0652 <para> 0653 Besides the graphics format, the user can specify which part of the worksheet 0654 has to be exported and whether the background has to be exported or not. 0655 Also, for raster graphics the image resolution can be provided. 0656 </para> 0657 <para> 0658 <screenshot><mediaobject><imageobject> 0659 <imagedata fileref="export_worksheet_dialog.png" format="PNG"/> 0660 </imageobject></mediaobject></screenshot> 0661 </para> 0662 <para> 0663 The content of a spreadsheet can be exported to an external text or FITS file. 0664 In the export dialog for spreadsheets the user can specify the character 0665 separating values of different columns. Optionally, the header of the spreadsheet 0666 (names of the columns in the spreadsheet) can be exported. 0667 </para> 0668 <para> 0669 <screenshot><mediaobject><imageobject> 0670 <imagedata fileref="export_spreadsheet_dialog.png" format="PNG"/> 0671 </imageobject></mediaobject></screenshot> 0672 </para> 0673 </sect1> 0674 0675 </chapter> 0676 0677 <chapter id="commands"> 0678 <title>Command Reference</title> 0679 0680 <sect1 id="file-menu"> 0681 <title>The File Menu</title> 0682 0683 <para> 0684 <variablelist> 0685 0686 <varlistentry> 0687 <term><menuchoice><shortcut> 0688 <keycombo>&Ctrl;<keycap>N</keycap></keycombo></shortcut> 0689 <guimenu>File</guimenu><guimenuitem>New</guimenuitem> 0690 </menuchoice></term> 0691 <listitem><para><action>Creates a new &LabPlot; project file.</action></para> 0692 <para> In a project file all settings and all plots are stored in ASCII 0693 format.</para></listitem> 0694 </varlistentry> 0695 0696 <varlistentry> 0697 <term><menuchoice><shortcut> 0698 <keycombo>&Ctrl;<keycap>O</keycap></keycombo></shortcut> 0699 <guimenu>File</guimenu><guimenuitem>Open</guimenuitem> 0700 </menuchoice></term> 0701 <listitem><para><action>Opens a &LabPlot; project file.</action></para> 0702 </listitem> 0703 </varlistentry> 0704 0705 <varlistentry> 0706 <term><menuchoice> 0707 <guimenu>File</guimenu><guisubmenu>Open Recent</guisubmenu> 0708 </menuchoice></term> 0709 <listitem><para><action>Opens a recent &LabPlot; project file.</action></para> 0710 <para> Here the last used 10 project files are listed.</para></listitem> 0711 </varlistentry> 0712 0713 <varlistentry> 0714 <term><menuchoice><shortcut> 0715 <keycombo>&Ctrl;<keycap>S</keycap></keycombo></shortcut> 0716 <guimenu><accel>F</accel>ile</guimenu><guimenuitem><accel>S</accel>ave</guimenuitem> 0717 </menuchoice></term> 0718 <listitem><para><action>Saves the actual project.</action></para> 0719 <para>If you haven't saved the project before the project is saved under a temporary project file name.</para> 0720 </listitem> 0721 </varlistentry> 0722 0723 <varlistentry> 0724 <term><menuchoice> 0725 <guimenu>File</guimenu><guimenuitem>Save As</guimenuitem> 0726 </menuchoice></term> 0727 <listitem><para><action> 0728 Saves the actual project under a different name. 0729 </action></para></listitem> 0730 </varlistentry> 0731 0732 <varlistentry> 0733 <term><menuchoice><shortcut> 0734 <keycombo>&Ctrl;<keycap>P</keycap></keycombo></shortcut> 0735 <guimenu>File</guimenu><guimenuitem>Print</guimenuitem> 0736 </menuchoice></term> 0737 <listitem><para><action>Prints the active plot.</action></para> 0738 <para> 0739 Here a print dialog is opened where you can select the printer, different paper sizes, &etc; 0740 </para> 0741 </listitem> 0742 </varlistentry> 0743 0744 <varlistentry> 0745 <term><menuchoice> 0746 <guimenu>File</guimenu><guimenuitem>Print Preview</guimenuitem> 0747 </menuchoice></term> 0748 <listitem><para><action>Open a print preview window.</action> &LabPlot; allows you to choose print settings using the toolbar of this window and view the result immediately.</para> 0749 </listitem> 0750 </varlistentry> 0751 0752 <varlistentry> 0753 <term><menuchoice><shortcut> 0754 <keycombo>&Ctrl;<keycap>=</keycap></keycombo></shortcut> 0755 <guimenu>File</guimenu><guisubmenu>New</guisubmenu><guimenuitem>Spreadsheet</guimenuitem> 0756 </menuchoice></term> 0757 <listitem><para><action>Creates a new spreadsheet in the current folder of &LabPlot; project.</action></para> 0758 </listitem> 0759 </varlistentry> 0760 0761 <varlistentry> 0762 <term><menuchoice><shortcut> 0763 <keycombo>&Alt;<keycap>X</keycap></keycombo></shortcut> 0764 <guimenu>File</guimenu><guisubmenu>New</guisubmenu><guimenuitem>Worksheet</guimenuitem> 0765 </menuchoice></term> 0766 <listitem><para><action>Creates a new worksheet in the current folder of &LabPlot; project.</action></para> 0767 </listitem> 0768 </varlistentry> 0769 0770 <varlistentry> 0771 <term><menuchoice> 0772 <guimenu>File</guimenu><guisubmenu>New</guisubmenu><guimenuitem>Folder</guimenuitem> 0773 </menuchoice></term> 0774 <listitem><para><action>Creates a new spreadsheet in the current folder of &LabPlot; project.</action></para> 0775 </listitem> 0776 </varlistentry> 0777 0778 <varlistentry> 0779 <term><menuchoice> 0780 <guimenu>File</guimenu><guisubmenu>New</guisubmenu><guimenuitem>File Data Source</guimenuitem> 0781 </menuchoice></term> 0782 <listitem><para><action>Opens <guilabel>Import data to spreadsheet/matrix</guilabel> window.</action></para> 0783 </listitem> 0784 </varlistentry> 0785 0786 <varlistentry> 0787 <term><menuchoice><shortcut> 0788 <keycombo>&Ctrl;&Shift;<keycap>L</keycap></keycombo></shortcut> 0789 <guimenu>File</guimenu><guimenuitem>Import</guimenuitem> 0790 </menuchoice></term> 0791 <listitem> 0792 <para><action>Import data into the active spreadsheet</action></para> 0793 <para> 0794 This item can be used to import data into &LabPlot;. Please read more in the <link linkend="importdialog">import dialog</link> 0795 section. 0796 </para> 0797 </listitem> 0798 </varlistentry> 0799 0800 <varlistentry> 0801 <term><menuchoice> 0802 <guimenu>File</guimenu><guimenuitem>Export</guimenuitem> 0803 </menuchoice></term> 0804 <listitem><para><action>Saves the active plot as special format.</action></para> 0805 <para>Currently supported are Encapsulated Postscript (EPS), Portable Document Format (PDF), Scalable Vector Graphics (SVG) and Portable Network Graphics (PNG).</para></listitem> 0806 </varlistentry> 0807 0808 <varlistentry> 0809 <term><menuchoice><shortcut> 0810 <keycombo>&Ctrl;<keycap>W</keycap></keycombo></shortcut> 0811 <guimenu>File</guimenu><guimenuitem>Close</guimenuitem> 0812 </menuchoice></term> 0813 <listitem><para><action>Closes the current opened &LabPlot; project file.</action></para> 0814 </listitem> 0815 </varlistentry> 0816 0817 <varlistentry> 0818 <term><menuchoice><shortcut> 0819 <keycombo>&Ctrl;<keycap>Q</keycap></keycombo></shortcut> 0820 <guimenu>File</guimenu><guimenuitem>Quit</guimenuitem> 0821 </menuchoice></term> 0822 <listitem><para><action>Quit &LabPlot;.</action></para> 0823 </listitem> 0824 </varlistentry> 0825 0826 </variablelist></para> 0827 </sect1> 0828 0829 <sect1 id="edit-menu"> 0830 <title>The Edit Menu</title> 0831 0832 <para><variablelist> 0833 0834 <varlistentry> 0835 <term><menuchoice> 0836 <guimenu>Edit</guimenu><guimenuitem>Undo/Redo History</guimenuitem> 0837 </menuchoice></term> 0838 <listitem><para><action>Opens the &LabPlot; action history window.</action> Select an item in the list to navigate to the corresponding step. 0839 </para></listitem> 0840 </varlistentry> 0841 0842 </variablelist></para> 0843 </sect1> 0844 0845 <sect1 id="worksheet-menu"> 0846 <title>The Worksheet Menu</title> 0847 <para> 0848 This menu contains all the items that can also be found in the context menu (right mouse) of a worksheet. 0849 The menu is only available when a worksheet object is selected on the <guilabel>Project Explorer</guilabel> panel. 0850 </para> 0851 </sect1> 0852 0853 <sect1 id="spreadsheet-menu"> 0854 <title>The Spreadsheet Menu</title> 0855 <para> 0856 This menu contains all the items that can also be found in the context menu (right mouse) of a spreadsheet. 0857 The menu is only available when a spreadsheet object is selected on the <guilabel>Project Explorer</guilabel> panel. 0858 </para> 0859 </sect1> 0860 0861 <sect1 id="CASworksheet-menu"> 0862 <title>The CAS Worksheet Menu</title> 0863 <para> 0864 This menu contains all the items that can also be found in the context menu (right mouse) of a CAS worksheet. 0865 The menu is only available when a worksheet object is selected on the <guilabel>Project Explorer</guilabel> panel. 0866 </para> 0867 </sect1> 0868 <sect1 id="datapicker-menu"> 0869 <title>The Datapicker Menu</title> 0870 <para> 0871 This menu contains all the items that can also be found in the context menu (right mouse) of a datapicker. 0872 The menu is only available when a datapicker object is selected on the <guilabel>Project Explorer</guilabel> panel. 0873 </para> 0874 </sect1> 0875 0876 <sect1 id="settings-menu"> 0877 <title>The Settings Menu</title> 0878 0879 <para>This menu gives you the ability to change user settings.</para> 0880 0881 <para>Apart from the common &kde; Settings menu entries described in the <ulink url="help:/fundamentals/menus.html#menus-settings">Settings Menu</ulink> chapter of the &kde; Fundamentals &LabPlot; has this application specific menu entry: 0882 </para> 0883 0884 <variablelist> 0885 <varlistentry><term><menuchoice><shortcut> 0886 <keycombo>&Ctrl;&Shift;<keycap>F</keycap></keycombo></shortcut> 0887 <guimenu>Settings</guimenu><guimenuitem>Full Screen Mode</guimenuitem> 0888 </menuchoice></term> 0889 <listitem><para><action>Show the workspace in full screen mode.</action></para> 0890 </listitem> 0891 </varlistentry> 0892 </variablelist> 0893 </sect1> 0894 0895 0896 <sect1 id="help-menu"> 0897 <title>The Help Menu</title> 0898 0899 <para> 0900 Additionally, &LabPlot; has the common &kde; Help menu items. For more information, read the section about the <ulink url="help:/fundamentals/menus.html#menus-help">Help Menu</ulink> of the &kde; Fundamentals. 0901 </para> 0902 0903 </sect1> 0904 0905 <sect1 id="toolbar"> 0906 <title>Toolbar</title> 0907 0908 <para> 0909 The main toolbar contains the main items that you can find in the different menus. More details on this can be found in the <ulink url="help:/fundamentals/config.html#toolbars">&kde; Fundamentals manual</ulink>.</para> 0910 </sect1> 0911 0912 </chapter> 0913 0914 <chapter id="plotting"> 0915 <title>Plotting</title> 0916 0917 <sect1 id="plots"> 0918 <title>Plots</title> 0919 <para> 0920 Plots can be created inside a worksheet via "Add new" in the context menu or in the application menu via "Worksheet" 0921 by selecting "xy-plot" and the type of plot you like to have. 0922 </para> 0923 <para> 0924 Within this xy-plot you can add a xy-curve containing data to show (again via the context menu or application menu). 0925 </para> 0926 <para> 0927 The settings of a plot can be changed in the corresponding dock widget. There are general settings like geometry 0928 but also the range of the x- and y-axis (including scaling). The plot title can be set in the "Title" tab of the 0929 dock widget. Background and border styles can be changed in the "Plot Area" tab. 0930 </para> 0931 </sect1> 0932 0933 <sect1 id="curves"> 0934 <title>Curves</title> 0935 <para> 0936 Curves contain data points that can be shown in a plot. 0937 There are three different method to create curves: the standard xy-curve, a xy-curve from a mathematical expression 0938 and a xy-curve from a data analysis function. 0939 </para> 0940 <para> 0941 The standard xy-curve can be filled with values of a spreadsheet by selecting the x-data and y-data as column of the 0942 spreadsheet in the xy-curve dock widget. Another method to fill a curve is to use a mathematical expression. Here you can 0943 select any mathematical function and range to create the curve. 0944 The third method to create a curve is to use a data analysis function. The data and the analysis function can be 0945 selected in the dock widget of the analysis function. 0946 </para> 0947 <para> 0948 For all types of curves the line and symbols styles can be changed in the dock widget. Also annotated values 0949 and error bar settings can be changed here. 0950 </para> 0951 </sect1> 0952 0953 <sect1 id="legends"> 0954 <title>Legends</title> 0955 <para> 0956 A legend can be easily added to a plot by using the context of application menu. It contains information 0957 about all curves in a plot. 0958 </para> 0959 <para> 0960 The settings of a legend (format and geometry) can be changed in the legend dock widget. Also the legend title 0961 settings, the legend background and the layout can be changed in the corresponding tab of the legend dock widget. 0962 </para> 0963 </sect1> 0964 0965 </chapter> 0966 0967 <chapter id="analysis"> 0968 <title>Analysis functions</title> 0969 <sect1 id="analysis_overview"> 0970 <title>Overview</title> 0971 <para> 0972 &LabPlot; supports a wide variety of data analysis functions: 0973 </para> 0974 <itemizedlist> 0975 <listitem><para>Data reduction</para></listitem> 0976 <listitem><para>Differentiation</para></listitem> 0977 <listitem><para>Integration</para></listitem> 0978 <listitem><para>Interpolation</para></listitem> 0979 <listitem><para>Smoothing</para></listitem> 0980 <listitem><para>Nonlinear curve fitting</para></listitem> 0981 <listitem><para>Fourier filter</para></listitem> 0982 <listitem><para>Fourier transform</para></listitem> 0983 </itemizedlist> 0984 <para> 0985 All of them can be applied to any data consisting of x- and y-columns. 0986 The analysis functions can be accessed using the Analysis menu or the context menu of a worksheet. 0987 The newly created curves can be customized (line style, symbol style, &etc;) like any other x-y-curve. 0988 </para> 0989 </sect1> 0990 0991 <sect1 id="data_reduction"> 0992 <title>Data reduction</title> 0993 <para> 0994 To reduce the number of data points without losing the features of a data set 0995 you can apply one of several line simplification algorithm: 0996 </para> 0997 <itemizedlist> 0998 <listitem><para>Douglas-Peucker</para></listitem> 0999 <listitem><para>Visvalingam-Whyatt</para></listitem> 1000 <listitem><para>Reumann-Witkam</para></listitem> 1001 <listitem><para>Perpendicular distance simplification</para></listitem> 1002 <listitem><para>n-th point simplification</para></listitem> 1003 <listitem><para>Radial distance simplification</para></listitem> 1004 <listitem><para>Interpolation (nearest neighbor)</para></listitem> 1005 <listitem><para>Opheim</para></listitem> 1006 <listitem><para>Lang</para></listitem> 1007 </itemizedlist> 1008 <para> 1009 The desired tolerance is automatically calculated from the data but can also be changed 1010 in the dock widget. 