File indexing completed on 2024-12-29 03:29:26

0001 /*
0002 * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
0003 *
0004 * This software is provided 'as-is', without any express or implied
0005 * warranty.  In no event will the authors be held liable for any damages
0006 * arising from the use of this software.
0007 * Permission is granted to anyone to use this software for any purpose,
0008 * including commercial applications, and to alter it and redistribute it
0009 * freely, subject to the following restrictions:
0010 * 1. The origin of this software must not be misrepresented; you must not
0011 * claim that you wrote the original software. If you use this software
0012 * in a product, an acknowledgment in the product documentation would be
0013 * appreciated but is not required.
0014 * 2. Altered source versions must be plainly marked as such, and must not be
0015 * misrepresented as being the original software.
0016 * 3. This notice may not be removed or altered from any source distribution.
0017 */
0018 
0019 #include <Box2D/Dynamics/Joints/b2FrictionJoint.h>
0020 #include <Box2D/Dynamics/b2Body.h>
0021 #include <Box2D/Dynamics/b2TimeStep.h>
0022 
0023 // Point-to-point constraint
0024 // Cdot = v2 - v1
0025 //      = v2 + cross(w2, r2) - v1 - cross(w1, r1)
0026 // J = [-I -r1_skew I r2_skew ]
0027 // Identity used:
0028 // w k % (rx i + ry j) = w * (-ry i + rx j)
0029 
0030 // Angle constraint
0031 // Cdot = w2 - w1
0032 // J = [0 0 -1 0 0 1]
0033 // K = invI1 + invI2
0034 
0035 void b2FrictionJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor)
0036 {
0037     bodyA = bA;
0038     bodyB = bB;
0039     localAnchorA = bodyA->GetLocalPoint(anchor);
0040     localAnchorB = bodyB->GetLocalPoint(anchor);
0041 }
0042 
0043 b2FrictionJoint::b2FrictionJoint(const b2FrictionJointDef* def)
0044 : b2Joint(def)
0045 {
0046     m_localAnchorA = def->localAnchorA;
0047     m_localAnchorB = def->localAnchorB;
0048 
0049     m_linearImpulse.SetZero();
0050     m_angularImpulse = 0.0f;
0051 
0052     m_maxForce = def->maxForce;
0053     m_maxTorque = def->maxTorque;
0054 }
0055 
0056 void b2FrictionJoint::InitVelocityConstraints(const b2SolverData& data)
0057 {
0058     m_indexA = m_bodyA->m_islandIndex;
0059     m_indexB = m_bodyB->m_islandIndex;
0060     m_localCenterA = m_bodyA->m_sweep.localCenter;
0061     m_localCenterB = m_bodyB->m_sweep.localCenter;
0062     m_invMassA = m_bodyA->m_invMass;
0063     m_invMassB = m_bodyB->m_invMass;
0064     m_invIA = m_bodyA->m_invI;
0065     m_invIB = m_bodyB->m_invI;
0066 
0067     float32 aA = data.positions[m_indexA].a;
0068     b2Vec2 vA = data.velocities[m_indexA].v;
0069     float32 wA = data.velocities[m_indexA].w;
0070 
0071     float32 aB = data.positions[m_indexB].a;
0072     b2Vec2 vB = data.velocities[m_indexB].v;
0073     float32 wB = data.velocities[m_indexB].w;
0074 
0075     b2Rot qA(aA), qB(aB);
0076 
0077     // Compute the effective mass matrix.
0078     m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
0079     m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
0080 
0081     // J = [-I -r1_skew I r2_skew]
0082     //     [ 0       -1 0       1]
0083     // r_skew = [-ry; rx]
0084 
0085     // Matlab
0086     // K = [ mA+r1y^2*iA+mB+r2y^2*iB,  -r1y*iA*r1x-r2y*iB*r2x,          -r1y*iA-r2y*iB]
0087     //     [  -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB,           r1x*iA+r2x*iB]
0088     //     [          -r1y*iA-r2y*iB,           r1x*iA+r2x*iB,                   iA+iB]
0089 
0090     float32 mA = m_invMassA, mB = m_invMassB;
0091     float32 iA = m_invIA, iB = m_invIB;
0092 
0093     b2Mat22 K;
0094     K.ex.x = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y;
0095     K.ex.y = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y;
0096     K.ey.x = K.ex.y;
0097     K.ey.y = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x;
0098 
0099     m_linearMass = K.GetInverse();
0100 
0101     m_angularMass = iA + iB;
0102     if (m_angularMass > 0.0f)
0103     {
0104         m_angularMass = 1.0f / m_angularMass;
0105     }
0106 
0107     if (data.step.warmStarting)
0108     {
0109         // Scale impulses to support a variable time step.
