Warning, file /education/gcompris/external/qml-box2d/Box2D/Collision/b2CollideCircle.cpp was not indexed or was modified since last indexation (in which case cross-reference links may be missing, inaccurate or erroneous).

0001 /*
0002 * Copyright (c) 2007-2009 Erin Catto http://www.box2d.org
0003 *
0004 * This software is provided 'as-is', without any express or implied
0005 * warranty.  In no event will the authors be held liable for any damages
0006 * arising from the use of this software.
0007 * Permission is granted to anyone to use this software for any purpose,
0008 * including commercial applications, and to alter it and redistribute it
0009 * freely, subject to the following restrictions:
0010 * 1. The origin of this software must not be misrepresented; you must not
0011 * claim that you wrote the original software. If you use this software
0012 * in a product, an acknowledgment in the product documentation would be
0013 * appreciated but is not required.
0014 * 2. Altered source versions must be plainly marked as such, and must not be
0015 * misrepresented as being the original software.
0016 * 3. This notice may not be removed or altered from any source distribution.
0017 */
0018 
0019 #include <Box2D/Collision/b2Collision.h>
0020 #include <Box2D/Collision/Shapes/b2CircleShape.h>
0021 #include <Box2D/Collision/Shapes/b2PolygonShape.h>
0022 
0023 void b2CollideCircles(
0024     b2Manifold* manifold,
0025     const b2CircleShape* circleA, const b2Transform& xfA,
0026     const b2CircleShape* circleB, const b2Transform& xfB)
0027 {
0028     manifold->pointCount = 0;
0029 
0030     b2Vec2 pA = b2Mul(xfA, circleA->m_p);
0031     b2Vec2 pB = b2Mul(xfB, circleB->m_p);
0032 
0033     b2Vec2 d = pB - pA;
0034     float32 distSqr = b2Dot(d, d);
0035     float32 rA = circleA->m_radius, rB = circleB->m_radius;
0036     float32 radius = rA + rB;
0037     if (distSqr > radius * radius)
0038     {
0039         return;
0040     }
0041 
0042     manifold->type = b2Manifold::e_circles;
0043     manifold->localPoint = circleA->m_p;
0044     manifold->localNormal.SetZero();
0045     manifold->pointCount = 1;
0046 
0047     manifold->points[0].localPoint = circleB->m_p;
0048     manifold->points[0].id.key = 0;
0049 }
0050 
0051 void b2CollidePolygonAndCircle(
0052     b2Manifold* manifold,
0053     const b2PolygonShape* polygonA, const b2Transform& xfA,
0054     const b2CircleShape* circleB, const b2Transform& xfB)
0055 {
0056     manifold->pointCount = 0;
0057 
0058     // Compute circle position in the frame of the polygon.
0059     b2Vec2 c = b2Mul(xfB, circleB->m_p);
0060     b2Vec2 cLocal = b2MulT(xfA, c);
0061 
0062     // Find the min separating edge.
0063     int32 normalIndex = 0;
0064     float32 separation = -b2_maxFloat;
0065     float32 radius = polygonA->m_radius + circleB->m_radius;
0066     int32 vertexCount = polygonA->m_count;
0067     const b2Vec2* vertices = polygonA->m_vertices;
0068     const b2Vec2* normals = polygonA->m_normals;
0069 
0070     for (int32 i = 0; i < vertexCount; ++i)
0071     {
0072         float32 s = b2Dot(normals[i], cLocal - vertices[i]);
0073 
0074         if (s > radius)
0075         {
0076             // Early out.
0077             return;
0078         }
0079 
0080         if (s > separation)
0081         {
0082             separation = s;
0083             normalIndex = i;
0084         }
0085     }
0086 
0087     // Vertices that subtend the incident face.
0088     int32 vertIndex1 = normalIndex;
0089     int32 vertIndex2 = vertIndex1 + 1 < vertexCount ? vertIndex1 + 1 : 0;
0090     b2Vec2 v1 = vertices[vertIndex1];
0091     b2Vec2 v2 = vertices[vertIndex2];
0092 
0093     // If the center is inside the polygon ...
0094     if (separation < b2_epsilon)
0095     {
0096         manifold->pointCount = 1;
0097         manifold->type = b2Manifold::e_faceA;
0098         manifold->localNormal = normals[normalIndex];
0099         manifold->localPoint = 0.5f * (v1 + v2);
0100         manifold->points[0].localPoint = circleB->m_p;
0101         manifold->points[0].id.key = 0;
0102         return;
0103     }
0104 
0105     // Compute barycentric coordinates
0106     float32 u1 = b2Dot(cLocal - v1, v2 - v1);
0107     float32 u2 = b2Dot(cLocal - v2, v1 - v2);
0108     if (u1 <= 0.0f)
0109     {
0110         if (b2DistanceSquared(cLocal, v1) > radius * radius)
0111         {
0112             return;
0113         }
0114 
0115         manifold->pointCount = 1;
0116         manifold->type = b2Manifold::e_faceA;
0117         manifold->localNormal = cLocal - v1;
0118         manifold->localNormal.Normalize();
0119         manifold->localPoint = v1;
0120         manifold->points[0].localPoint = circleB->m_p;
0121         manifold->points[0].id.key = 0;
0122     }
0123     else if (u2 <= 0.0f)
0124     {
0125         if (b2DistanceSquared(cLocal, v2) > radius * radius)
0126         {
0127             return;
0128         }
0129 
0130         manifold->pointCount = 1;
0131         manifold->type = b2Manifold::e_faceA;
0132         manifold->localNormal = cLocal - v2;
0133         manifold->localNormal.Normalize();
0134         manifold->localPoint = v2;
0135         manifold->points[0].localPoint = circleB->m_p;
0136         manifold->points[0].id.key = 0;
0137     }
0138     else
0139     {
0140         b2Vec2 faceCenter = 0.5f * (v1 + v2);
0141         float32 separation = b2Dot(cLocal - faceCenter, normals[vertIndex1]);
0142         if (separation > radius)
0143         {
0144             return;
0145         }
0146 
0147         manifold->pointCount = 1;
0148         manifold->type = b2Manifold::e_faceA;
0149         manifold->localNormal = normals[vertIndex1];
0150         manifold->localPoint = faceCenter;
0151         manifold->points[0].localPoint = circleB->m_p;
0152         manifold->points[0].id.key = 0;
0153     }
0154 }