File indexing completed on 2024-12-29 03:29:28
0001 /* 0002 * Copyright (c) 2007-2011 Erin Catto http://www.box2d.org 0003 * 0004 * This software is provided 'as-is', without any express or implied 0005 * warranty. In no event will the authors be held liable for any damages 0006 * arising from the use of this software. 0007 * Permission is granted to anyone to use this software for any purpose, 0008 * including commercial applications, and to alter it and redistribute it 0009 * freely, subject to the following restrictions: 0010 * 1. The origin of this software must not be misrepresented; you must not 0011 * claim that you wrote the original software. If you use this software 0012 * in a product, an acknowledgment in the product documentation would be 0013 * appreciated but is not required. 0014 * 2. Altered source versions must be plainly marked as such, and must not be 0015 * misrepresented as being the original software. 0016 * 3. This notice may not be removed or altered from any source distribution. 0017 */ 0018 0019 #include <Box2D/Dynamics/Joints/b2RopeJoint.h> 0020 #include <Box2D/Dynamics/b2Body.h> 0021 #include <Box2D/Dynamics/b2TimeStep.h> 0022 0023 0024 // Limit: 0025 // C = norm(pB - pA) - L 0026 // u = (pB - pA) / norm(pB - pA) 0027 // Cdot = dot(u, vB + cross(wB, rB) - vA - cross(wA, rA)) 0028 // J = [-u -cross(rA, u) u cross(rB, u)] 0029 // K = J * invM * JT 0030 // = invMassA + invIA * cross(rA, u)^2 + invMassB + invIB * cross(rB, u)^2 0031 0032 b2RopeJoint::b2RopeJoint(const b2RopeJointDef* def) 0033 : b2Joint(def) 0034 { 0035 m_localAnchorA = def->localAnchorA; 0036 m_localAnchorB = def->localAnchorB; 0037 0038 m_maxLength = def->maxLength; 0039 0040 m_mass = 0.0f; 0041 m_impulse = 0.0f; 0042 m_state = e_inactiveLimit; 0043 m_length = 0.0f; 0044 } 0045 0046 void b2RopeJoint::InitVelocityConstraints(const b2SolverData& data) 0047 { 0048 m_indexA = m_bodyA->m_islandIndex; 0049 m_indexB = m_bodyB->m_islandIndex; 0050 m_localCenterA = m_bodyA->m_sweep.localCenter; 0051 m_localCenterB = m_bodyB->m_sweep.localCenter; 0052 m_invMassA = m_bodyA->m_invMass; 0053 m_invMassB = m_bodyB->m_invMass; 0054 m_invIA = m_bodyA->m_invI; 0055 m_invIB = m_bodyB->m_invI; 0056 0057 b2Vec2 cA = data.positions[m_indexA].c; 0058 float32 aA = data.positions[m_indexA].a; 0059 b2Vec2 vA = data.velocities[m_indexA].v; 0060 float32 wA = data.velocities[m_indexA].w; 0061 0062 b2Vec2 cB = data.positions[m_indexB].c; 0063 float32 aB = data.positions[m_indexB].a; 0064 b2Vec2 vB = data.velocities[m_indexB].v; 0065 float32 wB = data.velocities[m_indexB].w; 0066 0067 b2Rot qA(aA), qB(aB); 0068 0069 m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); 0070 m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); 0071 m_u = cB + m_rB - cA - m_rA; 0072 0073 m_length = m_u.Length(); 0074 0075 float32 C = m_length - m_maxLength; 0076 if (C > 0.0f) 0077 { 0078 m_state = e_atUpperLimit; 0079 } 0080 else 0081 { 0082 m_state = e_inactiveLimit; 0083 } 0084 0085 if (m_length > b2_linearSlop) 0086 { 0087 m_u *= 1.0f / m_length; 0088 } 0089 else 0090 { 0091 m_u.SetZero(); 0092 m_mass = 0.0f; 0093 m_impulse = 0.0f; 0094 return; 0095 } 0096 0097 // Compute effective mass. 0098 float32 crA = b2Cross(m_rA, m_u); 0099 float32 crB = b2Cross(m_rB, m_u); 0100 float32 invMass = m_invMassA + m_invIA * crA * crA + m_invMassB + m_invIB * crB * crB; 0101 0102 m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f; 0103 0104 if (data.step.warmStarting) 0105 { 0106 // Scale the impulse to support a variable time step. 0107 m_impulse *= data.step.dtRatio; 0108 0109 b2Vec2 P = m_impulse * m_u; 0110 vA -= m_invMassA * P; 0111 wA -= m_invIA * b2Cross(m_rA, P); 