1011 </para> 1012 </sect1> 1013 1014 <sect1 id="differentiation"> 1015 <title>Differentiation</title> 1016 <para> 1017 Numerical differentiation of data can be done specifying: 1018 </para> 1019 <itemizedlist> 1020 <listitem><para>order of derivation (first to sixth order)</para></listitem> 1021 <listitem><para>order of accuracy (up to 4th order, depending on derivation order)</para></listitem> 1022 </itemizedlist> 1023 </sect1> 1024 1025 <sect1 id="integration"> 1026 <title>Integration</title> 1027 <para> 1028 Numerical integration of data can be done specifying one of the methods 1029 </para> 1030 <itemizedlist> 1031 <listitem><para>rectangle (1-point) rule</para></listitem> 1032 <listitem><para>trapezoid (2-point) rule</para></listitem> 1033 <listitem><para>Simpson-1/3 (3-point) rule</para></listitem> 1034 <listitem><para>Simpson-3/8 (4-point) rule</para></listitem> 1035 </itemizedlist> 1036 <para> 1037 The default method (trapezoid) should be suitable for most cases. 1038 The number of resulting data points is reduced for both Simpson-rules due to the properties of these methods. 1039 </para> 1040 </sect1> 1041 1042 <sect1 id="interpolation"> 1043 <title>Interpolation</title> 1044 <para> 1045 Interpolation of data can be done with several algorithm: 1046 </para> 1047 <itemizedlist> 1048 <listitem><para>linear</para></listitem> 1049 <listitem><para>polynomial (if number of data points < 100)</para></listitem> 1050 <listitem><para>cubic spline</para></listitem> 1051 <listitem><para>cubic spline (periodic)</para></listitem> 1052 <listitem><para>Akima spline</para></listitem> 1053 <listitem><para>Akima spline (periodic)</para></listitem> 1054 <listitem><para>Steffen spline (needs GSL ≥ 2.0)</para></listitem> 1055 <listitem><para>cosine</para></listitem> 1056 <listitem><para>exponential</para></listitem> 1057 <listitem><para>piecewise cubic Hermite (finite differences, Catmull-Rom, cardinal, Kochanek-Bartels)</para></listitem> 1058 <listitem><para>rational functions</para></listitem> 1059 </itemizedlist> 1060 <para> 1061 The interpolating function is calculated with the given number n of data points and evaluated as: 1062 </para> 1063 <itemizedlist> 1064 <listitem><para>function</para></listitem> 1065 <listitem><para>derivative</para></listitem> 1066 <listitem><para>second derivative</para></listitem> 1067 <listitem><para>integral (starting from zero)</para></listitem> 1068 </itemizedlist> 1069 </sect1> 1070 1071 <sect1 id="smoothing"> 1072 <title>Smoothing</title> 1073 <para> 1074 A number of different smoothing methods are supported: 1075 </para> 1076 <itemizedlist> 1077 <listitem><para>Moving average (central)</para></listitem> 1078 <listitem><para>Moving average (lagged)</para></listitem> 1079 <listitem><para>Percentile filter</para></listitem> 1080 <listitem><para>Savitzky-Golay</para></listitem> 1081 </itemizedlist> 1082 <para> 1083 All smoothing methods support several padding modes (constant, periodic, mirror, nearest, etc.) for the beginning and end 1084 of the data set. The moving averages support several weight functions (uniform, triangular, binomial, parabolic, tricubic, etc.) 1085 which can be selected to weight the selected data points depending on their distance. 1086 </para> 1087 </sect1> 1088 1089 <sect1 id="fitting"> 1090 <title>Curve fitting</title> 1091 <para> 1092 Linear and non-linear curve fitting of data can be done with several predefined fit-models 1093 (for instance polynomial, exponential, Gaussian or custom) to data consisting of x- and y-columns 1094 with an optional weight column. With a custom model any function with unlimited number of parameters 1095 can be used for fitting. The results including statistical properties are displayed in the results text. 1096 </para> 1097 <para> 1098 The start values of the parameter can be set in the parameter dialog. It is also possible to fix any parameter and set lower and upper limits to the values here. Be aware that reducing the parameter space by fixing parameter or specifying limits can slow down convergence or avoid finding a good result. It's always a good idea to remove any parameter limitations when good start values are found. 1099 </para> 1100 <para> 1101 Following options can be set in the options dialog to optimize the fitting: 1102 </para> 1103 <itemizedlist> 1104 <listitem><para>Max. iterations: number of maximum iterations</para></listitem> 1105 <listitem><para>Tolerance: desired tolerance for result</para></listitem> 1106 <listitem><para>Evaluated points: number of points to evaluate the fit function</para></listitem> 1107 <listitem><para>Evaluate full range: evaluate the fit function for the full data range instead of evaluating only for the given x range</para></listitem> 1108 <listitem><para>Use results as new start values: results will be the new parameter start values</para></listitem> 1109 </itemizedlist> 1110 1111 </sect1> 1112 1113 <sect1 id="filter"> 1114 <title>Fourier filter</title> 1115 <para> 1116 This function can be used to apply a Fourier filter to any data consisting of x- and y-columns. Supported 1117 filter types are: 1118 </para> 1119 <itemizedlist> 1120 <listitem><para>Low pass</para></listitem> 1121 <listitem><para>High pass</para></listitem> 1122 <listitem><para>Band pass</para></listitem> 1123 <listitem><para>Band reject (band block)</para></listitem> 1124 </itemizedlist> 1125 <para> 1126 where any of them can have the form 1127 </para> 1128 <itemizedlist> 1129 <listitem><para>Ideal</para></listitem> 1130 <listitem><para>Butterworth (order 1 to 10)</para></listitem> 1131 <listitem><para>Chebyshev type I or II (order 1 to 10)</para></listitem> 1132 <listitem><para>Optimal "L"egendre (order 1 to 10)</para></listitem> 1133 <listitem><para>Bessel-Thomson (any order)</para></listitem> 1134 </itemizedlist> 1135 <para> 1136 The cutoff value(s) can be specified in the units frequency (Hertz), fraction (0.0 to 1.0) or index 1137 of the data points. 1138 </para> 1139 </sect1> 1140 1141 <sect1 id="dft"> 1142 <title>Fourier transform</title> 1143 <para> 1144 To convert a signal from time to frequency domain or to change between other conjugate variables like 1145 position and momentum (k-space) a discrete Fourier transform can be applied. 1146 Following options can be used to suite one needs: 1147 </para> 1148 <itemizedlist> 1149 <listitem><para>Window function (Welch, Hann, Hamming, etc.) to avoid leakage effects</para></listitem> 1150 <listitem><para>Output (magnitude, amplitude, phase, dB, etc.)</para></listitem> 1151 <listitem><para>One or two sided spectrum with or without shifting</para></listitem> 1152 <listitem><para>X axis scaling to frequency, index or period</para></listitem> 1153 </itemizedlist> 1154 </sect1> 1155 </chapter> 1156 1157 <chapter id="digitization"> 1158 <title>Curve Tracing</title> 1159 1160 <sect1 id="uploadimage"> 1161 <title>Upload Image</title> 1162 <para> 1163 Datapicker can be created inside a project via <guimenuitem>Add new</guimenuitem> in the context menu of project/folder or in the main toolbar. 1164 After that a new image can be added and can be changed via <guilabel>Plot</guilabel> in the corresponding dock widget. 1165 </para> 1166 <para> 1167 After uploading image different zooming options can be used from the context menu/datapicker toolbar to change width and 1168 height of image. Image can also be rotated to an angle using <guilabel>Rotation</guilabel> in the "edit" section of dock widget. After this 1169 user have to <link linkend="axispoint">set axis points</link>. 1170 </para> 1171 </sect1> 1172 1173 <sect1 id="symbols"> 1174 <title>Symbols</title> 1175 <para> 1176 Symbols are the points that can be drawn over image of datapicker. Symbols can be directly created by mouse 1177 right click over the image. Symbols are mainly of two types, with and without error-bar depending on the type of 1178 <link linkend="datapickercurve">curve</link> they belong. 1179 </para> 1180 <para> 1181 Every curve of datapicker can have its own symbol style that can be changed in the <guilabel>Symbols</guilabel> section of dock widget. 1182 "SelectAndMove" mouse mode can be used to select multiple points/symbols and can be moved by using navigation keys. 1183 </para> 1184 </sect1> 1185 1186 <sect1 id="axispoint"> 1187 <title>Axis Points</title> 1188 <para> 1189 Axis Points are the set of three reference <link linkend="symbols">points</link> over image of datapicker. These points 1190 can be set via <guimenuitem>Set Axis Points</guimenuitem> in the context menu of datapicker. After selecting points over image user have to update 1191 their coordinate system type via <guilabel>Plot Type</guilabel> and logical positions via <guilabel>Ref. Points</guilabel> in the dock widget. 1192 </para> 1193 </sect1> 1194 1195 <sect1 id="datapickercurve"> 1196 <title>Datapicker Curve</title> 1197 <para> 1198 Datapicker-Curve can be created inside datapicker via <guimenuitem>New Curve</guimenuitem> in the context menu of datapicker. A curve can have 1199 different types of X and Y errors (No-error, symmetric, asymmetric). This depends on the type of errors dock widget 1200 of datapicker have at the point of creation. 1201 </para> 1202 <para> 1203 Every curve object contains all the curve <link linkend="symbols">points</link> (hidden) and a spreadsheet that contains 1204 logical positions of all its curve points, and provides options to update spreadsheet and to toggle visibility 1205 of its curve points using the context menu. Mode <guimenuitem>Set Curve Points</guimenuitem> in the context menu of datapicker should be 1206 selected in order to create curve points. 1207 </para> 1208 <para> 1209 Multiple curve can be created for same datapicker. The created curve points always correspond to the active 1210 curve of datapicker which can be changed via <guimenuitem>Active Curve</guimenuitem> option in the context menu and dock widget of datapicker. 1211 Every curve of datapicker can have its own symbol style that can be changed in the <guilabel>Symbols</guilabel> section of dock widget. 1212 </para> 1213 </sect1> 1214 1215 <sect1 id="curvesegments"> 1216 <title>Curve Segments</title> 1217 <para> 1218 Curve segment for datapicker can be created over image by switching mode to <guimenuitem>Select Curve Segments</guimenuitem> in the context menu of 1219 datapicker. A segment is a selectable object over image which can be selected by mouse right click over it. 1220 </para> 1221 <para> 1222 Segments are created by processing of image on the basis range of colour attributes in order to automatically 1223 trace curves. To improve results these range and types of colour attributes can be changed in the "edit" 1224 section of dock-widget. Dock-widget also provides options to switch among processed image and original image, 1225 and to set the minimum possible length of segments. 1226 </para> 1227 <para> 1228 Once a segment is selected it will create curve points over it with a minimum specified distance among them. 1229 The minimum specified distance among the points can be changed in the dock widget of datapicker. User might have 1230 to select the segments again in order to observe the changes. 1231 </para> 1232 </sect1> 1233 1234 </chapter> 1235 1236 <!-- TODO: 1237 1238 Describe import of ascii-data. Import can be done either by importing the 1239 data to an already available spreadsheet or by adding a "File data source". 1240 The latter is more useful for bigger data sets where you don't need a view on 1241 it. A file data source can be updated on file changes and all the xy-curves 1242 consuming the data from this data source will also be updated. 1243 --> 1244 1245 <chapter id="advanced_topics"> 1246 <title>Advanced Topics</title> 1247 <para> 1248 Here you will find some explanations of advanced topics. 1249 </para> 1250 1251 <sect1 id="topics"> 1252 <title>Topics</title> 1253 <sect2 id="errorbar"> 1254 <title>Error bars</title> 1255 <para>If you want to plot data with error bars just import your data with the <link linkend="importdialog">import dialog</link> into your project. Then use the <guilabel>Error bars</guilabel> tab of <link linkend="properties-explorer">the curve properties</link> to select <guilabel>Error type</guilabel>, choose the error column from the <guilabel>Data, +-</guilabel> list. Format of the error bars can be defined using the <guilabel>Format:</guilabel> pane.</para> 1256 </sect2> 1257 1258 <sect2 id="texlabel"> 1259 <title>TeX label</title> 1260 <para>For using TeX label you just have to activate the switch button <guiicon>TeX</guiicon> in the <guilabel>Title</guilabel> tab. With that every text you enter in the text box is rendered by TeX and plotted accordingly. Since this conversion takes some time you may see a certain delay when redrawing the plot.</para> 1261 </sect2> 1262 1263 </sect1> 1264 </chapter> 1265 1266 1267 <!-- TODO: 1268 1269 A short tutorial for the basic workflow (create new project, import data, 1270 create worksheet, create plots and layout them, add curves, select columns as 1271 data sources for the curves, add legends, export everything to pdf) would also help to become familiar with the software more quickly. 1272 --> 1273 1274 <chapter id="tutorials"> 1275 <title>Short Tutorials</title> 1276 <sect1 id="sineplot"> 1277 <title>Building a sine graph with &LabPlot;</title> 1278 <para> 1279 In this chapter you will find explanations on how to build a simple plot for a curve in the Cartesian coordinates from a mathematical equation. 1280 </para> 1281 <screenshot> 1282 <screeninfo>&LabPlot; window after the first start</screeninfo> 1283 <mediaobject> 1284 <imageobject> 1285 <imagedata fileref="tutorial-xy-function1.png" format="PNG" /> 1286 </imageobject> 1287 <textobject> 1288 <phrase>&LabPlot; window after the first start</phrase> 1289 </textobject> 1290 </mediaobject> 1291 </screenshot> 1292 <procedure> 1293 <step> 1294 <para> 1295 Click on the <guibutton>New</guibutton> button or press <keycombo>&Ctrl;<keycap>N</keycap></keycombo> on the keyboard. 