Warning, /education/kstars/doc/greatcircle.docbook is written in an unsupported language. File is not indexed.
0001 <sect1 id="ai-greatcircle"> 0002 <sect1info> 0003 <author> 0004 <firstname>Jason</firstname> 0005 <surname>Harris</surname> 0006 </author> 0007 </sect1info> 0008 <title>Great Circles</title> 0009 <indexterm><primary>Great Circles</primary> 0010 <seealso>Celestial Sphere</seealso> 0011 </indexterm> 0012 <para> 0013 Consider a sphere, such as the Earth, or the 0014 <link linkend="ai-csphere">Celestial Sphere</link>. The intersection 0015 of any plane with the sphere will result in a circle on the surface of 0016 the sphere. If the plane happens to contain the center of the sphere, 0017 the intersection circle is a <firstterm>Great Circle</firstterm>. 0018 Great circles are the largest circles that can be drawn on a sphere. 0019 Also, the shortest path between any two points on a sphere is always 0020 along a great circle. 0021 </para><para> 0022 Some examples of great circles on the celestial sphere include: the 0023 <link linkend="ai-horizon">Horizon</link>, the 0024 <link linkend="ai-cequator">Celestial Equator</link>, and the 0025 <link linkend="ai-ecliptic">Ecliptic</link>. 0026 </para> 0027 </sect1>