File indexing completed on 2024-12-29 03:29:28
0001 /* 0002 * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org 0003 * 0004 * This software is provided 'as-is', without any express or implied 0005 * warranty. In no event will the authors be held liable for any damages 0006 * arising from the use of this software. 0007 * Permission is granted to anyone to use this software for any purpose, 0008 * including commercial applications, and to alter it and redistribute it 0009 * freely, subject to the following restrictions: 0010 * 1. The origin of this software must not be misrepresented; you must not 0011 * claim that you wrote the original software. If you use this software 0012 * in a product, an acknowledgment in the product documentation would be 0013 * appreciated but is not required. 0014 * 2. Altered source versions must be plainly marked as such, and must not be 0015 * misrepresented as being the original software. 0016 * 3. This notice may not be removed or altered from any source distribution. 0017 */ 0018 0019 #include <Box2D/Dynamics/Joints/b2RevoluteJoint.h> 0020 #include <Box2D/Dynamics/b2Body.h> 0021 #include <Box2D/Dynamics/b2TimeStep.h> 0022 0023 // Point-to-point constraint 0024 // C = p2 - p1 0025 // Cdot = v2 - v1 0026 // = v2 + cross(w2, r2) - v1 - cross(w1, r1) 0027 // J = [-I -r1_skew I r2_skew ] 0028 // Identity used: 0029 // w k % (rx i + ry j) = w * (-ry i + rx j) 0030 0031 // Motor constraint 0032 // Cdot = w2 - w1 0033 // J = [0 0 -1 0 0 1] 0034 // K = invI1 + invI2 0035 0036 void b2RevoluteJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) 0037 { 0038 bodyA = bA; 0039 bodyB = bB; 0040 localAnchorA = bodyA->GetLocalPoint(anchor); 0041 localAnchorB = bodyB->GetLocalPoint(anchor); 0042 referenceAngle = bodyB->GetAngle() - bodyA->GetAngle(); 0043 } 0044 0045 b2RevoluteJoint::b2RevoluteJoint(const b2RevoluteJointDef* def) 0046 : b2Joint(def) 0047 { 0048 m_localAnchorA = def->localAnchorA; 0049 m_localAnchorB = def->localAnchorB; 0050 m_referenceAngle = def->referenceAngle; 0051 0052 m_impulse.SetZero(); 0053 m_motorImpulse = 0.0f; 0054 0055 m_lowerAngle = def->lowerAngle; 0056 m_upperAngle = def->upperAngle; 0057 m_maxMotorTorque = def->maxMotorTorque; 0058 m_motorSpeed = def->motorSpeed; 0059 m_enableLimit = def->enableLimit; 0060 m_enableMotor = def->enableMotor; 0061 m_limitState = e_inactiveLimit; 0062 } 0063 0064 void b2RevoluteJoint::InitVelocityConstraints(const b2SolverData& data) 0065 { 0066 m_indexA = m_bodyA->m_islandIndex; 0067 m_indexB = m_bodyB->m_islandIndex; 0068 m_localCenterA = m_bodyA->m_sweep.localCenter; 0069 m_localCenterB = m_bodyB->m_sweep.localCenter; 0070 m_invMassA = m_bodyA->m_invMass; 0071 m_invMassB = m_bodyB->m_invMass; 0072 m_invIA = m_bodyA->m_invI; 0073 m_invIB = m_bodyB->m_invI; 0074 0075 float32 aA = data.positions[m_indexA].a; 0076 b2Vec2 vA = data.velocities[m_indexA].v; 0077 float32 wA = data.velocities[m_indexA].w; 0078 0079 float32 aB = data.positions[m_indexB].a; 0080 b2Vec2 vB = data.velocities[m_indexB].v; 0081 float32 wB = data.velocities[m_indexB].w; 0082 0083 b2Rot qA(aA), qB(aB); 0084 0085 m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); 0086 m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); 0087 0088 // J = [-I -r1_skew I r2_skew] 0089 // [ 0 -1 0 1] 0090 // r_skew = [-ry; rx] 0091 0092 // Matlab 0093 // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] 0094 // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] 0095 // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] 0096 0097 float32 mA = m_invMassA, mB = m_invMassB; 0098 float32 iA = m_invIA, iB = m_invIB; 0099 0100 bool fixedRotation = (iA + iB == 0.0f); 0101 0102 m_mass.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB; 0103 m_mass.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB; 0104 m_mass.ez.x = -m_rA.y * iA - m_rB.y * iB; 0105 m_mass.ex.y = m_mass.ey.x; 0106 m_mass.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB; 0107 m_mass.ez.y = m_rA.x * iA + m_rB.x * iB; 0108 m_mass.ex.z = m_mass.ez.x; 0109 m_mass.ey.z = m_mass.ez.y; 0110 m_mass.ez.z = iA + iB; 0111 0112 m_motorMass = iA + iB; 0113 if (m_motorMass > 0.0f) 0114 { 0115 m_motorMass = 1.0f / m_motorMass; 0116 } 0117 0118 if (m_enableMotor == false || fixedRotation) 0119 { 0120 m_motorImpulse = 0.0f; 0121 } 0122 0123 if (m_enableLimit && fixedRotation == false) 0124 { 0125 float32 jointAngle = aB - aA - m_referenceAngle; 0126 if (b2Abs(m_upperAngle - m_lowerAngle) < 2.0f * b2_angularSlop) 0127 { 0128 m_limitState = e_equalLimits; 0129 } 0130 else if (jointAngle <= m_lowerAngle) 0131 { 0132 if (m_limitState != e_atLowerLimit) 0133 { 0134 m_impulse.z = 0.0f; 0135 } 0136 m_limitState = e_atLowerLimit; 0137 } 0138 else if (jointAngle >= m_upperAngle) 0139 { 0140 if (m_limitState != e_atUpperLimit) 0141 { 0142 m_impulse.z = 0.0f; 0143 } 0144 m_limitState = e_atUpperLimit; 0145 } 0146 else 0147 { 0148 m_limitState = e_inactiveLimit; 0149 m_impulse.z = 0.0f; 0150 } 0151 } 0152 else 0153 { 0154 m_limitState = e_inactiveLimit; 0155 } 0156 0157 if (data.step.warmStarting) 0158 { 0159 // Scale impulses to support a variable time step. 0160 m_impulse *= data.step.dtRatio; 0161 m_motorImpulse *= data.step.dtRatio; 0162 0163 b2Vec2 P(m_impulse.x, m_impulse.y); 0164 0165 vA -= mA * P; 0166 wA -= iA * (b2Cross(m_rA, P) + m_motorImpulse + m_impulse.z); 0167 0168 vB += mB * P; 0169 wB += iB * (b2Cross(m_rB, P) + m_motorImpulse + m_impulse.z); 0170 } 0171 else 0172 { 0173 m_impulse.SetZero(); 0174 m_motorImpulse = 0.0f; 0175 } 0176 0177 data.velocities[m_indexA].v = vA; 0178 data.velocities[m_indexA].w = wA; 0179 data.velocities[m_indexB].v = vB; 0180 data.velocities[m_indexB].w = wB; 0181 } 0182 0183 void b2RevoluteJoint::SolveVelocityConstraints(const b2SolverData& data) 0184 { 0185 b2Vec2 vA = data.velocities[m_indexA].v; 0186 float32 wA = data.velocities[m_indexA].w; 0187 b2Vec2 vB = data.velocities[m_indexB].v; 0188 float32 wB = data.velocities[m_indexB].w; 0189 0190 float32 mA = m_invMassA, mB = m_invMassB; 0191 float32 iA = m_invIA, iB = m_invIB; 0192 0193 bool fixedRotation = (iA + iB == 0.0f); 0194 0195 // Solve motor constraint. 