0110         m_linearImpulse *= data.step.dtRatio;
0111         m_angularImpulse *= data.step.dtRatio;
0112 
0113         b2Vec2 P(m_linearImpulse.x, m_linearImpulse.y);
0114         vA -= mA * P;
0115         wA -= iA * (b2Cross(m_rA, P) + m_angularImpulse);
0116         vB += mB * P;
0117         wB += iB * (b2Cross(m_rB, P) + m_angularImpulse);
0118     }
0119     else
0120     {
0121         m_linearImpulse.SetZero();
0122         m_angularImpulse = 0.0f;
0123     }
0124 
0125     data.velocities[m_indexA].v = vA;
0126     data.velocities[m_indexA].w = wA;
0127     data.velocities[m_indexB].v = vB;
0128     data.velocities[m_indexB].w = wB;
0129 }
0130 
0131 void b2FrictionJoint::SolveVelocityConstraints(const b2SolverData& data)
0132 {
0133     b2Vec2 vA = data.velocities[m_indexA].v;
0134     float32 wA = data.velocities[m_indexA].w;
0135     b2Vec2 vB = data.velocities[m_indexB].v;
0136     float32 wB = data.velocities[m_indexB].w;
0137 
0138     float32 mA = m_invMassA, mB = m_invMassB;
0139     float32 iA = m_invIA, iB = m_invIB;
0140 
0141     float32 h = data.step.dt;
0142 
0143     // Solve angular friction
0144     {
0145         float32 Cdot = wB - wA;
0146         float32 impulse = -m_angularMass * Cdot;
0147 
0148         float32 oldImpulse = m_angularImpulse;
0149         float32 maxImpulse = h * m_maxTorque;
0150         m_angularImpulse = b2Clamp(m_angularImpulse + impulse, -maxImpulse, maxImpulse);
0151         impulse = m_angularImpulse - oldImpulse;
0152 
0153         wA -= iA * impulse;
0154         wB += iB * impulse;
0155     }
0156 
0157     // Solve linear friction
0158     {
0159         b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA);
0160 
0161         b2Vec2 impulse = -b2Mul(m_linearMass, Cdot);
0162         b2Vec2 oldImpulse = m_linearImpulse;
0163         m_linearImpulse += impulse;
0164 
0165         float32 maxImpulse = h * m_maxForce;
0166 
0167         if (m_linearImpulse.LengthSquared() > maxImpulse * maxImpulse)
0168         {
0169             m_linearImpulse.Normalize();
0170             m_linearImpulse *= maxImpulse;
0171         }
0172 
0173         impulse = m_linearImpulse - oldImpulse;
0174 
0175         vA -= mA * impulse;
0176         wA -= iA * b2Cross(m_rA, impulse);
0177 
0178         vB += mB * impulse;
0179         wB += iB * b2Cross(m_rB, impulse);
0180     }
0181 
0182     data.velocities[m_indexA].v = vA;
0183     data.velocities[m_indexA].w = wA;
0184     data.velocities[m_indexB].v = vB;
0185     data.velocities[m_indexB].w = wB;
0186 }
0187 
0188 bool b2FrictionJoint::SolvePositionConstraints(const b2SolverData& data)
0189 {
0190     B2_NOT_USED(data);
0191 
0192     return true;
0193 }
0194 
0195 b2Vec2 b2FrictionJoint::GetAnchorA() const
0196 {
0197     return m_bodyA->GetWorldPoint(m_localAnchorA);
0198 }
0199 
0200 b2Vec2 b2FrictionJoint::GetAnchorB() const
0201 {
0202     return m_bodyB->GetWorldPoint(m_localAnchorB);
0203 }
0204 
0205 b2Vec2 b2FrictionJoint::GetReactionForce(float32 inv_dt) const
0206 {
0207     return inv_dt * m_linearImpulse;
0208 }
0209 
0210 float32 b2FrictionJoint::GetReactionTorque(float32 inv_dt) const
0211 {
0212     return inv_dt * m_angularImpulse;
0213 }
0214 
0215 void b2FrictionJoint::SetMaxForce(float32 force)
0216 {
0217     b2Assert(b2IsValid(force) && force >= 0.0f);
0218     m_maxForce = force;
0219 }
0220 
0221 float32 b2FrictionJoint::GetMaxForce() const
0222 {
0223     return m_maxForce;
0224 }
0225 
0226 void b2FrictionJoint::SetMaxTorque(float32 torque)
0227 {
0228     b2Assert(b2IsValid(torque) && torque >= 0.0f);
0229     m_maxTorque = torque;
0230 }
0231 
0232 float32 b2FrictionJoint::GetMaxTorque() const
0233 {
0234     return m_maxTorque;
0235 }
0236 
0237 void b2FrictionJoint::Dump()
0238 {
0239     int32 indexA = m_bodyA->m_islandIndex;
0240     int32 indexB = m_bodyB->m_islandIndex;
0241 
0242     b2Log("  b2FrictionJointDef jd;\n");
0243     b2Log("  jd.bodyA = bodies[%d];\n", indexA);
0244     b2Log("  jd.bodyB = bodies[%d];\n", indexB);
0245     b2Log("  jd.collideConnected = bool(%d);\n", m_collideConnected);
0246     b2Log("  jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y);
0247     b2Log("  jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y);
0248     b2Log("  jd.maxForce = %.15lef;\n", m_maxForce);
0249     b2Log("  jd.maxTorque = %.15lef;\n", m_maxTorque);
0250     b2Log("  joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
0251 }