1296 </para> 1297 <screenshot> 1298 <screeninfo>New &LabPlot; project</screeninfo> 1299 <mediaobject> 1300 <imageobject> 1301 <imagedata fileref="tutorial-xy-function2.png" format="PNG" /> 1302 </imageobject> 1303 <textobject> 1304 <phrase>New &LabPlot; project</phrase> 1305 </textobject> 1306 </mediaobject> 1307 </screenshot> 1308 </step> 1309 <step> 1310 <para> 1311 Click on the <guilabel>Project</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guimenuitem>Worksheet</guimenuitem></menuchoice> or press <keycombo>&Alt;<keycap>X</keycap></keycombo> on the keyboard. 1312 </para> 1313 <screenshot> 1314 <screeninfo>Adding new &LabPlot; worksheet</screeninfo> 1315 <mediaobject> 1316 <imageobject> 1317 <imagedata fileref="tutorial-xy-function3.png" format="PNG" /> 1318 </imageobject> 1319 <textobject> 1320 <phrase>Adding new &LabPlot; worksheet</phrase> 1321 </textobject> 1322 </mediaobject> 1323 </screenshot> 1324 </step> 1325 <step> 1326 <para> 1327 Click on the <guilabel>Worksheet</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guisubmenu>xy-plot</guisubmenu><guimenuitem>two axes, centered</guimenuitem></menuchoice>. 1328 </para> 1329 <screenshot> 1330 <screeninfo>Adding axes to the plot</screeninfo> 1331 <mediaobject> 1332 <imageobject> 1333 <imagedata fileref="tutorial-xy-function4.png" format="PNG" /> 1334 </imageobject> 1335 <textobject> 1336 <phrase>Adding axes to the plot</phrase> 1337 </textobject> 1338 </mediaobject> 1339 </screenshot> 1340 </step> 1341 <step> 1342 <para> 1343 Click on the <guilabel>xy-plot</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guimenuitem>xy-curve from a mathematical equation</guimenuitem></menuchoice>. 1344 </para> 1345 <screenshot> 1346 <screeninfo>Adding new curve</screeninfo> 1347 <mediaobject> 1348 <imageobject> 1349 <imagedata fileref="tutorial-xy-function5.png" format="PNG" /> 1350 </imageobject> 1351 <textobject> 1352 <phrase>Adding new curve</phrase> 1353 </textobject> 1354 </mediaobject> 1355 </screenshot> 1356 </step> 1357 <step> 1358 <para> 1359 Use the <guilabel>xy-equation-curve properties</guilabel> pane on the right to enter <userinput>sin(x)</userinput> into the <guilabel>y=f(x)</guilabel> field (for the list of available functions please see <xref linkend="parser"/>), <userinput>-6</userinput> into the <guilabel>x, min</guilabel> field, <userinput>6</userinput> into the <guilabel>x, max</guilabel> field and click on the <guibutton>Recalculate</guibutton> button to see the result. 1360 </para> 1361 <screenshot> 1362 <screeninfo>The default curve plot</screeninfo> 1363 <mediaobject> 1364 <imageobject> 1365 <imagedata fileref="tutorial-xy-function6.png" format="PNG" /> 1366 </imageobject> 1367 <textobject> 1368 <phrase>The default curve plot</phrase> 1369 </textobject> 1370 </mediaobject> 1371 </screenshot> 1372 <note> 1373 <para> 1374 &LabPlot; highlights unknown syntax in the <guilabel>y=f(x)</guilabel> field. This is useful to control the correctness of the input. 1375 </para> 1376 </note> 1377 <important> 1378 <para> 1379 The list of the known functions can be found in <link linkend="parser">corresponding section of this manual</link>. 1380 </para> 1381 </important> 1382 </step> 1383 <step> 1384 <para> 1385 Switch to the <guilabel>Line</guilabel> tab on the <guilabel>xy-equation-curve properties</guilabel> pane and choose <guimenuitem>cubic spline (natural)</guimenuitem> from the <guilabel>Type</guilabel> drop down box. 1386 </para> 1387 <screenshot> 1388 <screeninfo>Choosing the line type</screeninfo> 1389 <mediaobject> 1390 <imageobject> 1391 <imagedata fileref="tutorial-xy-function7.png" format="PNG" /> 1392 </imageobject> 1393 <textobject> 1394 <phrase>Adding the line type</phrase> 1395 </textobject> 1396 </mediaobject> 1397 </screenshot> 1398 </step> 1399 <step> 1400 <para> 1401 Switch to the <guilabel>Symbol</guilabel> tab on the <guilabel>xy-equation-curve properties</guilabel> pane and choose <guimenuitem>none</guimenuitem> from the <guilabel>Style</guilabel> drop down list. 1402 </para> 1403 <screenshot> 1404 <screeninfo>Removing symbols from the plot</screeninfo> 1405 <mediaobject> 1406 <imageobject> 1407 <imagedata fileref="tutorial-xy-function8.png" format="PNG" /> 1408 </imageobject> 1409 <textobject> 1410 <phrase>Removing symbols from the plot</phrase> 1411 </textobject> 1412 </mediaobject> 1413 </screenshot> 1414 </step> 1415 <step> 1416 <para> 1417 Click on the <guilabel>xy-plot</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guimenuitem>legend</guimenuitem></menuchoice>. Switch to the <guilabel>Title</guilabel> tab on the <guilabel>Cartesian plot legend properties</guilabel> pane and enter <userinput>Graph of sine</userinput> into the <guilabel>Text</guilabel> field. 1418 </para> 1419 <screenshot> 1420 <screeninfo>Changing the legend title</screeninfo> 1421 <mediaobject> 1422 <imageobject> 1423 <imagedata fileref="tutorial-xy-function9.png" format="PNG" /> 1424 </imageobject> 1425 <textobject> 1426 <phrase>Changing the legend title</phrase> 1427 </textobject> 1428 </mediaobject> 1429 </screenshot> 1430 </step> 1431 <step> 1432 <para> 1433 Choose <menuchoice><guimenu>File</guimenu><guimenuitem>Export</guimenuitem></menuchoice> from the main menu. Select the place and the format to save the plot. 1434 </para> 1435 <screenshot> 1436 <screeninfo>Exporting the plot</screeninfo> 1437 <mediaobject> 1438 <imageobject> 1439 <imagedata fileref="tutorial-xy-function10.png" format="PNG" /> 1440 </imageobject> 1441 <textobject> 1442 <phrase>Exporting the plot</phrase> 1443 </textobject> 1444 </mediaobject> 1445 </screenshot> 1446 </step> 1447 </procedure> 1448 </sect1> 1449 1450 <sect1 id="spreadsheetplot"> 1451 <title>Building a graph from spreadsheet data with &LabPlot;</title> 1452 <para> 1453 In this chapter you will find explanations on how to build a simple plot from spreadsheet data. 1454 </para> 1455 <screenshot> 1456 <screeninfo>&LabPlot; window after the first start</screeninfo> 1457 <mediaobject> 1458 <imageobject> 1459 <imagedata fileref="tutorial-xy-function1.png" format="PNG" /> 1460 </imageobject> 1461 <textobject> 1462 <phrase>&LabPlot; window after the first start</phrase> 1463 </textobject> 1464 </mediaobject> 1465 </screenshot> 1466 <procedure> 1467 <step> 1468 <para> 1469 Click on the <guibutton>New</guibutton> button or press <keycombo>&Ctrl;<keycap>N</keycap></keycombo> on the keyboard. 1470 </para> 1471 <screenshot> 1472 <screeninfo>New &LabPlot; project</screeninfo> 1473 <mediaobject> 1474 <imageobject> 1475 <imagedata fileref="tutorial-xy-function2.png" format="PNG" /> 1476 </imageobject> 1477 <textobject> 1478 <phrase>New &LabPlot; project</phrase> 1479 </textobject> 1480 </mediaobject> 1481 </screenshot> 1482 </step> 1483 <step> 1484 <para> 1485 Click on the <guilabel>Project</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guimenuitem>Spreadsheet</guimenuitem></menuchoice> or press <keycombo>&Ctrl;<keycap>=</keycap></keycombo> on the keyboard. 1486 </para> 1487 <screenshot> 1488 <screeninfo>Adding new &LabPlot; spreadsheet</screeninfo> 1489 <mediaobject> 1490 <imageobject> 1491 <imagedata fileref="tutorial-spreadsheet1.png" format="PNG" /> 1492 </imageobject> 1493 <textobject> 1494 <phrase>Adding new &LabPlot; spreadsheet</phrase> 1495 </textobject> 1496 </mediaobject> 1497 </screenshot> 1498 </step> 1499 <step> 1500 <para> 1501 Click on the header of the first column of the spreadsheet with the &LMB; then click on any of its cells with &RMB; and choose <menuchoice><guimenu>Selection</guimenu><guisubmenu>Fill Selection with</guisubmenu><guimenuitem>Row Numbers</guimenuitem></menuchoice>. 1502 </para> 1503 <screenshot> 1504 <screeninfo>Filling the first column of the spreadsheet</screeninfo> 1505 <mediaobject> 1506 <imageobject> 1507 <imagedata fileref="tutorial-spreadsheet2.png" format="PNG" /> 1508 </imageobject> 1509 <textobject> 1510 <phrase>Filling the first column of the spreadsheet</phrase> 1511 </textobject> 1512 </mediaobject> 1513 </screenshot> 1514 <para> 1515 Select <guimenuitem>Automatic (g)</guimenuitem> from the <guilabel>Format</guilabel> drop down box on the <guilabel>Column properties</guilabel> right dock to enhance data presentation for the first column. 1516 </para> 1517 </step> 1518 <step> 1519 <para> 1520 Click on the header of the second column of the spreadsheet with the &RMB; and choose <menuchoice><guimenu>Generate Data</guimenu><guimenuitem>Random Values</guimenuitem></menuchoice>. 1521 </para> 1522 <screenshot> 1523 <screeninfo>Filling the second column of the spreadsheet</screeninfo> 1524 <mediaobject> 1525 <imageobject> 1526 <imagedata fileref="tutorial-spreadsheet3.png" format="PNG" /> 1527 </imageobject> 1528 <textobject> 1529 <phrase>Filling the second column of the spreadsheet</phrase> 1530 </textobject> 1531 </mediaobject> 1532 </screenshot> 1533 </step> 1534 <step> 1535 <para> 1536 Click on the <guilabel>Project</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guimenuitem>Worksheet</guimenuitem></menuchoice> or press <keycombo>&Alt;<keycap>X</keycap></keycombo> on the keyboard. 1537 </para> 1538 <screenshot> 1539 <screeninfo>Adding new &LabPlot; worksheet</screeninfo> 1540 <mediaobject> 1541 <imageobject> 1542 <imagedata fileref="tutorial-spreadsheet4.png" format="PNG" /> 1543 </imageobject> 1544 <textobject> 1545 <phrase>Adding new &LabPlot; worksheet</phrase> 1546 </textobject> 1547 </mediaobject> 1548 </screenshot> 1549 </step> 1550 <step> 1551 <para> 1552 Click on the <guilabel>Worksheet</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guisubmenu>xy-plot</guisubmenu><guimenuitem>box plot, four axes</guimenuitem></menuchoice>. 1553 </para> 1554 <screenshot> 1555 <screeninfo>Adding axes to the plot</screeninfo> 1556 <mediaobject> 1557 <imageobject> 1558 <imagedata fileref="tutorial-spreadsheet5.png" format="PNG" /> 1559 </imageobject> 1560 <textobject> 1561 <phrase>Adding axes to the plot</phrase> 1562 </textobject> 1563 </mediaobject> 1564 </screenshot> 1565 </step> 1566 <step> 1567 <para> 1568 Click on the <guilabel>xy-plot</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guimenuitem>xy-curve</guimenuitem></menuchoice>. 1569 </para> 1570 <screenshot> 1571 <screeninfo>Adding new curve</screeninfo> 1572 <mediaobject> 1573 <imageobject> 1574 <imagedata fileref="tutorial-spreadsheet6.png" format="PNG" /> 1575 </imageobject> 1576 <textobject> 1577 <phrase>Adding new curve</phrase> 1578 </textobject> 1579 </mediaobject> 1580 </screenshot> 1581 </step> 1582 <step> 1583 <para> 1584 Use the <guilabel>xy-curve properties</guilabel> pane on the right to select <menuchoice><guimenu>Project</guimenu><guisubmenu>Spreadsheet</guisubmenu><guimenuitem>1</guimenuitem></menuchoice> in the <guilabel>x-data</guilabel> field (just click on the item and press &Enter;). Use the same procedure to select <guimenuitem>2</guimenuitem> for the <guilabel>y-data</guilabel> field. The results will be shown on the worksheet immediately. 1585 </para> 1586 <screenshot> 1587 <screeninfo>The plot for the unsorted data</screeninfo> 1588 <mediaobject> 1589 <imageobject> 1590 <imagedata fileref="tutorial-spreadsheet7.png" format="PNG" /> 1591 </imageobject> 1592 <textobject> 1593 <phrase>The plot for the unsorted data</phrase> 1594 </textobject> 1595 </mediaobject> 1596 </screenshot> 1597 </step> 1598 <step> 1599 <para> 1600 Click on the <guilabel>Spreadsheet</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &LMB; then click on the second column header with the &RMB; and choose <menuchoice><guimenu>Sort</guimenu><guimenuitem>Ascending</guimenuitem></menuchoice>. 1601 </para> 1602 <screenshot> 1603 <screeninfo>Sorting the second column of the spreadsheet</screeninfo> 1604 <mediaobject> 1605 <imageobject> 1606 <imagedata fileref="tutorial-spreadsheet8.png" format="PNG" /> 1607 </imageobject> 1608 <textobject> 1609 <phrase>Sorting the second column of the spreadsheet</phrase> 1610 </textobject> 1611 </mediaobject> 1612 </screenshot> 1613 </step> 1614 <step> 1615 <para> 1616 Click on the <guilabel>Worksheet</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &LMB; to see the results. 1617 </para> 1618 <screenshot> 1619 <screeninfo>The plot for the sorted data</screeninfo> 1620 <mediaobject> 1621 <imageobject> 1622 <imagedata fileref="tutorial-spreadsheet9.png" format="PNG" /> 1623 </imageobject> 1624 <textobject> 1625 <phrase>The plot for the sorted data</phrase> 1626 </textobject> 1627 </mediaobject> 1628 </screenshot> 1629 </step> 1630 </procedure> 1631 </sect1> 1632 </chapter> 1633 1634 <chapter id="examples"> 1635 <title>Examples</title> 1636 <sect1 id="example-2d-plotting"> 1637 <title>2D Plotting</title> 1638 <para>Coming soon ... 1639 </para> 1640 </sect1> 1641 <sect1 id="example-signal"> 1642 <title>Signal processing</title> 1643 <para> 1644 </para> 1645 <variablelist> 1646 <varlistentry> 1647 <term>Fourier filter</term> 1648 <listitem> 1649 <para>A time signal containing Morse code is Fourier transformed to frequency space to see the main component. By applying a narrow band pass filter the Morse signal is extracted and a nice ‘SOS’ can be seen: 1650 </para> 1651 1652 <screenshot> 1653 <mediaobject><imageobject><imagedata fileref="example-fourier_filter-1024x532.png"/> 1654 </imageobject></mediaobject> 1655 </screenshot> 1656 1657 </listitem> 1658 </varlistentry> 1659 </variablelist> 1660 </sect1> 1661 <sect1 id="example-computing"> 1662 <title>Computing</title> 1663 <para> 1664 </para> 1665 <variablelist> 1666 <varlistentry> 1667 <term>Maxima</term> 1668 <listitem> 1669 <para>Maxima session showing the chaotic dynamics of the Duffing oscillator. 1670 The differential equation of the forced oscillator are solved with Maxima. 1671 Plots of the trajectory, the phase space of the oscillator and the corresponding Poincaré map are done with LabPlot: 1672 </para> 1673 1674 <screenshot> 1675 <mediaobject><imageobject><imagedata fileref="example-maxima_2-1024x532.png"/> 1676 </imageobject></mediaobject> 1677 </screenshot> 1678 1679 </listitem> 1680 </varlistentry> 1681 <varlistentry> 1682 <term>Python</term> 1683 <listitem> 1684 <para>Python session illustrating the effect of Blackman windowing on the Fourier transform: 1685 </para> 1686 1687 <screenshot> 1688 <mediaobject><imageobject><imagedata fileref="example-FFT_python-1024x532.png"/> 1689 </imageobject></mediaobject> 1690 </screenshot> 1691 1692 </listitem> 1693 </varlistentry> 1694 </variablelist> 1695 </sect1> 1696 <sect1 id="example-import-export"> 1697 <title>Import/Export</title> 1698 <para>Coming soon ... 