0196 if (m_enableMotor && m_limitState != e_equalLimits && fixedRotation == false) 0197 { 0198 float32 Cdot = wB - wA - m_motorSpeed; 0199 float32 impulse = -m_motorMass * Cdot; 0200 float32 oldImpulse = m_motorImpulse; 0201 float32 maxImpulse = data.step.dt * m_maxMotorTorque; 0202 m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); 0203 impulse = m_motorImpulse - oldImpulse; 0204 0205 wA -= iA * impulse; 0206 wB += iB * impulse; 0207 } 0208 0209 // Solve limit constraint. 0210 if (m_enableLimit && m_limitState != e_inactiveLimit && fixedRotation == false) 0211 { 0212 b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); 0213 float32 Cdot2 = wB - wA; 0214 b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2); 0215 0216 b2Vec3 impulse = -m_mass.Solve33(Cdot); 0217 0218 if (m_limitState == e_equalLimits) 0219 { 0220 m_impulse += impulse; 0221 } 0222 else if (m_limitState == e_atLowerLimit) 0223 { 0224 float32 newImpulse = m_impulse.z + impulse.z; 0225 if (newImpulse < 0.0f) 0226 { 0227 b2Vec2 rhs = -Cdot1 + m_impulse.z * b2Vec2(m_mass.ez.x, m_mass.ez.y); 0228 b2Vec2 reduced = m_mass.Solve22(rhs); 0229 impulse.x = reduced.x; 0230 impulse.y = reduced.y; 0231 impulse.z = -m_impulse.z; 0232 m_impulse.x += reduced.x; 0233 m_impulse.y += reduced.y; 0234 m_impulse.z = 0.0f; 0235 } 0236 else 0237 { 0238 m_impulse += impulse; 0239 } 0240 } 0241 else if (m_limitState == e_atUpperLimit) 0242 { 0243 float32 newImpulse = m_impulse.z + impulse.z; 0244 if (newImpulse > 0.0f) 0245 { 0246 b2Vec2 rhs = -Cdot1 + m_impulse.z * b2Vec2(m_mass.ez.x, m_mass.ez.y); 0247 b2Vec2 reduced = m_mass.Solve22(rhs); 0248 impulse.x = reduced.x; 0249 impulse.y = reduced.y; 0250 impulse.z = -m_impulse.z; 0251 m_impulse.x += reduced.x; 0252 m_impulse.y += reduced.y; 0253 m_impulse.z = 0.0f; 0254 } 0255 else 0256 { 0257 m_impulse += impulse; 0258 } 0259 } 0260 0261 b2Vec2 P(impulse.x, impulse.y); 0262 0263 vA -= mA * P; 0264 wA -= iA * (b2Cross(m_rA, P) + impulse.z); 0265 0266 vB += mB * P; 0267 wB += iB * (b2Cross(m_rB, P) + impulse.z); 0268 } 0269 else 0270 { 0271 // Solve point-to-point constraint 0272 b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); 0273 b2Vec2 impulse = m_mass.Solve22(-Cdot); 0274 0275 m_impulse.x += impulse.x; 0276 m_impulse.y += impulse.y; 0277 0278 vA -= mA * impulse; 0279 wA -= iA * b2Cross(m_rA, impulse); 0280 0281 vB += mB * impulse; 0282 wB += iB * b2Cross(m_rB, impulse); 0283 } 0284 0285 data.velocities[m_indexA].v = vA; 0286 data.velocities[m_indexA].w = wA; 0287 data.velocities[m_indexB].v = vB; 0288 data.velocities[m_indexB].w = wB; 0289 } 0290 0291 bool b2RevoluteJoint::SolvePositionConstraints(const b2SolverData& data) 0292 { 0293 b2Vec2 cA = data.positions[m_indexA].c; 0294 float32 aA = data.positions[m_indexA].a; 0295 b2Vec2 cB = data.positions[m_indexB].c; 0296 float32 aB = data.positions[m_indexB].a; 0297 0298 b2Rot qA(aA), qB(aB); 0299 0300 float32 angularError = 0.0f; 0301 float32 positionError = 0.0f; 0302 0303 bool fixedRotation = (m_invIA + m_invIB == 0.0f); 0304 0305 // Solve angular limit constraint. 