File indexing completed on 2024-12-29 03:29:26
0001 /* 0002 * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org 0003 * 0004 * This software is provided 'as-is', without any express or implied 0005 * warranty. In no event will the authors be held liable for any damages 0006 * arising from the use of this software. 0007 * Permission is granted to anyone to use this software for any purpose, 0008 * including commercial applications, and to alter it and redistribute it 0009 * freely, subject to the following restrictions: 0010 * 1. The origin of this software must not be misrepresented; you must not 0011 * claim that you wrote the original software. If you use this software 0012 * in a product, an acknowledgment in the product documentation would be 0013 * appreciated but is not required. 0014 * 2. Altered source versions must be plainly marked as such, and must not be 0015 * misrepresented as being the original software. 0016 * 3. This notice may not be removed or altered from any source distribution. 0017 */ 0018 0019 #include <Box2D/Dynamics/Joints/b2DistanceJoint.h> 0020 #include <Box2D/Dynamics/b2Body.h> 0021 #include <Box2D/Dynamics/b2TimeStep.h> 0022 0023 // 1-D constrained system 0024 // m (v2 - v1) = lambda 0025 // v2 + (beta/h) * x1 + gamma * lambda = 0, gamma has units of inverse mass. 0026 // x2 = x1 + h * v2 0027 0028 // 1-D mass-damper-spring system 0029 // m (v2 - v1) + h * d * v2 + h * k * 0030 0031 // C = norm(p2 - p1) - L 0032 // u = (p2 - p1) / norm(p2 - p1) 0033 // Cdot = dot(u, v2 + cross(w2, r2) - v1 - cross(w1, r1)) 0034 // J = [-u -cross(r1, u) u cross(r2, u)] 0035 // K = J * invM * JT 0036 // = invMass1 + invI1 * cross(r1, u)^2 + invMass2 + invI2 * cross(r2, u)^2 0037 0038 void b2DistanceJointDef::Initialize(b2Body* b1, b2Body* b2, 0039 const b2Vec2& anchor1, const b2Vec2& anchor2) 0040 { 0041 bodyA = b1; 0042 bodyB = b2; 0043 localAnchorA = bodyA->GetLocalPoint(anchor1); 0044 localAnchorB = bodyB->GetLocalPoint(anchor2); 0045 b2Vec2 d = anchor2 - anchor1; 0046 length = d.Length(); 0047 } 0048 0049 b2DistanceJoint::b2DistanceJoint(const b2DistanceJointDef* def) 0050 : b2Joint(def) 0051 { 0052 m_localAnchorA = def->localAnchorA; 0053 m_localAnchorB = def->localAnchorB; 0054 m_length = def->length; 0055 m_frequencyHz = def->frequencyHz; 0056 m_dampingRatio = def->dampingRatio; 0057 m_impulse = 0.0f; 0058 m_gamma = 0.0f; 0059 m_bias = 0.0f; 0060 } 0061 0062 void b2DistanceJoint::InitVelocityConstraints(const b2SolverData& data) 0063 { 0064 m_indexA = m_bodyA->m_islandIndex; 0065 m_indexB = m_bodyB->m_islandIndex; 0066 m_localCenterA = m_bodyA->m_sweep.localCenter; 0067 m_localCenterB = m_bodyB->m_sweep.localCenter; 0068 m_invMassA = m_bodyA->m_invMass; 0069 m_invMassB = m_bodyB->m_invMass; 0070 m_invIA = m_bodyA->m_invI; 0071 m_invIB = m_bodyB->m_invI; 0072 0073 b2Vec2 cA = data.positions[m_indexA].c; 0074 float32 aA = data.positions[m_indexA].a; 0075 b2Vec2 vA = data.velocities[m_indexA].v; 0076 float32 wA = data.velocities[m_indexA].w; 0077 0078 b2Vec2 cB = data.positions[m_indexB].c; 0079 float32 aB = data.positions[m_indexB].a; 0080 b2Vec2 vB = data.velocities[m_indexB].v; 0081 float32 wB = data.velocities[m_indexB].w; 0082 0083 b2Rot qA(aA), qB(aB); 0084 0085 m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); 0086 m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); 0087 m_u = cB + m_rB - cA - m_rA; 0088 0089 // Handle singularity. 0090 float32 length = m_u.Length(); 0091 if (length > b2_linearSlop) 0092 { 0093 m_u *= 1.0f / length; 0094 } 0095 else 0096 { 0097 m_u.Set(0.0f, 0.0f); 0098 } 0099 0100 float32 crAu = b2Cross(m_rA, m_u); 0101 float32 crBu = b2Cross(m_rB, m_u); 0102 float32 invMass = m_invMassA + m_invIA * crAu * crAu + m_invMassB + m_invIB * crBu * crBu; 0103 0104 // Compute the effective mass matrix. 