1699 </para> 1700 </sect1> 1701 <sect1 id="example-tools"> 1702 <title>Tools</title> 1703 <para>Coming soon ... 1704 </para> 1705 </sect1> 1706 1707 </chapter> 1708 1709 1710 <chapter id="parser"> 1711 <title>Parser functions</title> 1712 <para> 1713 The &LabPlot; parser allows you to use following functions: 1714 </para> 1715 1716 <sect1 id="parser-standard"> 1717 <title>Standard functions</title> 1718 1719 <informaltable pgwide="1"><tgroup cols="2"> 1720 1721 <thead><row><entry>Function</entry><entry>Description</entry></row></thead> 1722 1723 <tbody> 1724 1725 <row><entry>cbrt(x)</entry><entry><action>Cube root</action></entry></row> 1726 <row><entry>ceil(x)</entry><entry><action>Truncate upward to integer</action></entry></row> 1727 <row><entry>fabs(x)</entry><entry><action>Absolute value</action></entry></row> 1728 <row><entry>gamma(x)</entry><entry><action>Gamma function</action></entry></row> 1729 <row><entry>ldexp(x,y)</entry><entry><action>x * 2<superscript>y</superscript></action></entry></row> 1730 <row><entry>ln(x)</entry><entry><action>Logarithm, base e</action></entry></row> 1731 <row><entry>log(x)</entry><entry><action>Logarithm, base e</action></entry></row> 1732 <row><entry>log1p(x)</entry><entry><action>log(1+x)</action></entry></row> 1733 <row><entry>log10(x)</entry><entry><action>Logarithm, base 10</action></entry></row> 1734 <row><entry>logb(x)</entry><entry><action>Radix-independent exponent</action></entry></row> 1735 <row><entry>pow(x,n)</entry><entry><action>power function x<superscript>n</superscript></action></entry></row> 1736 <row><entry>powint(x,n)</entry><entry><action>integer power function x<superscript>n</superscript></action></entry></row> 1737 <row><entry>pow2(x)</entry><entry><action>power function x<superscript>2</superscript></action></entry></row> 1738 <row><entry>pow3(x)</entry><entry><action>power function x<superscript>3</superscript></action></entry></row> 1739 <row><entry>pow4(x)</entry><entry><action>power function x<superscript>4</superscript></action></entry></row> 1740 <row><entry>pow5(x)</entry><entry><action>power function x<superscript>5</superscript></action></entry></row> 1741 <row><entry>pow6(x)</entry><entry><action>power function x<superscript>6</superscript></action></entry></row> 1742 <row><entry>pow7(x)</entry><entry><action>power function x<superscript>7</superscript></action></entry></row> 1743 <row><entry>pow8(x)</entry><entry><action>power function x<superscript>8</superscript></action></entry></row> 1744 <row><entry>pow9(x)</entry><entry><action>power function x<superscript>9</superscript></action></entry></row> 1745 <row><entry>rint(x)</entry><entry><action>round to nearest integer</action></entry></row> 1746 <row><entry>round(x)</entry><entry><action>round to nearest integer</action></entry></row> 1747 <row><entry>sqrt(x)</entry><entry><action>Square root</action></entry></row> 1748 <row><entry>tgamma(x)</entry><entry><action>Gamma function</action></entry></row> 1749 <row><entry>trunc(x)</entry><entry><action>Returns the greatest integer less than or equal to x</action></entry></row> 1750 1751 </tbody></tgroup></informaltable> 1752 </sect1> 1753 1754 <sect1 id="parser-trig"> 1755 <title>Trigonometric functions</title> 1756 1757 <informaltable pgwide="1"><tgroup cols="2"> 1758 1759 <thead><row><entry>Function</entry><entry>Description</entry></row></thead> 1760 1761 <tbody> 1762 1763 <row><entry>sin(x)</entry><entry><action>Sine</action></entry></row> 1764 <row><entry>cos(x)</entry><entry><action>Cosine</action></entry></row> 1765 <row><entry>tan(x)</entry><entry><action>Tangent</action></entry></row> 1766 <row><entry>asin(x)</entry><entry><action>Inverse sine</action></entry></row> 1767 <row><entry>acos(x)</entry><entry><action>Inverse cosine</action></entry></row> 1768 <row><entry>atan(x)</entry><entry><action>Inverse tangent</action></entry></row> 1769 <row><entry>atan2(y,x)</entry><entry><action>Inverse tangent function of two variables</action></entry></row> 1770 <row><entry>sinh(x)</entry><entry><action>Hyperbolic sine</action></entry></row> 1771 <row><entry>cosh(x)</entry><entry><action>Hyperbolic cosine</action></entry></row> 1772 <row><entry>tanh(x)</entry><entry><action>Hyperbolic tangent</action></entry></row> 1773 <row><entry>asinh(x)</entry><entry><action>Inverse hyperbolic sine</action></entry></row> 1774 <row><entry>acosh(x)</entry><entry><action>Inverse hyperbolic cosine</action></entry></row> 1775 <row><entry>atanh(x)</entry><entry><action>Inverse hyperbolic tangent</action></entry></row> 1776 <row><entry>sec(x)</entry><entry><action>Secant</action></entry></row> 1777 <row><entry>csc(x)</entry><entry><action>Cosecant</action></entry></row> 1778 <row><entry>cot(x)</entry><entry><action>Cotangent</action></entry></row> 1779 <row><entry>asec(x)</entry><entry><action>Inverse secant</action></entry></row> 1780 <row><entry>acsc(x)</entry><entry><action>Inverse cosecant</action></entry></row> 1781 <row><entry>acot(x)</entry><entry><action>Inverse cotangent</action></entry></row> 1782 <row><entry>sech(x)</entry><entry><action>Hyperbolic secant</action></entry></row> 1783 <row><entry>csch(x)</entry><entry><action>Hyperbolic cosecant</action></entry></row> 1784 <row><entry>coth(x)</entry><entry><action>Hyperbolic cotangent</action></entry></row> 1785 <row><entry>asech(x)</entry><entry><action>Inverse hyperbolic secant</action></entry></row> 1786 <row><entry>acsch(x)</entry><entry><action>Inverse hyperbolic cosecant</action></entry></row> 1787 <row><entry>acoth(x)</entry><entry><action>Inverse hyperbolic cotangent</action></entry></row> 1788 <row><entry>sinc(x)</entry><entry><action>Sinc function sin(π x) / (π x)</action></entry></row> 1789 <row><entry>logsinh(x)</entry><entry><action>log(sinh(x)) for x > 0</action></entry></row> 1790 <row><entry>logcosh(x)</entry><entry><action>log(cosh(x))</action></entry></row> 1791 <row><entry>hypot(x,y)</entry><entry><action>Hypotenuse function √{x<superscript>2</superscript> + y<superscript>2</superscript>}</action></entry></row> 1792 <row><entry>hypot3(x,y,z)</entry><entry><action>√{x<superscript>2</superscript> + y<superscript>2</superscript> + z<superscript>2</superscript>}</action></entry></row> 1793 <row><entry>anglesymm(α)</entry><entry><action>force the angle α to lie in the range (-π,π]</action></entry></row> 1794 <row><entry>anglepos(α)</entry><entry><action>force the angle α to lie in the range (0,2π]</action></entry></row> 1795 1796 </tbody></tgroup></informaltable> 1797 </sect1> 1798 1799 1800 <sect1 id="parser-gsl"> 1801 <title>Special functions</title> 1802 <para> 1803 For more information about the functions see the documentation of GSL. 1804 </para> 1805 <informaltable pgwide="1"><tgroup cols="2"> 1806 1807 <thead><row><entry>Function</entry><entry>Description</entry></row></thead> 1808 1809 <tbody> 1810 1811 <row><entry>Ai(x)</entry><entry><action>Airy function Ai(x)</action></entry></row> 1812 <row><entry>Bi(x)</entry><entry><action>Airy function Bi(x)</action></entry></row> 1813 <row><entry>Ais(x)</entry><entry><action>scaled version of the Airy function S<subscript>Ai</subscript>(x)</action></entry></row> 1814 <row><entry>Bis(x)</entry><entry><action>scaled version of the Airy function S<subscript>Bi</subscript>(x)</action></entry></row> 1815 <row><entry>Aid(x)</entry><entry><action>Airy function derivative Ai'(x)</action></entry></row> 1816 <row><entry>Bid(x)</entry><entry><action>Airy function derivative Bi'(x)</action></entry></row> 1817 <row><entry>Aids(x)</entry><entry><action>derivative of the scaled Airy function S<subscript>Ai</subscript>(x)</action></entry></row> 1818 <row><entry>Bids(x)</entry><entry><action>derivative of the scaled Airy function S<subscript>Bi</subscript>(x)</action></entry></row> 1819 <row><entry>Ai0(s)</entry><entry><action>s-th zero of the Airy function Ai(x)</action></entry></row> 1820 <row><entry>Bi0(s)</entry><entry><action>s-th zero of the Airy function Bi(x)</action></entry></row> 1821 <row><entry>Aid0(s)</entry><entry><action>s-th zero of the Airy function derivative Ai'(x)</action></entry></row> 1822 <row><entry>Bid0(s)</entry><entry><action>s-th zero of the Airy function derivative Bi'(x)</action></entry></row> 1823 <row><entry>J0(x)</entry><entry><action>regular cylindrical Bessel function of zeroth order, J<subscript>0</subscript>(x)</action></entry></row> 1824 <row><entry>J1(x)</entry><entry><action>regular cylindrical Bessel function of first order, J<subscript>1</subscript>(x)</action></entry></row> 1825 <row><entry>Jn(n,x)</entry><entry><action>regular cylindrical Bessel function of order n, J<subscript>n</subscript>(x)</action></entry></row> 1826 <row><entry>Y0(x)</entry><entry><action>irregular cylindrical Bessel function of zeroth order, Y<subscript>0</subscript>(x)</action></entry></row> 1827 <row><entry>Y1(x)</entry><entry><action>irregular cylindrical Bessel function of first order, Y<subscript>1</subscript>(x)</action></entry></row> 1828 <row><entry>Yn(n,x)</entry><entry><action>irregular cylindrical Bessel function of order n, Y<subscript>n</subscript>(x)</action></entry></row> 1829 <row><entry>I0(x)</entry><entry><action>regular modified cylindrical Bessel function of zeroth order, I<subscript>0</subscript>(x)</action></entry></row> 1830 <row><entry>I1(x)</entry><entry><action>regular modified cylindrical Bessel function of first order, I<subscript>1</subscript>(x)</action></entry></row> 1831 <row><entry>In(n,x)</entry><entry><action>regular modified cylindrical Bessel function of order n, I<subscript>n</subscript>(x)</action></entry></row> 1832 <row><entry>I0s(x)</entry><entry><action>scaled regular modified cylindrical Bessel function of zeroth order, exp (-|x|) I<subscript>0</subscript>(x)</action></entry></row> 1833 <row><entry>I1s(x)</entry><entry><action>scaled regular modified cylindrical Bessel function of first order, exp(-|x|) I<subscript>1</subscript>(x)</action></entry></row> 1834 <row><entry>Ins(n,x)</entry><entry><action>scaled regular modified cylindrical Bessel function of order n, exp(-|x|) I<subscript>n</subscript>(x)</action></entry></row> 1835 <row><entry>K0(x)</entry><entry><action>irregular modified cylindrical Bessel function of zeroth order, K<subscript>0</subscript>(x)</action></entry></row> 1836 <row><entry>K1(x)</entry><entry><action>irregular modified cylindrical Bessel function of first order, K<subscript>1</subscript>(x)</action></entry></row> 1837 <row><entry>Kn(n,x)</entry><entry><action>irregular modified cylindrical Bessel function of order n, K<subscript>n</subscript>(x)</action></entry></row> 1838 <row><entry>K0s(x)</entry><entry><action>scaled irregular modified cylindrical Bessel function of zeroth order, exp(x) K<subscript>0</subscript>(x)</action></entry></row> 1839 <row><entry>K1s(x)</entry><entry><action>scaled irregular modified cylindrical Bessel function of first order, exp(x) K<subscript>1</subscript>(x)</action></entry></row> 1840 <row><entry>Kns(n,x)</entry><entry><action>scaled irregular modified cylindrical Bessel function of order n, exp(x) K<subscript>n</subscript>(x)</action></entry></row> 1841 <row><entry>j0(x)</entry><entry><action>regular spherical Bessel function of zeroth order, j<subscript>0</subscript>(x)</action></entry></row> 1842 <row><entry>j1(x)</entry><entry><action>regular spherical Bessel function of first order, j<subscript>1</subscript>(x)</action></entry></row> 1843 <row><entry>j2(x)</entry><entry><action>regular spherical Bessel function of second order, j<subscript>2</subscript>(x)</action></entry></row> 1844 <row><entry>jl(l,x)</entry><entry><action>regular spherical Bessel function of order l, j<subscript>l</subscript>(x)</action></entry></row> 1845 <row><entry>y0(x)</entry><entry><action>irregular spherical Bessel function of zeroth order, y<subscript>0</subscript>(x)</action></entry></row> 1846 <row><entry>y1(x)</entry><entry><action>irregular spherical Bessel function of first order, y<subscript>1</subscript>(x)</action></entry></row> 1847 <row><entry>y2(x)</entry><entry><action>irregular spherical Bessel function of second order, y<subscript>2</subscript>(x)</action></entry></row> 1848 <row><entry>yl(l,x)</entry><entry><action>irregular spherical Bessel function of order l, y<subscript>l</subscript>(x)</action></entry></row> 1849 <row><entry>i0s(x)</entry><entry><action>scaled regular modified spherical Bessel function of zeroth order, exp(-|x|) i<subscript>0</subscript>(x)</action></entry></row> 1850 <row><entry>i1s(x)</entry><entry><action>scaled regular modified spherical Bessel function of first order, exp(-|x|) i<subscript>1</subscript>(x)</action></entry></row> 1851 <row><entry>i2s(x)</entry><entry><action>scaled regular modified spherical Bessel function of second order, exp(-|x|) i<subscript>2</subscript>(x)</action></entry></row> 1852 <row><entry>ils(l,x)</entry><entry><action>scaled regular modified spherical Bessel function of order l, exp(-|x|) i<subscript>l</subscript>(x)</action></entry></row> 1853 <row><entry>k0s(x)</entry><entry><action>scaled irregular modified spherical Bessel function of zeroth order, exp(x) k<subscript>0</subscript>(x)</action></entry></row> 1854 <row><entry>k1s(x)</entry><entry><action>scaled irregular modified spherical Bessel function of first order, exp(x) k<subscript>1</subscript>(x)</action></entry></row> 1855 <row><entry>k2s(x)</entry><entry><action>scaled irregular modified spherical Bessel function of second order, exp(x) k<subscript>2</subscript>(x)</action></entry></row> 1856 <row><entry>kls(l,x)</entry><entry><action>scaled irregular modified spherical Bessel function of order l, exp(x) k<subscript>l</subscript>(x)</action></entry></row> 1857 <row><entry>Jnu(ν,x)</entry><entry><action>regular cylindrical Bessel function of fractional order ν, J<subscript>ν</subscript>(x)</action></entry></row> 1858 <row><entry>Ynu(ν,x)</entry><entry><action>irregular cylindrical Bessel function of fractional order ν, Y<subscript>ν</subscript>(x)</action></entry></row> 1859 <row><entry>Inu(ν,x)</entry><entry><action>regular modified Bessel function of fractional order ν, I<subscript>ν</subscript>(x)</action></entry></row> 1860 <row><entry>Inus(ν,x)</entry><entry><action>scaled regular modified Bessel function of fractional order