0112 vB += m_invMassB * P; 0113 wB += m_invIB * b2Cross(m_rB, P); 0114 } 0115 else 0116 { 0117 m_impulse = 0.0f; 0118 } 0119 0120 data.velocities[m_indexA].v = vA; 0121 data.velocities[m_indexA].w = wA; 0122 data.velocities[m_indexB].v = vB; 0123 data.velocities[m_indexB].w = wB; 0124 } 0125 0126 void b2RopeJoint::SolveVelocityConstraints(const b2SolverData& data) 0127 { 0128 b2Vec2 vA = data.velocities[m_indexA].v; 0129 float32 wA = data.velocities[m_indexA].w; 0130 b2Vec2 vB = data.velocities[m_indexB].v; 0131 float32 wB = data.velocities[m_indexB].w; 0132 0133 // Cdot = dot(u, v + cross(w, r)) 0134 b2Vec2 vpA = vA + b2Cross(wA, m_rA); 0135 b2Vec2 vpB = vB + b2Cross(wB, m_rB); 0136 float32 C = m_length - m_maxLength; 0137 float32 Cdot = b2Dot(m_u, vpB - vpA); 0138 0139 // Predictive constraint. 0140 if (C < 0.0f) 0141 { 0142 Cdot += data.step.inv_dt * C; 0143 } 0144 0145 float32 impulse = -m_mass * Cdot; 0146 float32 oldImpulse = m_impulse; 0147 m_impulse = b2Min(0.0f, m_impulse + impulse); 0148 impulse = m_impulse - oldImpulse; 0149 0150 b2Vec2 P = impulse * m_u; 0151 vA -= m_invMassA * P; 0152 wA -= m_invIA * b2Cross(m_rA, P); 0153 vB += m_invMassB * P; 0154 wB += m_invIB * b2Cross(m_rB, P); 0155 0156 data.velocities[m_indexA].v = vA; 0157 data.velocities[m_indexA].w = wA; 0158 data.velocities[m_indexB].v = vB; 0159 data.velocities[m_indexB].w = wB; 0160 } 0161 0162 bool b2RopeJoint::SolvePositionConstraints(const b2SolverData& data) 0163 { 0164 b2Vec2 cA = data.positions[m_indexA].c; 0165 float32 aA = data.positions[m_indexA].a; 0166 b2Vec2 cB = data.positions[m_indexB].c; 0167 float32 aB = data.positions[m_indexB].a; 0168 0169 b2Rot qA(aA), qB(aB); 0170 0171 b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); 0172 b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); 0173 b2Vec2 u = cB + rB - cA - rA; 0174 0175 float32 length = u.Normalize(); 0176 float32 C = length - m_maxLength; 0177 0178 C = b2Clamp(C, 0.0f, b2_maxLinearCorrection); 0179 0180 float32 impulse = -m_mass * C; 0181 b2Vec2 P = impulse * u; 0182 0183 cA -= m_invMassA * P; 0184 aA -= m_invIA * b2Cross(rA, P); 0185 cB += m_invMassB * P; 0186 aB += m_invIB * b2Cross(rB, P); 0187 0188 data.positions[m_indexA].c = cA; 0189 data.positions[m_indexA].a = aA; 0190 data.positions[m_indexB].c = cB; 0191 data.positions[m_indexB].a = aB; 0192 0193 return length - m_maxLength < b2_linearSlop; 0194 } 0195 0196 b2Vec2 b2RopeJoint::GetAnchorA() const 0197 { 0198 return m_bodyA->GetWorldPoint(m_localAnchorA); 0199 } 0200 0201 b2Vec2 b2RopeJoint::GetAnchorB() const 0202 { 0203 return m_bodyB->GetWorldPoint(m_localAnchorB); 0204 } 0205 0206 b2Vec2 b2RopeJoint::GetReactionForce(float32 inv_dt) const 0207 { 0208 b2Vec2 F = (inv_dt * m_impulse) * m_u; 0209 return F; 0210 } 0211 0212 float32 b2RopeJoint::GetReactionTorque(float32 inv_dt) const 0213 { 0214 B2_NOT_USED(inv_dt); 0215 return 0.0f; 0216 } 0217 0218 float32 b2RopeJoint::GetMaxLength() const 0219 { 0220 return m_maxLength; 0221 } 0222 0223 b2LimitState b2RopeJoint::GetLimitState() const 0224 { 0225 return m_state; 0226 } 0227 0228 void b2RopeJoint::Dump() 0229 { 0230 int32 indexA = m_bodyA->m_islandIndex; 0231 int32 indexB = m_bodyB->m_islandIndex; 0232 0233 b2Log(" b2RopeJointDef jd;\n"); 0234 b2Log(" jd.bodyA = bodies[%d];\n", indexA); 0235 b2Log(" jd.bodyB = bodies[%d];\n", indexB); 0236 b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); 0237 b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); 0238 b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); 0239 b2Log(" jd.maxLength = %.15lef;\n", m_maxLength); 0240 b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); 0241 }