0306 if (m_enableLimit && m_limitState != e_inactiveLimit && fixedRotation == false) 0307 { 0308 float32 angle = aB - aA - m_referenceAngle; 0309 float32 limitImpulse = 0.0f; 0310 0311 if (m_limitState == e_equalLimits) 0312 { 0313 // Prevent large angular corrections 0314 float32 C = b2Clamp(angle - m_lowerAngle, -b2_maxAngularCorrection, b2_maxAngularCorrection); 0315 limitImpulse = -m_motorMass * C; 0316 angularError = b2Abs(C); 0317 } 0318 else if (m_limitState == e_atLowerLimit) 0319 { 0320 float32 C = angle - m_lowerAngle; 0321 angularError = -C; 0322 0323 // Prevent large angular corrections and allow some slop. 0324 C = b2Clamp(C + b2_angularSlop, -b2_maxAngularCorrection, 0.0f); 0325 limitImpulse = -m_motorMass * C; 0326 } 0327 else if (m_limitState == e_atUpperLimit) 0328 { 0329 float32 C = angle - m_upperAngle; 0330 angularError = C; 0331 0332 // Prevent large angular corrections and allow some slop. 0333 C = b2Clamp(C - b2_angularSlop, 0.0f, b2_maxAngularCorrection); 0334 limitImpulse = -m_motorMass * C; 0335 } 0336 0337 aA -= m_invIA * limitImpulse; 0338 aB += m_invIB * limitImpulse; 0339 } 0340 0341 // Solve point-to-point constraint. 0342 { 0343 qA.Set(aA); 0344 qB.Set(aB); 0345 b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); 0346 b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); 0347 0348 b2Vec2 C = cB + rB - cA - rA; 0349 positionError = C.Length(); 0350 0351 float32 mA = m_invMassA, mB = m_invMassB; 0352 float32 iA = m_invIA, iB = m_invIB; 0353 0354 b2Mat22 K; 0355 K.ex.x = mA + mB + iA * rA.y * rA.y + iB * rB.y * rB.y; 0356 K.ex.y = -iA * rA.x * rA.y - iB * rB.x * rB.y; 0357 K.ey.x = K.ex.y; 0358 K.ey.y = mA + mB + iA * rA.x * rA.x + iB * rB.x * rB.x; 0359 0360 b2Vec2 impulse = -K.Solve(C); 0361 0362 cA -= mA * impulse; 0363 aA -= iA * b2Cross(rA, impulse); 0364 0365 cB += mB * impulse; 0366 aB += iB * b2Cross(rB, impulse); 0367 } 0368 0369 data.positions[m_indexA].c = cA; 0370 data.positions[m_indexA].a = aA; 0371 data.positions[m_indexB].c = cB; 0372 data.positions[m_indexB].a = aB; 0373 0374 return positionError <= b2_linearSlop && angularError <= b2_angularSlop; 0375 } 0376 0377 b2Vec2 b2RevoluteJoint::GetAnchorA() const 0378 { 0379 return m_bodyA->GetWorldPoint(m_localAnchorA); 0380 } 0381 0382 b2Vec2 b2RevoluteJoint::GetAnchorB() const 0383 { 0384 return m_bodyB->GetWorldPoint(m_localAnchorB); 0385 } 0386 0387 b2Vec2 b2RevoluteJoint::GetReactionForce(float32 inv_dt) const 0388 { 0389 b2Vec2 P(m_impulse.x, m_impulse.y); 0390 return inv_dt * P; 0391 } 0392 0393 float32 b2RevoluteJoint::GetReactionTorque(float32 