ν, exp(-|x|) I<subscript>ν</subscript>(x)</action></entry></row> 1861 <row><entry>Knu(ν,x)</entry><entry><action>irregular modified Bessel function of fractional order ν, K<subscript>ν</subscript>(x)</action></entry></row> 1862 <row><entry>lnKnu(ν,x)</entry><entry><action>logarithm of the irregular modified Bessel function of fractional order ν,ln(K<subscript>ν</subscript>(x))</action></entry></row> 1863 <row><entry>Knus(ν,x)</entry><entry><action>scaled irregular modified Bessel function of fractional order ν, exp(|x|) K<subscript>ν</subscript>(x)</action></entry></row> 1864 <row><entry>J0_0(s)</entry><entry><action>s-th positive zero of the Bessel function J<subscript>0</subscript>(x)</action></entry></row> 1865 <row><entry>J1_0(s)</entry><entry><action>s-th positive zero of the Bessel function J<subscript>1</subscript>(x)</action></entry></row> 1866 <row><entry>Jnu_0(nu,s)</entry><entry><action>s-th positive zero of the Bessel function J<subscript>ν</subscript>(x)</action></entry></row> 1867 <row><entry>clausen(x)</entry><entry><action>Clausen integral Cl<subscript>2</subscript>(x)</action></entry></row> 1868 <row><entry>hydrogenicR_1(Z,R)</entry><entry><action>lowest-order normalized hydrogenic bound state radial wavefunction R<subscript>1</subscript> := 2Z √Z exp(-Z r)</action></entry></row> 1869 <row><entry>hydrogenicR(n,l,Z,R)</entry><entry><action>n-th normalized hydrogenic bound state radial wavefunction</action></entry></row> 1870 <row><entry>dawson(x)</entry><entry><action>Dawson's integral</action></entry></row> 1871 <row><entry>D1(x)</entry><entry><action>first-order Debye function D<subscript>1</subscript>(x) = (1/x) ∫<subscript>0</subscript><superscript>x</superscript>(t/(e<superscript>t</superscript> - 1)) dt</action></entry></row> 1872 <row><entry>D2(x)</entry><entry><action>second-order Debye function D<subscript>2</subscript>(x) = (2/x<superscript>2</superscript>) ∫<subscript>0</subscript><superscript>x</superscript> (t<superscript>2</superscript>/(e<superscript>t</superscript> - 1)) dt</action></entry></row> 1873 <row><entry>D3(x)</entry><entry><action>third-order Debye function D<subscript>3</subscript>(x) = (3/x<superscript>3</superscript>) ∫<subscript>0</subscript><superscript>x</superscript> (t<superscript>3</superscript>/(e<superscript>t</superscript> - 1)) dt</action></entry></row> 1874 <row><entry>D4(x)</entry><entry><action>fourth-order Debye function D<subscript>4</subscript>(x) = (4/x<superscript>4</superscript>) ∫<subscript>0</subscript><superscript>x</superscript> (t<superscript>4</superscript>/(e<superscript>t</superscript> - 1)) dt</action></entry></row> 1875 <row><entry>D5(x)</entry><entry><action>fifth-order Debye function D<subscript>5</subscript>(x) = (5/x<superscript>5</superscript>) ∫<subscript>0</subscript><superscript>x</superscript> (t<superscript>5</superscript>/(e<superscript>t</superscript> - 1)) dt</action></entry></row> 1876 <row><entry>D6(x)</entry><entry><action>sixth-order Debye function D<subscript>6</subscript>(x) = (6/x<superscript>6</superscript>) ∫<subscript>0</subscript><superscript>x</superscript> (t<superscript>6</superscript>/(e<superscript>t</superscript> - 1)) dt</action></entry></row> 1877 <row><entry>Li2(x)</entry><entry><action>dilogarithm</action></entry></row> 1878 <row><entry>Kc(k)</entry><entry><action>complete elliptic integral K(k)</action></entry></row> 1879 <row><entry>Ec(k)</entry><entry><action>complete elliptic integral E(k)</action></entry></row> 1880 <row><entry>F(phi,k)</entry><entry><action>incomplete elliptic integral F(phi,k)</action></entry></row> 1881 <row><entry>E(phi,k)</entry><entry><action>incomplete elliptic integral E(phi,k)</action></entry></row> 1882 <row><entry>P(phi,k,n)</entry><entry><action>incomplete elliptic integral P(phi,k,n)</action></entry></row> 1883 <row><entry>D(phi,k,n)</entry><entry><action>incomplete elliptic integral D(phi,k,n)</action></entry></row> 1884 <row><entry>RC(x,y)</entry><entry><action>incomplete elliptic integral RC(x,y)</action></entry></row> 1885 <row><entry>RD(x,y,z)</entry><entry><action>incomplete elliptic integral RD(x,y,z)</action></entry></row> 1886 <row><entry>RF(x,y,z)</entry><entry><action>incomplete elliptic integral RF(x,y,z)</action></entry></row> 1887 <row><entry>RJ(x,y,z)</entry><entry><action>incomplete elliptic integral RJ(x,y,z,p)</action></entry></row> 1888 <row><entry>erf(x)</entry><entry><action>error function erf(x) = 2/√π ∫<subscript>0</subscript><superscript>x</superscript> exp(-t<superscript>2</superscript>) dt</action></entry></row> 1889 <row><entry>erfc(x)</entry><entry><action>complementary error function erfc(x) = 1 - erf(x) = 2/√π ∫<subscript>x</subscript><superscript>∞</superscript> exp(-t<superscript>2</superscript>) dt</action></entry></row> 1890 <row><entry>log_erfc(x)</entry><entry><action>logarithm of the complementary error function log(erfc(x))</action></entry></row> 1891 <row><entry>erf_Z(x)</entry><entry><action>Gaussian probability function Z(x) = (1/(2π)) exp(-x<superscript>2</superscript>/2)</action></entry></row> 1892 <row><entry>erf_Q(x)</entry><entry><action>upper tail of the Gaussian probability function Q(x) = (1/(2π)) ∫<subscript>x</subscript><superscript>∞</superscript> exp(-t<superscript>2</superscript>/2) dt</action></entry></row> 1893 <row><entry>hazard(x)</entry><entry><action>hazard function for the normal distribution</action></entry></row> 1894 <row><entry>exp(x)</entry><entry><action>Exponential, base e</action></entry></row> 1895 <row><entry>expm1(x)</entry><entry><action>exp(x)-1</action></entry></row> 1896 <row><entry>exp_mult(x,y)</entry><entry><action>exponentiate x and multiply by the factor y to return the product y exp(x)</action></entry></row> 1897 <row><entry>exprel(x)</entry><entry><action>(exp(x)-1)/x using an algorithm that is accurate for small x</action></entry></row> 1898 <row><entry>exprel2(x)</entry><entry><action>2(exp(x)-1-x)/x<superscript>2</superscript> using an algorithm that is accurate for small x</action></entry></row> 1899 <row><entry>expreln(n,x)</entry><entry><action>n-relative exponential, which is the n-th generalization of the functions `exprel'</action></entry></row> 1900 <row><entry>E1(x)</entry><entry><action>exponential integral E<subscript>1</subscript>(x), E<subscript>1</subscript>(x) := Re ∫<subscript>1</subscript><superscript>∞</superscript> exp(-xt)/t dt</action></entry></row> 1901 <row><entry>E2(x)</entry><entry><action>second-order exponential integral E<subscript>2</subscript>(x), E<subscript>2</subscript>(x) := Re ∫<subscript>1</subscript><superscript>∞</superscript> exp(-xt)/t<superscript>2</superscript> dt</action></entry></row> 1902 <row><entry>En(x)</entry><entry><action>exponential integral E_n(x) of order n, E<subscript>n</subscript>(x) := Re ∫<subscript>1</subscript><superscript>∞</superscript> exp(-xt)/t<superscript>n</superscript> dt)</action></entry></row> 1903 <row><entry>Ei(x)</entry><entry><action>exponential integral E_i(x), Ei(x) := PV(∫<subscript>-x</subscript><superscript>∞</superscript> exp(-t)/t dt)</action></entry></row> 1904 <row><entry>shi(x)</entry><entry><action>Shi(x) = ∫<subscript>0</subscript><superscript>x</superscript> sinh(t)/t dt</action></entry></row> 1905 <row><entry>chi(x)</entry><entry><action>integral Chi(x) := Re[ γ<subscript>E</subscript> + log(x) + ∫<subscript>0</subscript><superscript>x</superscript> (cosh[t]-1)/t dt ]</action></entry></row> 1906 <row><entry>Ei3(x)</entry><entry><action>exponential integral Ei<subscript>3</subscript>(x) = ∫<subscript>0</subscript><superscript>x</superscript> exp(-t<superscript>3</superscript>) dt for x >= 0</action></entry></row> 1907 <row><entry>si(x)</entry><entry><action>Sine integral Si(x) = ∫<subscript>0</subscript><superscript>x</superscript> sin(t)/t dt</action></entry></row> 1908 <row><entry>ci(x)</entry><entry><action>Cosine integral Ci(x) = -∫<subscript>x</subscript><superscript>∞</superscript> cos(t)/t dt for x > 0</action></entry></row> 1909 <row><entry>atanint(x)</entry><entry><action>Arctangent integral AtanInt(x) = ∫<subscript>0</subscript><superscript>x</superscript> arctan(t)/t dt</action></entry></row> 1910 <row><entry>Fm1(x)</entry><entry><action>complete Fermi-Dirac integral with an index of -1, F<subscript>-1</subscript>(x) = e<superscript>x</superscript> / (1 + e<superscript>x</superscript>)</action></entry></row> 1911 <row><entry>F0(x)</entry><entry><action>complete Fermi-Dirac integral with an index of 0, F<subscript>0</subscript>(x) = ln(1 + e<superscript>x</superscript>)</action></entry></row> 1912 <row><entry>F1(x)</entry><entry><action>complete Fermi-Dirac integral with an index of 1, F<subscript>1</subscript>(x) = ∫<subscript>0</subscript><superscript>∞</superscript> (t /(exp(t-x)+1)) dt</action></entry></row> 1913 <row><entry>F2(x)</entry><entry><action>complete Fermi-Dirac integral with an index of 2, F<subscript>2</subscript>(x) = (1/2) ∫<subscript>0</subscript><superscript>∞</superscript> (t<superscript>2</superscript> /(exp(t-x)+1)) dt</action></entry></row> 1914 <row><entry>Fj(j,x)</entry><entry><action>complete Fermi-Dirac integral with an index of j, F<subscript>j</subscript>(x) = (1/Γ(j+1)) ∫<subscript>0</subscript><superscript>∞</superscript> (t<superscript>j</superscript> /(exp(t-x)+1)) dt</action></entry></row> 1915 <row><entry>Fmhalf(x)</entry><entry><action>complete Fermi-Dirac integral F<subscript>-1/2</subscript>(x)</action></entry></row> 1916 <row><entry>Fhalf(x)</entry><entry><action>complete Fermi-Dirac integral F<subscript>1/2</subscript>(x)</action></entry></row> 1917 <row><entry>F3half(x)</entry><entry><action>complete Fermi-Dirac integral F<subscript>3/2</subscript>(x)</action></entry></row> 1918 <row><entry>Finc0(x,b)</entry><entry><action>incomplete Fermi-Dirac integral with an index of zero, F<subscript>0</subscript>(x,b) = ln(1 + e<superscript>b-x</superscript>) - (b-x)</action></entry></row> 1919 <row><entry>lngamma(x)</entry><entry><action>logarithm of the Gamma function</action></entry></row> 1920 <row><entry>gammastar(x)</entry><entry><action>regulated Gamma Function Γ<superscript>*</superscript>(x) for x > 0</action></entry></row> 1921 <row><entry>gammainv(x)</entry><entry><action>reciprocal of the gamma function, 1/Γ(x) using the real Lanczos method.</action></entry></row> 1922 <row><entry>fact(n)</entry><entry><action>factorial n!</action></entry></row> 1923 <row><entry>doublefact(n)</entry><entry><action>double factorial n!! = n(n-2)(n-4)...</action></entry></row> 1924 <row><entry>lnfact(n)</entry><entry><action>logarithm of the factorial of n, log(n!)</action></entry></row> 1925 <row><entry>lndoublefact(n)</entry><entry><action>logarithm of the double factorial log(n!!)</action></entry></row> 1926 <row><entry>choose(n,m)</entry><entry><action>combinatorial factor `n choose m' = n!/(m!(n-m)!)</action></entry></row> 1927 <row><entry>lnchoose(n,m)</entry><entry><action>logarithm of `n choose m'</action></entry></row> 1928 <row><entry>taylor(n,x)</entry><entry><action>Taylor coefficient x<superscript>n</superscript> / n! for x >= 0, n >= 0</action></entry></row> 1929 <row><entry>poch(a,x)</entry><entry><action>Pochhammer symbol (a)<subscript>x</subscript> := Γ(a + x)/Γ(x)</action></entry></row> 1930 <row><entry>lnpoch(a,x)</entry><entry><action>logarithm of the Pochhammer symbol (a)<subscript>x</subscript> := Γ(a + x)/Γ(x)</action></entry></row> 1931 <row><entry>pochrel(a,x)</entry><entry><action>relative Pochhammer symbol ((a,x) - 1)/x where (a,x) = (a)<subscript>x</subscript> := Γ(a + x)/Γ(a)</action></entry></row> 1932 <row><entry>gammainc(a,x)</entry><entry><action>incomplete Gamma Function Γ(a,x) = ∫<subscript>x</subscript><superscript>∞</superscript> t<superscript>a-1</superscript> exp(-t) dt for a > 0, x >= 0</action></entry></row> 1933 <row><entry>gammaincQ(a,x)</entry><entry><action>normalized incomplete Gamma Function P(a,x) = 1/Γ(a) ∫<subscript>x</subscript><superscript>∞</superscript> t<superscript>a-1</superscript> exp(-t) dt for a > 0, x >= 0</action></entry></row> 1934 <row><entry>gammaincP(a,x)</entry><entry><action>complementary normalized incomplete Gamma Function P(a,x) = 1/Γ(a) ∫<subscript>0</subscript><superscript>x</superscript> t<superscript>a-1</superscript> exp(-t) dt for a > 0, x >= 0</action></entry></row> 1935 <row><entry>beta(a,b)</entry><entry><action>Beta Function, B(a,b) = Γ(a) Γ(b)/Γ(a+b) for a > 0, b > 0</action></entry></row> 1936 <row><entry>lnbeta(a,b)</entry><entry><action>logarithm of the Beta Function, log(B(a,b)) for a > 0, b > 0</action></entry></row> 1937 <row><entry>betainc(a,b,x)</entry><entry><action>normalize incomplete Beta function B_x(a,b)/B(a,b) for a > 0, b > 0 </action></entry></row> 1938 <row><entry>C1(λ,x)</entry><entry><action>Gegenbauer polynomial C<superscript>λ</superscript><subscript>1</subscript>(x)</action></entry></row> 1939 <row><entry>C2(λ,x)</entry><entry><action>Gegenbauer polynomial C<superscript>λ</superscript><subscript>2</subscript>(x)</action></entry></row> 1940 <row><entry>C3(λ,x)</entry><entry><action>Gegenbauer polynomial C<superscript>λ</superscript><subscript>3</subscript>(x)</action></entry></row> 1941 <row><entry>Cn(n,λ,x)</entry><entry><action>Gegenbauer polynomial C<superscript>λ</superscript><subscript>n</subscript>(x)</action></entry></row> 1942 <row><entry>hyperg_0F1(c,x)</entry><entry><action>hypergeometric function <subscript>0</subscript>F<subscript>1</subscript>(c,x)</action></entry></row> 1943 <row><entry>hyperg_1F1i(m,n,x)</entry><entry><action>confluent hypergeometric function <subscript>1</subscript>F<subscript>1</subscript>(m,n,x) = M(m,n,x) for integer parameters m, n</action></entry></row> 1944 <row><entry>hyperg_1F1(a,b,x)</entry><entry><action>confluent hypergeometric function <subscript>1</subscript>F<subscript>1</subscript>(a,b,x) = M(a,b,x) for general parameters a,b</action></entry></row> 1945 <row><entry>hyperg_Ui(m,n,x)</entry><entry><action>confluent hypergeometric function U(m,n,x) for integer parameters m,n</action></entry></row> 1946 <row><entry>hyperg_U(a,b,x)</entry><entry><action>confluent hypergeometric function U(a,b,x)</action></entry></row> 1947 <row><entry>hyperg_2F1(a,b,c,x)</entry><entry><action>Gauss hypergeometric function <subscript>2</subscript>F<subscript>1</subscript>(a,b,c,x)</action></entry></row> 1948 <row><entry>hyperg_2F1c(a<subscript>R</subscript>,a<subscript>I</subscript>,c,x)</entry><entry><action>Gauss