0105 m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f; 0106 0107 if (m_frequencyHz > 0.0f) 0108 { 0109 float32 C = length - m_length; 0110 0111 // Frequency 0112 float32 omega = 2.0f * b2_pi * m_frequencyHz; 0113 0114 // Damping coefficient 0115 float32 d = 2.0f * m_mass * m_dampingRatio * omega; 0116 0117 // Spring stiffness 0118 float32 k = m_mass * omega * omega; 0119 0120 // magic formulas 0121 float32 h = data.step.dt; 0122 m_gamma = h * (d + h * k); 0123 m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f; 0124 m_bias = C * h * k * m_gamma; 0125 0126 invMass += m_gamma; 0127 m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f; 0128 } 0129 else 0130 { 0131 m_gamma = 0.0f; 0132 m_bias = 0.0f; 0133 } 0134 0135 if (data.step.warmStarting) 0136 { 0137 // Scale the impulse to support a variable time step. 0138 m_impulse *= data.step.dtRatio; 0139 0140 b2Vec2 P = m_impulse * m_u; 0141 vA -= m_invMassA * P; 0142 wA -= m_invIA * b2Cross(m_rA, P); 0143 vB += m_invMassB * P; 0144 wB += m_invIB * b2Cross(m_rB, P); 0145 } 0146 else 0147 { 0148 m_impulse = 0.0f; 0149 } 0150 0151 data.velocities[m_indexA].v = vA; 0152 data.velocities[m_indexA].w = wA; 0153 data.velocities[m_indexB].v = vB; 0154 data.velocities[m_indexB].w = wB; 0155 } 0156 0157 void b2DistanceJoint::SolveVelocityConstraints(const b2SolverData& data) 0158 { 0159 b2Vec2 vA = data.velocities[m_indexA].v; 0160 float32 wA = data.velocities[m_indexA].w; 0161 b2Vec2 vB = data.velocities[m_indexB].v; 0162 float32 wB = data.velocities[m_indexB].w; 0163 0164 // Cdot = dot(u, v + cross(w, r)) 0165 b2Vec2 vpA = vA + b2Cross(wA, m_rA); 0166 b2Vec2 vpB = vB + b2Cross(wB, m_rB); 0167 float32 Cdot = b2Dot(m_u, vpB - vpA); 0168 0169 float32 impulse = -m_mass * (Cdot + m_bias + m_gamma * m_impulse); 0170 m_impulse += impulse; 0171 0172 b2Vec2 P = impulse * m_u; 0173 vA -= m_invMassA * P; 0174 wA -= m_invIA * b2Cross(m_rA, P); 0175 vB += m_invMassB * P; 0176 wB += m_invIB * b2Cross(m_rB, P); 0177 0178 data.velocities[m_indexA].v = vA; 0179 data.velocities[m_indexA].w = wA; 0180 data.velocities[m_indexB].v = vB; 0181 data.velocities[m_indexB].w = wB; 0182 } 0183 0184 bool b2DistanceJoint::SolvePositionConstraints(const b2SolverData& data) 0185 { 0186 if (m_frequencyHz > 0.0f) 0187 { 0188 // There is no position correction for soft distance constraints. 0189 return true; 0190 } 0191 0192 b2Vec2 cA = data.positions[m_indexA].c; 0193 float32 aA = data.positions[m_indexA].a; 0194 b2Vec2 cB = data.positions[m_indexB].c; 0195 float32 aB = data.positions[m_indexB].a; 0196 0197 b2Rot qA(aA), qB(aB); 0198 0199 b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); 0200 b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); 0201 b2Vec2 u = cB + rB - cA - rA; 0202 0203 float32 length = u.Normalize(); 0204 float32 C = length - m_length; 0205 C = b2Clamp(C, -b2_maxLinearCorrection, b2_maxLinearCorrection); 0206 0207 float32 impulse = -m_mass * C; 0208 b2Vec2 P = impulse * u; 0209 0210 cA -= m_invMassA * P; 0211 aA -= m_invIA * b2Cross(rA, P); 0212 cB += m_invMassB * P; 0213 aB += m_invIB * b2Cross(rB, P); 0214 0215 data.positions[m_indexA].c = cA; 0216 data.positions[m_indexA].a = aA; 0217 data.positions[m_indexB].c = cB; 0218 data.positions[m_indexB].a = aB; 0219 0220 return b2Abs(C) < b2_linearSlop; 0221 } 0222 0223 b2Vec2 b2DistanceJoint::GetAnchorA() const 0224 { 0225 return m_bodyA->GetWorldPoint(m_localAnchorA); 0226 } 0227 0228 b2Vec2 b2DistanceJoint::GetAnchorB() const 0229 { 0230 return m_bodyB->GetWorldPoint(m_localAnchorB); 0231 } 0232 0233 b2Vec2 b2DistanceJoint::GetReactionForce(float32 inv_dt) const 0234 { 0235 b2Vec2 F = (inv_dt * m_impulse) * m_u; 0236 return F; 0237 } 0238 0239 float32 b2DistanceJoint::GetReactionTorque(float32 inv_dt) const 0240 { 0241 B2_NOT_USED(inv_dt); 0242 return 0.0f; 0243 } 0244 0245 void b2DistanceJoint::Dump() 0246 { 0247 int32 indexA = m_bodyA->m_islandIndex; 0248 int32 indexB = m_bodyB->m_islandIndex; 0249 0250 b2Log(" b2DistanceJointDef jd;\n"); 0251 b2Log(" jd.bodyA = bodies[%d];\n", indexA); 0252 b2Log(" jd.bodyB = bodies[%d];\n", indexB); 0253 b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); 0254 b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); 0255 b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); 0256 b2Log(" jd.length = %.15lef;\n", m_length); 0257 b2Log(" jd.frequencyHz = %.15lef;\n", m_frequencyHz); 0258 b2Log(" jd.dampingRatio = %.15lef;\n", m_dampingRatio); 0259 b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); 0260 }