Warning, /education/kstars/po/fr/docs/kstars/luminosity.docbook is written in an unsupported language. File is not indexed.

0001 <sect1 id="ai-luminosity">
0002 
0003 <sect1info>
0004 
0005 <author
0006 ><firstname
0007 >Jasem</firstname
0008 > <surname
0009 >Mutlaq</surname
0010 > <affiliation
0011 ><address>
0012 </address
0013 ></affiliation>
0014 </author>
0015 </sect1info>
0016 
0017 <title
0018 >Luminosité</title>
0019 <indexterm
0020 ><primary
0021 >Luminosité</primary>
0022 <seealso
0023 >Flux</seealso>
0024 </indexterm>
0025 
0026 <para
0027 >La <firstterm
0028 >luminosité</firstterm
0029 > est la quantité d'énergie émise par une étoile à chaque seconde. </para>
0030 
0031 <para
0032 >Toutes les étoiles irradient de la lumière dans une large bande de fréquences du spectre électromagnétique, des ondes radio de basse énergie jusqu'aux rayons gamma de haute énergie. Une étoile qui émet surtout dans la région ultra-violette du spectre produit une quantité d'énergie plus grande qu'une qui émet principalement dans l'infrarouge. De ce fait, la luminosité est une mesure de puissance émise par une étoile dans l'ensemble des longueurs d'onde. La relation entre la longueur d'onde et l'énergie a été quantifiée par Einstein comme E = h * &nu;, où &nu; est la fréquence, h est la constante de Planck et E est l'énergie du photon en Joules. Cela dit, les longueurs d'onde plus courtes (et donc de plus hautes fréquences) correspondent aux énergies plus hautes. </para>
0033 
0034 <para
0035 >Par exemple, une longueur d'onde de &lambda; = 10 mètres se trouve dans la région radio du spectre électromagnétique et a une fréquence de f = c / &lambda; = 3 * 10<superscript
0036 >8</superscript
0037 > / 10 = 30 MHz, où c est la célérité de la lumière. L'énergie de ce photon est E = h * &nu; = 6,625 * 10<superscript
0038 >-34</superscript
0039 > * 30 = 1,988 * 10<superscript
0040 >-26</superscript
0041 > joules. Par ailleurs, la lumière visible a une longueur d'onde bien plus petite et une fréquence bien plus haute. Un photon qui a une longueur d'onde de &lambda; = 5 * 10<superscript
0042 >-9</superscript
0043 > mètres (un photon vert) a une énergie de E = 3,975 * 10<superscript
0044 >-17</superscript
0045 > joules, ce qui est un milliard de fois plus élevé que l'énergie d'un photon radio. De la même manière, un photon de lumière rouge (longueur d'onde &lambda; = 700 nm) est moins énergétique qu'un photon de lumière violette (longueur d'onde &lambda; = 400 nm). </para>
0046 
0047 <para
0048 >La luminosité dépend à la fois de la température et de la superficie. Cela a du sens car un journal qui brûle émet plus d'énergie qu'une allumette, même si les deux ont la même température. De la même manière, un fer chauffé au rouge à 2 000 degrés émet plus d'énergie que quand il n'est chauffé qu'à 200 degrés. </para>
0049 
0050 <para
0051 >La luminosité est une grandeur fondamentale en astronomie et en astrophysique. Le plus gros de ce qu'on apprend des objets célestes vient de l'analyse de la lumière. C'est à cause du fait que le processus physique qui se produit dans les étoiles est enregistré et transmis par la lumière. La luminosité est mesurée en unités d'énergie par seconde. Les astronomes préfèrent utiliser les Ergs plutôt que les Watts lorsqu'ils quantifient la luminosité. </para>
0052 </sect1>