hypergeometric function <subscript>2</subscript>F<subscript>1</subscript>(a<subscript>R</subscript> + i a<subscript>I</subscript>, a<subscript>R</subscript> - i a<subscript>I</subscript>, c, x) with complex parameters</action></entry></row> 1949 <row><entry>hyperg_2F1r(a<subscript>R</subscript>,a<subscript>I</subscript>,c,x)</entry><entry><action>renormalized Gauss hypergeometric function <subscript>2</subscript>F<subscript>1</subscript>(a,b,c,x) / Γ(c)</action></entry></row> 1950 <row><entry>hyperg_2F1cr(a<subscript>R</subscript>,a<subscript>I</subscript>,c,x)</entry><entry><action>renormalized Gauss hypergeometric function <subscript>2</subscript>F<subscript>1</subscript>(a<subscript>R</subscript> + i a<subscript>I</subscript>, a<subscript>R</subscript> - i a<subscript>I</subscript>, c, x) / Γ(c)</action></entry></row> 1951 <row><entry>hyperg_2F0(a,b,x)</entry><entry><action>hypergeometric function <subscript>2</subscript>F<subscript>0</subscript>(a,b,x)</action></entry></row> 1952 <row><entry>L1(a,x)</entry><entry><action>generalized Laguerre polynomials L<superscript>a</superscript><subscript>1</subscript>(x)</action></entry></row> 1953 <row><entry>L2(a,x)</entry><entry><action>generalized Laguerre polynomials L<superscript>a</superscript><subscript>2</subscript>(x)</action></entry></row> 1954 <row><entry>L3(a,x)</entry><entry><action>generalized Laguerre polynomials L<superscript>a</superscript><subscript>3</subscript>(x)</action></entry></row> 1955 <row><entry>W0(x)</entry><entry><action>principal branch of the Lambert W function, W<subscript>0</subscript>(x)</action></entry></row> 1956 <row><entry>Wm1(x)</entry><entry><action>secondary real-valued branch of the Lambert W function, W<subscript>-1</subscript>(x)</action></entry></row> 1957 <row><entry>P1(x)</entry><entry><action>Legendre polynomials P<subscript>1</subscript>(x)</action></entry></row> 1958 <row><entry>P2(x)</entry><entry><action>Legendre polynomials P<subscript>2</subscript>(x)</action></entry></row> 1959 <row><entry>P3(x)</entry><entry><action>Legendre polynomials P<subscript>3</subscript>(x)</action></entry></row> 1960 <row><entry>Pl(l,x)</entry><entry><action>Legendre polynomials P<subscript>l</subscript>(x)</action></entry></row> 1961 <row><entry>Q0(x)</entry><entry><action>Legendre polynomials Q<subscript>0</subscript>(x)</action></entry></row> 1962 <row><entry>Q1(x)</entry><entry><action>Legendre polynomials Q<subscript>1</subscript>(x)</action></entry></row> 1963 <row><entry>Ql(l,x)</entry><entry><action>Legendre polynomials Q<subscript>l</subscript>(x)</action></entry></row> 1964 <row><entry>Plm(l,m,x)</entry><entry><action>associated Legendre polynomial P<subscript>l</subscript><superscript>m</superscript>(x)</action></entry></row> 1965 <row><entry>Pslm(l,m,x)</entry><entry><action>normalized associated Legendre polynomial √{(2l+1)/(4π)} √{(l-m)!/(l+m)!} P<subscript>l</subscript><superscript>m</superscript>(x) suitable for use in spherical harmonics</action></entry></row> 1966 <row><entry>Phalf(λ,x)</entry><entry><action>irregular Spherical Conical Function P<superscript>1/2</superscript><subscript>-1/2 + i λ</subscript>(x) for x > -1</action></entry></row> 1967 <row><entry>Pmhalf(λ,x)</entry><entry><action>regular Spherical Conical Function P<superscript>-1/2</superscript><subscript>-1/2 + i λ</subscript>(x) for x > -1</action></entry></row> 1968 <row><entry>Pc0(λ,x)</entry><entry><action>conical function P<superscript>0</superscript><subscript>-1/2 + i λ</subscript>(x) for x > -1</action></entry></row> 1969 <row><entry>Pc1(λ,x)</entry><entry><action>conical function P<superscript>1</superscript><subscript>-1/2 + i λ</subscript>(x) for x > -1</action></entry></row> 1970 <row><entry>Psr(l,λ,x)</entry><entry><action>Regular Spherical Conical Function P<superscript>-1/2-l</superscript><subscript>-1/2 + i λ</subscript>(x) for x > -1, l >= -1</action></entry></row> 1971 <row><entry>Pcr(l,λ,x)</entry><entry><action>Regular Cylindrical Conical Function P<superscript>-m</superscript><subscript>-1/2 + i λ</subscript>(x) for x > -1, m >= -1</action></entry></row> 1972 <row><entry>H3d0(λ,η)</entry><entry><action>zeroth radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space, L<superscript>H3d</superscript><subscript>0</subscript>(λ,,η) := sin(λ η)/(λ sinh(η)) for η >= 0</action></entry></row> 1973 <row><entry>H3d1(λ,η)</entry><entry><action>zeroth radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space, L<superscript>H3d</superscript><subscript>1</subscript>(λ,η) := 1/√{λ<superscript>2</superscript> + 1} sin(λ η)/(λ sinh(η)) (coth(η) - λ cot(λ η)) for η >= 0</action></entry></row> 1974 <row><entry>H3d(l,λ,η)</entry><entry><action>L'th radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space eta >= 0, l >= 0</action></entry></row> 1975 <row><entry>logabs(x)</entry><entry><action>logarithm of the magnitude of X, log(|x|)</action></entry></row> 1976 <row><entry>logp(x)</entry><entry><action>log(1 + x) for x > -1 using an algorithm that is accurate for small x</action></entry></row> 1977 <row><entry>logm(x)</entry><entry><action>log(1 + x) - x for x > -1 using an algorithm that is accurate for small x</action></entry></row> 1978 <row><entry>psiint(n)</entry><entry><action>digamma function ψ(n) for positive integer n</action></entry></row> 1979 <row><entry>psi(x)</entry><entry><action>digamma function ψ(n) for general x</action></entry></row> 1980 <row><entry>psi1piy(y)</entry><entry><action>real part of the digamma function on the line 1+i y, Re[ψ(1 + i y)]</action></entry></row> 1981 <row><entry>psi1int(n)</entry><entry><action>Trigamma function ψ'(n) for positive integer n</action></entry></row> 1982 <row><entry>psi1(n)</entry><entry><action>Trigamma function ψ'(x) for general x</action></entry></row> 1983 <row><entry>psin(m,x)</entry><entry><action>polygamma function ψ<superscript>(m)</superscript>(x) for m >= 0, x > 0</action></entry></row> 1984 <row><entry>synchrotron1(x)</entry><entry><action>first synchrotron function x ∫<subscript>x</subscript><superscript>∞</superscript> K<subscript>5/3</subscript>(t) dt for x >= 0</action></entry></row> 1985 <row><entry>synchrotron2(x)</entry><entry><action>second synchrotron function x K<subscript>2/3</subscript>(x) for x >= 0</action></entry></row> 1986 <row><entry>J2(x)</entry><entry><action>transport function J(2,x)</action></entry></row> 1987 <row><entry>J3(x)</entry><entry><action>transport function J(3,x)</action></entry></row> 1988 <row><entry>J4(x)</entry><entry><action>transport function J(4,x)</action></entry></row> 1989 <row><entry>J5(x)</entry><entry><action>transport function J(5,x)</action></entry></row> 1990 <row><entry>zetaint(n)</entry><entry><action>Riemann zeta function ζ(n) for integer n</action></entry></row> 1991 <row><entry>zeta(s)</entry><entry><action>Riemann zeta function ζ(s) for arbitrary s</action></entry></row> 1992 <row><entry>zetam1int(n)</entry><entry><action>Riemann ζ function minus 1 for integer n</action></entry></row> 1993 <row><entry>zetam1(s)</entry><entry><action>Riemann ζ function minus 1</action></entry></row> 1994 <row><entry>zetaintm1(s)</entry><entry><action>Riemann ζ function for integer n minus 1</action></entry></row> 1995 <row><entry>hzeta(s,q)</entry><entry><action>Hurwitz zeta function ζ(s,q) for s > 1, q > 0</action></entry></row> 1996 <row><entry>etaint(n)</entry><entry><action>eta function η(n) for integer n</action></entry></row> 1997 <row><entry>eta(s)</entry><entry><action>eta function η(s) for arbitrary s</action></entry></row> 1998 </tbody> 1999 </tgroup> 2000 </informaltable> 2001 </sect1> 2002 2003 <sect1 id="parser-ran-gsl"> 2004 <title>Random number distributions</title> 2005 <para> 2006 For more information about the functions see the documentation of GSL. 2007 </para> 2008 <informaltable pgwide="1"><tgroup cols="2"> 2009 2010 <thead><row><entry>Function</entry><entry>Description</entry></row></thead> 2011 2012 <tbody> 2013 2014 <row><entry>gaussian(x,σ)</entry><entry><action>probability density p(x) for a Gaussian distribution with standard deviation σ</action></entry></row> 2015 <row><entry>ugaussian(x)</entry><entry><action>unit Gaussian distribution. They are equivalent to the functions above with a standard deviation of σ = 1</action></entry></row> 2016 <row><entry>gaussianP(x,σ)</entry><entry><action>cumulative distribution functions P(x) for the Gaussian distribution with standard deviation σ</action></entry></row> 2017 <row><entry>gaussianQ(x,σ)</entry><entry><action>cumulative distribution functions Q(x) for the Gaussian distribution with standard deviation σ</action></entry></row> 2018 <row><entry>gaussianPinv(P,σ)</entry><entry><action>inverse cumulative distribution functions P(x) for the Gaussian distribution with standard deviation σ</action></entry></row> 2019 <row><entry>gaussianQinv(Q,σ)</entry><entry><action>inverse cumulative distribution functions Q(x) for the Gaussian distribution with standard deviation σ</action></entry></row> 2020 <row><entry>ugaussianP(x)</entry><entry><action>cumulative distribution function P(x) for the unit Gaussian distribution</action></entry></row> 2021 <row><entry>ugaussianQ(x)</entry><entry><action>cumulative distribution function Q(x) for the unit Gaussian distribution</action></entry></row> 2022 <row><entry>ugaussianPinv(P)</entry><entry><action>inverse cumulative distribution function P(x) for the unit Gaussian distribution</action></entry></row> 2023 <row><entry>ugaussianQinv(Q)</entry><entry><action>inverse cumulative distribution function Q(x) for the unit Gaussian distribution</action></entry></row> 2024 <row><entry>gaussiantail(x,a,σ)</entry><entry><action>probability density p(x) for a Gaussian tail distribution with standard deviation σ and lower limit a</action></entry></row> 2025 <row><entry>ugaussiantail(x,a)</entry><entry><action>tail of a unit Gaussian distribution. They are equivalent to the functions above with a standard deviation of σ = 1</action></entry></row> 2026 <row><entry>gaussianbi(x,y,σ<subscript>x</subscript>,σ<subscript>y</subscript>,ρ)</entry><entry><action>probability density p(x,y) for a bivariate gaussian distribution 2027 with standard deviations σ<subscript>x</subscript>, σ<subscript>y</subscript> and correlation coefficient ρ</action></entry></row> 2028 <row><entry>exponential(x,μ)</entry><entry><action>probability density p(x) for an exponential distribution with mean μ</action></entry></row> 2029 <row><entry>exponentialP(x,μ)</entry><entry><action>cumulative distribution function P(x) for an exponential distribution with mean μ</action></entry></row> 2030 <row><entry>exponentialQ(x,μ)</entry><entry><action>cumulative distribution function Q(x) for an exponential distribution with mean μ</action></entry></row> 2031 <row><entry>exponentialPinv(P,μ)</entry><entry><action>inverse cumulative distribution function P(x) for an exponential distribution with mean μ</action></entry></row> 2032 <row><entry>exponentialQinv(Q,μ)</entry><entry><action>inverse cumulative distribution function Q(x) for an exponential distribution with mean μ</action></entry></row> 2033 <row><entry>laplace(x,a)</entry><entry><action>probability density p(x) for a Laplace distribution with width a</action></entry></row> 2034 <row><entry>laplaceP(x,a)</entry><entry><action>cumulative distribution function P(x) for a Laplace distribution with width a</action></entry></row> 2035 <row><entry>laplaceQ(x,a)</entry><entry><action>cumulative distribution function Q(x) for a Laplace distribution with width a</action></entry></row> 2036 <row><entry>laplacePinv(P,a)</entry><entry><action>inverse cumulative distribution function P(x) for an Laplace distribution with width a</action></entry></row> 2037 <row><entry>laplaceQinv(Q,a)</entry><entry><action>inverse cumulative distribution function Q(x) for an Laplace distribution with width a</action></entry></row> 2038 <row><entry>exppow(x,a,b)</entry><entry><action>probability density p(x) for an exponential power distribution with scale parameter a and exponent b</action></entry></row> 2039 <row><entry>exppowP(x,a,b)</entry><entry><action>cumulative probability density P(x) for an exponential power distribution with scale parameter a and exponent b</action></entry></row> 2040 <row><entry>exppowQ(x,a,b)</entry><entry><action>cumulative probability density Q(x) for an exponential power distribution with scale parameter a and exponent b</action></entry></row> 2041 <row><entry>cauchy(x,a)</entry><entry><action>probability density p(x) for a Cauchy (Lorentz) distribution with scale parameter a</action></entry></row> 2042 <row><entry>cauchyP(x,a)</entry><entry><action>cumulative distribution function P(x) for a Cauchy distribution with scale parameter a</action></entry></row> 2043 <row><entry>cauchyQ(x,a)</entry><entry><action>cumulative distribution function Q(x) for a Cauchy distribution with scale parameter a</action></entry></row> 2044 <row><entry>cauchyPinv(P,a)</entry><entry><action>inverse cumulative distribution function P(x) for a Cauchy distribution with scale parameter a</action></entry></row> 2045 <row><entry>cauchyQinv(Q,a)</entry><entry><action>inverse cumulative distribution function Q(x) for a Cauchy distribution with scale parameter a</action></entry></row> 2046 <row><entry>rayleigh(x,σ)</entry><entry><action>probability density p(x) for a Rayleigh distribution with scale parameter σ</action></entry></row> 2047 <row><entry>rayleighP(x,σ)</entry><entry><action>cumulative distribution function P(x) for a Rayleigh distribution with scale parameter σ</action></entry></row> 2048 <row><entry>rayleighQ(x,σ)</entry><entry><action>cumulative distribution function Q(x) for a Rayleigh distribution with scale parameter σ</action></entry></row> 2049 <row><entry>rayleighPinv(P,σ)</entry><entry><action>inverse cumulative distribution function P(x) for a Rayleigh distribution with scale parameter σ</action></entry></row> 2050 <row><entry>rayleighQinv(Q,σ)</entry><entry><action>inverse cumulative distribution function Q(x) for a Rayleigh distribution with scale parameter σ</action></entry></row> 2051 <row><entry>rayleigh_tail(x,a,σ)</entry><entry><action>probability density p(x) for a Rayleigh tail distribution with scale parameter σ and lower limit a</action></entry></row> 2052 <row><entry>landau(x)</entry><entry><action>probability