inv_dt) const 0394 { 0395 return inv_dt * m_impulse.z; 0396 } 0397 0398 float32 b2RevoluteJoint::GetJointAngle() const 0399 { 0400 b2Body* bA = m_bodyA; 0401 b2Body* bB = m_bodyB; 0402 return bB->m_sweep.a - bA->m_sweep.a - m_referenceAngle; 0403 } 0404 0405 float32 b2RevoluteJoint::GetJointSpeed() const 0406 { 0407 b2Body* bA = m_bodyA; 0408 b2Body* bB = m_bodyB; 0409 return bB->m_angularVelocity - bA->m_angularVelocity; 0410 } 0411 0412 bool b2RevoluteJoint::IsMotorEnabled() const 0413 { 0414 return m_enableMotor; 0415 } 0416 0417 void b2RevoluteJoint::EnableMotor(bool flag) 0418 { 0419 m_bodyA->SetAwake(true); 0420 m_bodyB->SetAwake(true); 0421 m_enableMotor = flag; 0422 } 0423 0424 float32 b2RevoluteJoint::GetMotorTorque(float32 inv_dt) const 0425 { 0426 return inv_dt * m_motorImpulse; 0427 } 0428 0429 void b2RevoluteJoint::SetMotorSpeed(float32 speed) 0430 { 0431 m_bodyA->SetAwake(true); 0432 m_bodyB->SetAwake(true); 0433 m_motorSpeed = speed; 0434 } 0435 0436 void b2RevoluteJoint::SetMaxMotorTorque(float32 torque) 0437 { 0438 m_bodyA->SetAwake(true); 0439 m_bodyB->SetAwake(true); 0440 m_maxMotorTorque = torque; 0441 } 0442 0443 bool b2RevoluteJoint::IsLimitEnabled() const 0444 { 0445 return m_enableLimit; 0446 } 0447 0448 void b2RevoluteJoint::EnableLimit(bool flag) 0449 { 0450 if (flag != m_enableLimit) 0451 { 0452 m_bodyA->SetAwake(true); 0453 m_bodyB->SetAwake(true); 0454 m_enableLimit = flag; 0455 m_impulse.z = 0.0f; 0456 } 0457 } 0458 0459 float32 b2RevoluteJoint::GetLowerLimit() const 0460 { 0461 return m_lowerAngle; 0462 } 0463 0464 float32 b2RevoluteJoint::GetUpperLimit() const 0465 { 0466 return m_upperAngle; 0467 } 0468 0469 void b2RevoluteJoint::SetLimits(float32 lower, float32 upper) 0470 { 0471 b2Assert(lower <= upper); 0472 0473 if (lower != m_lowerAngle || upper != m_upperAngle) 0474 { 0475 m_bodyA->SetAwake(true); 0476 m_bodyB->SetAwake(true); 0477 m_impulse.z = 0.0f; 0478 m_lowerAngle = lower; 0479 m_upperAngle = upper; 0480 } 0481 } 0482 0483 void b2RevoluteJoint::Dump() 0484 { 0485 int32 indexA = m_bodyA->m_islandIndex; 0486 int32 indexB = m_bodyB->m_islandIndex; 0487 0488 b2Log(" b2RevoluteJointDef jd;\n"); 0489 b2Log(" jd.bodyA = bodies[%d];\n", indexA); 0490 b2Log(" jd.bodyB = bodies[%d];\n", indexB); 0491 b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); 0492 b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); 0493 b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); 0494 b2Log(" jd.referenceAngle = %.15lef;\n", m_referenceAngle); 0495 b2Log(" jd.enableLimit = bool(%d);\n", m_enableLimit); 0496 b2Log(" jd.lowerAngle = %.15lef;\n", m_lowerAngle); 0497 b2Log(" jd.upperAngle = %.15lef;\n", m_upperAngle); 0498 b2Log(" jd.enableMotor = bool(%d);\n", m_enableMotor); 0499 b2Log(" jd.motorSpeed = %.15lef;\n", m_motorSpeed); 0500 b2Log(" jd.maxMotorTorque = %.15lef;\n", m_maxMotorTorque); 0501 b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); 0502 }