density p(x) for the Landau distribution</action></entry></row> 2053 <row><entry>gammapdf(x,a,b)</entry><entry><action>probability density p(x) for a gamma distribution with parameters a and b</action></entry></row> 2054 <row><entry>gammaP(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a gamma distribution with parameters a and b</action></entry></row> 2055 <row><entry>gammaQ(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a gamma distribution with parameters a and b</action></entry></row> 2056 <row><entry>gammaPinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a gamma distribution with parameters a and b</action></entry></row> 2057 <row><entry>gammaQinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a gamma distribution with parameters a and b</action></entry></row> 2058 <row><entry>flat(x,a,b)</entry><entry><action>probability density p(x) for a uniform distribution from a to b</action></entry></row> 2059 <row><entry>flatP(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a uniform distribution from a to b</action></entry></row> 2060 <row><entry>flatQ(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a uniform distribution from a to b</action></entry></row> 2061 <row><entry>flatPinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a uniform distribution from a to b</action></entry></row> 2062 <row><entry>flatQinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a uniform distribution from a to b</action></entry></row> 2063 <row><entry>lognormal(x,ζ,σ)</entry><entry><action>probability density p(x) for a lognormal distribution with parameters ζ and σ</action></entry></row> 2064 <row><entry>lognormalP(x,ζ,σ)</entry><entry><action>cumulative distribution function P(x) for a lognormal distribution with parameters ζ and σ</action></entry></row> 2065 <row><entry>lognormalQ(x,ζ,σ)</entry><entry><action>cumulative distribution function Q(x) for a lognormal distribution with parameters ζ and σ</action></entry></row> 2066 <row><entry>lognormalPinv(P,ζ,σ)</entry><entry><action>inverse cumulative distribution function P(x) for a lognormal distribution with parameters ζ and σ</action></entry></row> 2067 <row><entry>lognormalQinv(Q,ζ,σ)</entry><entry><action>inverse cumulative distribution function Q(x) for a lognormal distribution with parameters ζ and σ</action></entry></row> 2068 <row><entry>chisq(x,ν)</entry><entry><action>probability density p(x) for a χ<superscript>2</superscript> distribution with ν degrees of freedom</action></entry></row> 2069 <row><entry>chisqP(x,ν)</entry><entry><action>cumulative distribution function P(x) for a χ<superscript>2</superscript> distribution with ν degrees of freedom</action></entry></row> 2070 <row><entry>chisqQ(x,ν)</entry><entry><action>cumulative distribution function Q(x) for a χ<superscript>2</superscript> distribution with ν degrees of freedom</action></entry></row> 2071 <row><entry>chisqPinv(P,ν)</entry><entry><action>inverse cumulative distribution function P(x) for a χ<superscript>2</superscript> distribution with ν degrees of freedom</action></entry></row> 2072 <row><entry>chisqQinv(Q,ν)</entry><entry><action>inverse cumulative distribution function Q(x) for a χ<superscript>2</superscript> distribution with ν degrees of freedom</action></entry></row> 2073 <row><entry>fdist(x,ν<subscript>1</subscript>,ν<subscript>2</subscript>)</entry><entry><action>probability density p(x) for an F-distribution with ν<subscript>1</subscript> and ν<subscript>2</subscript> degrees of freedom</action></entry></row> 2074 <row><entry>fdistP(x,ν<subscript>1</subscript>,ν<subscript>2</subscript>)</entry><entry><action>cumulative distribution function P(x) for an F-distribution with ν<subscript>1</subscript> and ν<subscript>2</subscript> degrees of freedom</action></entry></row> 2075 <row><entry>fdistQ(x,ν<subscript>1</subscript>,ν<subscript>2</subscript>)</entry><entry><action>cumulative distribution function Q(x) for an F-distribution with ν<subscript>1</subscript> and ν<subscript>2</subscript> degrees of freedom</action></entry></row> 2076 <row><entry>fdistPinv(P,ν<subscript>1</subscript>,ν<subscript>2</subscript>)</entry><entry><action>inverse cumulative distribution function P(x) for an F-distribution with ν<subscript>1</subscript> and ν<subscript>2</subscript> degrees of freedom</action></entry></row> 2077 <row><entry>fdistQinv(Q,ν<subscript>1</subscript>,ν<subscript>2</subscript>)</entry><entry><action>inverse cumulative distribution function Q(x) for an F-distribution with ν<subscript>1</subscript> and ν<subscript>2</subscript> degrees of freedom</action></entry></row> 2078 <row><entry>tdist(x,ν)</entry><entry><action>probability density p(x) for a t-distribution with ν degrees of freedom</action></entry></row> 2079 <row><entry>tdistP(x,ν)</entry><entry><action>cumulative distribution function P(x) for a t-distribution with ν degrees of freedom</action></entry></row> 2080 <row><entry>tdistQ(x,ν)</entry><entry><action>cumulative distribution function Q(x) for a t-distribution with ν degrees of freedom</action></entry></row> 2081 <row><entry>tdistPinv(P,ν)</entry><entry><action>inverse cumulative distribution function P(x) for a t-distribution with ν degrees of freedom</action></entry></row> 2082 <row><entry>tdistQinv(Q,ν)</entry><entry><action>inverse cumulative distribution function Q(x) for a t-distribution with ν degrees of freedom</action></entry></row> 2083 <row><entry>betapdf(x,a,b)</entry><entry><action>probability density p(x) for a beta distribution with parameters a and b</action></entry></row> 2084 <row><entry>betaP(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a beta distribution with parameters a and b</action></entry></row> 2085 <row><entry>betaQ(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a beta distribution with parameters a and b</action></entry></row> 2086 <row><entry>betaPinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a beta distribution with parameters a and b</action></entry></row> 2087 <row><entry>betaQinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a beta distribution with parameters a and b</action></entry></row> 2088 <row><entry>logistic(x,a)</entry><entry><action>probability density p(x) for a logistic distribution with scale parameter a</action></entry></row> 2089 <row><entry>logisticP(x,a)</entry><entry><action>cumulative distribution function P(x) for a logistic distribution with scale parameter a</action></entry></row> 2090 <row><entry>logisticQ(x,a)</entry><entry><action>cumulative distribution function Q(x) for a logistic distribution with scale parameter a</action></entry></row> 2091 <row><entry>logisticPinv(P,a)</entry><entry><action>inverse cumulative distribution function P(x) for a logistic distribution with scale parameter a</action></entry></row> 2092 <row><entry>logisticQinv(Q,a)</entry><entry><action>inverse cumulative distribution function Q(x) for a logistic distribution with scale parameter a</action></entry></row> 2093 <row><entry>pareto(x,a,b)</entry><entry><action>probability density p(x) for a Pareto distribution with exponent a and scale b</action></entry></row> 2094 <row><entry>paretoP(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a Pareto distribution with exponent a and scale b</action></entry></row> 2095 <row><entry>paretoQ(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a Pareto distribution with exponent a and scale b</action></entry></row> 2096 <row><entry>paretoPinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a Pareto distribution with exponent a and scale b</action></entry></row> 2097 <row><entry>paretoQinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a Pareto distribution with exponent a and scale b</action></entry></row> 2098 <row><entry>weibull(x,a,b)</entry><entry><action>probability density p(x) for a Weibull distribution with scale a and exponent b</action></entry></row> 2099 <row><entry>weibullP(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a Weibull distribution with scale a and exponent b</action></entry></row> 2100 <row><entry>weibullQ(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a Weibull distribution with scale a and exponent b</action></entry></row> 2101 <row><entry>weibullPinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a Weibull distribution with scale a and exponent b</action></entry></row> 2102 <row><entry>weibullQinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a Weibull distribution with scale a and exponent b</action></entry></row> 2103 <row><entry>gumbel1(x,a,b)</entry><entry><action>probability density p(x) for a Type-1 Gumbel distribution with parameters a and b</action></entry></row> 2104 <row><entry>gumbel1P(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a Type-1 Gumbel distribution with parameters a and b</action></entry></row> 2105 <row><entry>gumbel1Q(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a Type-1 Gumbel distribution with parameters a and b</action></entry></row> 2106 <row><entry>gumbel1Pinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a Type-1 Gumbel distribution with parameters a and b</action></entry></row> 2107 <row><entry>gumbel1Qinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a Type-1 Gumbel distribution with parameters a and b</action></entry></row> 2108 <row><entry>gumbel2(x,a,b)</entry><entry><action>probability density p(x) at X for a Type-2 Gumbel distribution with parameters A and B</action></entry></row> 2109 <row><entry>gumbel2P(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a Type-2 Gumbel distribution with parameters a and b</action></entry></row> 2110 <row><entry>gumbel2Q(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a Type-2 Gumbel distribution with parameters a and b</action></entry></row> 2111 <row><entry>gumbel2Pinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a Type-2 Gumbel distribution with parameters a and b</action></entry></row> 2112 <row><entry>gumbel2Qinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a Type-2 Gumbel distribution with parameters a and b</action></entry></row> 2113 <row><entry>poisson(k,μ)</entry><entry><action>probability p(k) of obtaining k from a Poisson distribution with mean μ</action></entry></row> 2114 <row><entry>poissonP(k,μ)</entry><entry><action>cumulative distribution functions P(k) for a Poisson distribution with mean μ</action></entry></row> 2115 <row><entry>poissonQ(k,μ)</entry><entry><action>cumulative distribution functions Q(k) for a Poisson distribution with mean μ</action></entry></row> 2116 <row><entry>bernoulli(k,p)</entry><entry><action>probability p(k) of obtaining k from a Bernoulli distribution with probability parameter p</action></entry></row> 2117 <row><entry>binomial(k,p,n)</entry><entry><action>probability p(k) of obtaining p from a binomial distribution with parameters p and n</action></entry></row> 2118 <row><entry>binomialP(k,p,n)</entry><entry><action>cumulative distribution functions P(k) for a binomial distribution with parameters p and n</action></entry></row> 2119 <row><entry>binomialQ(k,p,n)</entry><entry><action>cumulative distribution functions Q(k) for a binomial distribution with parameters p and n</action></entry></row> 2120 <row><entry>nbinomial(k,p,n)</entry><entry><action>probability p(k) of obtaining k from a negative binomial distribution with parameters p and n</action></entry></row> 2121 <row><entry>nbinomialP(k,p,n)</entry><entry><action>cumulative distribution functions P(k) for a negative binomial distribution with parameters p and n</action></entry></row> 2122 <row><entry>nbinomialQ(k,p,n)</entry><entry><action>cumulative distribution functions Q(k) for a negative binomial distribution with parameters p and n</action></entry></row> 2123 <row><entry>pascal(k,p,n)</entry><entry><action>probability p(k) of obtaining k from a Pascal distribution with parameters p and n</action></entry></row> 2124 <row><entry>pascalP(k,p,n)</entry><entry><action>cumulative distribution functions P(k) for a Pascal distribution with parameters p and n</action></entry></row> 2125 <row><entry>pascalQ(k,p,n)</entry><entry><action>cumulative distribution functions Q(k) for a Pascal distribution with parameters p and n</action></entry></row> 2126 <row><entry>geometric(k,p)</entry><entry><action>probability p(k) of obtaining k from a geometric distribution with probability parameter p</action></entry></row> 2127 <row><entry>geometricP(k,p)</entry><entry><action>cumulative distribution functions P(k) for a geometric distribution with parameter p</action></entry></row> 2128 <row><entry>geometricQ(k,p)</entry><entry><action>cumulative distribution functions Q(k) for a geometric distribution with parameter p</action></entry></row> 2129 <row><entry>hypergeometric(k,n<subscript>1</subscript>,n<subscript>2</subscript>,t)</entry><entry><action>probability p(k) of obtaining k from a hypergeometric distribution with parameters n<subscript>1</subscript>, n<subscript>2</subscript>, t</action></entry></row> 2130 <row><entry>hypergeometricP(k,n<subscript>1</subscript>,n<subscript>2</subscript>,t)</entry><entry><action>cumulative distribution function P(k) for a hypergeometric distribution with parameters n<subscript>1</subscript>, n<subscript>2</subscript>, t</action></entry></row> 2131 <row><entry>hypergeometricQ(k,n<subscript>1</subscript>,n<subscript>2</subscript>,t)</entry><entry><action>cumulative distribution function Q(k) for a hypergeometric distribution with parameters n<subscript>1</subscript>, n<subscript>2</subscript>, t</action></entry></row> 2132 <row><entry>logarithmic(k,p)</entry><entry><action>probability p(k) of obtaining K from a logarithmic distribution with probability parameter p</action></entry></row> 2133 </tbody> 2134 </tgroup> 2135 </informaltable> 2136 </sect1> 2137 2138 <sect1 id="parser-const"> 2139 <title>Constants</title> 2140 2141 <informaltable pgwide="1"><tgroup cols="2"> 2142 2143 <thead><row><entry>Constant</entry><entry>Description</entry></row></thead> 2144 2145 <tbody> 2146 2147 <row><entry>e</entry><entry><action>The base of natural logarithms</action></entry></row> 2148 <row><entry>pi</entry><entry><action>π</action></entry></row> 2149 2150 </tbody></tgroup></informaltable> 2151 </sect1> 2152 2153 <sect1 id="parser-const-gsl"> 2154 <title>GSL constants</title> 2155 <para> 2156 For more information about this constants see the documentation of GSL. 2157 </para> 2158 <informaltable pgwide="1"><tgroup cols="2"> 2159 2160 <thead><row><entry>Constant</entry><entry>Description</entry></row></thead> 2161 2162 <tbody> 2163 2164 <row><entry>c</entry><entry><action> The speed of light in vacuum</action></entry></row> 2165 <row><entry>mu0</entry><entry><action>The permeability of free space</action></entry></row> 2166 <row><entry>e0</entry><entry><action>The permittivity of free space</action></entry></row> 2167 <row><entry>h</entry><entry><action>The Planck constant h</action></entry></row> 2168 <row><entry>hbar</entry><entry><action>The reduced Planck constant ℏ</action></entry></row> 2169 <row><entry>na</entry><entry><action>Avogadro's number</action></entry></row> 2170 <row><entry>f</entry><entry><action>The molar charge of 1 Faraday</action></entry></row> 2171 <row><entry>k</entry><entry><action>The Boltzmann constant</action></entry></row> 2172 <row><entry>r0</entry><entry><action>The molar gas constant</action></entry></row> 2173 <row><entry>v0</entry><entry><action>The standard gas volume</action></entry></row> 2174 <row><entry>sigma</entry><entry><action>The Stefan–Boltzmann constant</action></entry></row> 2175 <row><entry>gauss</entry><entry><action>The magnetic field of 1 Gauss</action></entry></row> 2176 <row><entry>au</entry><entry><action>The length of 1 astronomical unit (mean earth-sun distance)</action></entry></row> 2177 <row><entry>G</entry><entry><action>The gravitational constant</action></entry></row> 2178 <row><entry>ly</entry><entry><action>The distance of 1 light-year</action></entry></row> 2179 <row><entry>pc</entry><entry><action>The distance of 1 parsec</action></entry></row> 2180 <row><entry>gg</entry><entry><action>The standard gravitational acceleration on Earth</action></entry></row> 2181 <row><entry>ms</entry><entry><action>The mass of the Sun</action></entry></row> 2182 <row><entry>ee</entry><entry><action>The charge of the electron</action></entry></row> 2183 <row><entry>eV</entry><entry><action>The energy of 1 electron volt</action></entry></row> 2184 <row><entry>amu</entry><entry><action>The unified atomic mass</action></entry></row> 2185 <row><entry>me</entry><entry><action>The mass of the electron</action></entry></row> 2186 <row><entry>mmu</entry><entry><action>The mass of the muon</action></entry></row> 2187 <row><entry>mp</entry><entry><action>The mass of the proton</action></entry></row> 2188 <row><entry>mn</entry><entry><action>The mass of the neutron</action></entry></row> 2189 <row><entry>alpha</entry><entry><action>The electromagnetic fine structure constant</action></entry></row> 2190 <row><entry>ry</entry><entry><action>The Rydberg constant</action></entry></row> 2191 <row><entry>a0</entry><entry><action>The Bohr radius</action></entry></row> 2192 <row><entry>a</entry><entry><action>The length of 1 angstrom</action></entry></row> 2193 <row><entry>barn</entry><entry><action> The area of 1 barn</action></entry></row> 2194 <row><entry>muB</entry><entry><action>The Bohr Magneton</action></entry></row> 2195 <row><entry>mun</entry><entry><action>The Nuclear Magneton</action></entry></row> 2196 <row><entry>mue</entry><entry><action>The magnetic moment of the electron</action></entry></row> 2197 <row><entry>mup</entry><entry><action>The magnetic moment of the proton</action></entry></row> 2198 <row><entry>sigmaT</entry><entry><action>The Thomson cross section for an electron</action></entry></row> 2199 <row><entry>pD</entry><entry><action>The debye</action></entry></row> 2200 <row><entry>min</entry><entry><action>The number of seconds in 1 minute</action></entry></row> 2201 <row><entry>h</entry><entry><action>The number of seconds in 1 hour</action></entry></row> 2202 <row><entry>d</entry><entry><action> The number of seconds in 1 day</action></entry></row> 2203 <row><entry>week</entry><entry><action>The number of seconds in 1 week</action></entry></row> 2204 <row><entry>in</entry><entry><action>The length of 1 inch</action></entry></row> 2205 <row><entry>ft</entry><entry><action>The length of 1 foot</action></entry></row> 2206 <row><entry>yard</entry><entry><action>The length of 1 yard</action></entry></row> 2207 <row><entry>mil</entry><entry><action>The length of 1 mil (1/1000th of an inch)</action></entry></row> 2208 <row><entry>v_km_per_h</entry><entry><action>The speed of 1 kilometer per hour</action></entry></row> 2209 <row><entry>v_mile_per_h</entry><entry><action>The speed of 1 mile per hour</action></entry></row> 2210 <row><entry>nmile</entry><entry><action>The length of 1 nautical mile</action></entry></row> 2211 <row><entry>fathom</entry><entry><action>The length of 1 fathom</action></entry></row> 2212 <row><entry>knot</entry><entry><action>The speed of 1 knot</action></entry></row> 2213 <row><entry>pt</entry><entry><action> The length of 1 printer's point (1/72 inch)</action></entry></row> 2214 <row><entry>texpt</entry><entry><action>The length of 1 TeX point (1/72.27 inch)</action></entry></row> 2215 <row><entry>micron</entry><entry><action>The length of 1 micrometre</action></entry></row> 2216 <row><entry>hectare</entry><entry><action>The area of 1 hectare</action></entry></row> 2217 <row><entry>acre</entry><entry><action>The area of 1 acre</action></entry></row> 2218 <row><entry>liter</entry><entry><action>The volume of 1 liter</action></entry></row> 2219 <row><entry>us_gallon</entry><entry><action>The volume of 1 US gallon</action></entry></row> 2220 <row><entry>can_gallon</entry><entry><action>The volume of 1 Canadian gallon</action></entry></row> 2221 <row><entry>uk_gallon</entry><entry><action>The volume of 1 UK gallon</action></entry></row> 2222 <row><entry>quart</entry><entry><action>The volume of 1 quart</action></entry></row> 2223 <row><entry>pint</entry><entry><action>The volume of 1 pint</action></entry></row> 2224 <row><entry>pound</entry><entry><action>The mass of 1 pound</action></entry></row> 2225 <row><entry>ounce</entry><entry><action>The mass of 1 ounce</action></entry></row> 2226 <row><entry>ton</entry><entry><action>The mass of 1 ton</action></entry></row> 2227 <row><entry>mton</entry><entry><action>The mass of 1 metric ton (1000 kg)</action></entry></row> 2228 <row><entry>uk_ton</entry><entry><action>The mass of 1 UK ton</action></entry></row> 2229 <row><entry>troy_ounce</entry><entry><action>The mass of 1 troy ounce</action></entry></row> 2230 <row><entry>carat</entry><entry><action>The mass of 1 carat</action></entry></row> 2231 <row><entry>gram_force</entry><entry><action>The force of 1 gram weight</action></entry></row> 2232 <row><entry>pound_force</entry><entry><action>The force of 1 pound weight</action></entry></row> 2233 <row><entry>kilepound_force</entry><entry><action>The force of 1 kilopound weight</action></entry></row> 2234 <row><entry>poundal</entry><entry><action>The force of 1 poundal</action></entry></row> 2235 <row><entry>cal</entry><entry><action>The energy of 1 calorie</action></entry></row> 2236 <row><entry>btu</entry><entry><action>The energy of 1 British Thermal Unit</action></entry></row> 2237 <row><entry>therm</entry><entry><action>The energy of 1 Therm</action></entry></row> 2238 <row><entry>hp</entry><entry><action>The power of 1 horsepower</action></entry></row> 2239 <row><entry>bar</entry><entry><action>The pressure of 1 bar</action></entry></row> 2240 <row><entry>atm</entry><entry><action>The pressure of 1 standard atmosphere</action></entry></row> 2241 <row><entry>torr</entry><entry><action>The pressure of 1 torr</action></entry></row> 2242 <row><entry>mhg</entry><entry><action>The pressure of 1 meter of mercury</action></entry></row> 2243 <row><entry>inhg</entry><entry><action>The pressure of 1 inch of mercury</action></entry></row> 2244 <row><entry>inh2o</entry><entry><action>The pressure of 1 inch of water</action></entry></row> 2245 <row><entry>psi</entry><entry><action>The pressure of 1 pound per square inch</action></entry></row> 2246 <row><entry>poise</entry><entry><action>The dynamic viscosity of 1 poise</action></entry></row> 2247 <row><entry>stokes</entry><entry><action>The kinematic viscosity of 1 stokes</action></entry></row> 2248 <row><entry>stilb</entry><entry><action>The luminance of 1 stilb</action></entry></row> 2249 <row><entry>lumen</entry><entry><action>The luminous flux of 1 lumen</action></entry></row> 2250 <row><entry>lux</entry><entry><action>The illuminance of 1 lux</action></entry></row> 2251 <row><entry>phot</entry><entry><action>The illuminance of 1 phot</action></entry></row> 2252 <row><entry>ftcandle</entry><entry><action>The illuminance of 1 footcandle</action></entry></row> 2253 <row><entry>lambert</entry><entry><action>The luminance of 1 lambert</action></entry></row> 2254 <row><entry>ftlambert</entry><entry><action>The luminance of 1 footlambert</action></entry></row> 2255 <row><entry>curie</entry><entry><action>The activity of 1 curie</action></entry></row> 2256 <row><entry>roentgen</entry><entry><action>The exposure of 1 roentgen</action></entry></row> 2257 <row><entry>rad</entry><entry><action>The absorbed dose of 1 rad</action></entry></row> 2258 <row><entry>N</entry><entry><action>The force of 1 newton</action></entry></row> 2259 <row><entry>dyne</entry><entry><action>The force of 1 dyne</action></entry></row> 2260 <row><entry>J</entry><entry><action>The energy of 1 joule</action></entry></row> 2261 <row><entry>erg</entry><entry><action>The energy of 1 erg</action></entry></row> 2262 2263 </tbody></tgroup></informaltable> 2264 2265 </sect1> 2266 2267 </chapter> 2268 2269 <chapter id="faq"> 2270 <title>Questions and Answers</title> 2271 2272 <qandaset id="faqlist"> 2273 2274 <qandaentry> 2275 <question> 2276 <para>For which platforms is &LabPlot; available?</para> 2277 </question> 2278 <answer> 2279 <para> 2280 &LabPlot; is developed for Unix platforms and uses the &Qt; toolkit and &kde-frameworks;. Normally you can expect &LabPlot; 2281 to build and run on every platform &kde-frameworks; supports. 2282 A recent list of supported platforms and tips for compiling and running &LabPlot; can be found on 2283 <ulink url="http://labplot.wiki.sourceforge.net/Download"> 2284 http://labplot.wiki.sourceforge.net/Download</ulink>. 2285 </para> 2286 </answer> 2287 </qandaentry> 2288 2289 <qandaentry><question> 2290 <para>How do I export the active worksheet as image?</para> 2291 </question> 2292 <answer><para> 2293 The standard way is to use <menuchoice><guimenu>File</guimenu><guimenuitem>Export</guimenuitem></menuchoice>. All &Qt; supported image formats are allowed. Just select the desired format and the active worksheet is exported. 2294 </para></answer> 2295 </qandaentry> 2296 2297 <qandaentry> 2298 <question> 2299 <para>How do I use Greek letters for title, axes label, &etc;?</para> 2300 </question> 2301 <answer> 2302 <para> 2303 Use <guiicon>π</guiicon> button to open character selector window or <guiicon>&tex;</guiicon> to generate Greek letters and other symbols using &latex;. 2304 </para> 2305 </answer> 2306 </qandaentry> 2307 2308 <qandaentry> 2309 <question> 2310 <para>I miss an important feature. What can I do?</para> 2311 </question> 2312 <answer> 2313 <para> 2314 Please take a look at the TODO file in the documentation of &LabPlot;. 2315 Here, all planned features are listed in more or 2316 less sorted order which I will implement in future releases of &LabPlot;. 2317 If you like to have additional 2318 features or like to have a listed feature soon, mail me your wishes and, if possible, send me 2319 example data or a short 2320 description of what you like to do. 2321 It is not unlikely that your feature will appear in the next stable release 2322 of &LabPlot; :-) 2323 </para> 2324 </answer> 2325 </qandaentry> 2326 2327 <qandaentry><question> 2328 <para>Many Analysis functions are disabled. What can I do?</para> 2329 </question> 2330 <answer><para> 2331 It looks like your &LabPlot; package was compiled without GSL (&GNU; Scientific Library) support. &LabPlot; was designed to even work on systems that 2332 are missing most of the standard libraries. Many distributions are shipping &LabPlot; packages without this additional functionality. In this case some functions are not available. Fortunately some programs (like <application>pstoedit</application> or <application>texvc</application>) can be added without recompiling &LabPlot;. You can always check your system environment in the help menu of &LabPlot;. 2333 </para> 2334 <para> 2335 The packages provided on the official download page are always built with the standard libraries (GSL, &etc;). You should use them 2336 to have all the features. 2337 </para> 2338 </answer> 2339 </qandaentry> 2340 2341 <qandaentry><question> 2342 <para>I want to help. How can I contribute to &LabPlot;?</para> 2343 </question> 2344 <answer><para> 2345 Yes, of course. There are a lot things to do. Even if you don't know anything about programming we always 2346 need people to find bugs, test things and make suggestions. Also the translation and documentation always 2347 needs a lot of work. 2348 </para></answer> 2349 </qandaentry> 2350 2351 2352 </qandaset> 2353 </chapter> 2354 2355 <chapter id="license"> 2356 2357 <title>License</title> 2358 2359 <para>&LabPlot;</para> 2360 <para> 2361 Program copyright © 2007-2016 Stefan Gerlach <email>stefan.gerlach@uni-konstanz.de</email> 2362 Program copyright © 2008-2016 Alexander Semke <email>Alexander.Semke@web.de</email> 2363 </para> 2364 2365 <important> 2366 <para> 2367 &LabPlot; is still under development. There is a long list of missing features that will be implemented in later versions of &LabPlot;. 2368 </para> 2369 </important> 2370 2371 <para> 2372 Because there are a lot things to do, developers need every help you can give. Any contribution like wishes, corrections, 2373 patches, bug reports or screen shots is welcome. 2374 </para> 2375 2376 <para> 2377 Documentation copyright © 2007-2016 Stefan Gerlach 2378 <email>stefan.gerlach@uni-konstanz.de</email> 2379 2380 Documentation copyright © 2008-2015 Alexander Semke 2381 <email>Alexander.Semke@web.de</email> 2382 2383 Documentation copyright © 2014 Yuri Chornoivan 2384 <email>yurchor@ukr.net</email> 2385 </para> 2386 2387 <!-- TRANS:CREDIT_FOR_TRANSLATORS --> 2388 2389 &underFDL; 2390 &underGPL; 2391 2392 </chapter> 2393 2394 2395 2396 2397 &documentation.index; 2398 </book>