File indexing completed on 2025-02-16 03:29:32
0001 /* 0002 * Copyright (c) 2006-2010 Erin Catto http://www.box2d.org 0003 * 0004 * This software is provided 'as-is', without any express or implied 0005 * warranty. In no event will the authors be held liable for any damages 0006 * arising from the use of this software. 0007 * Permission is granted to anyone to use this software for any purpose, 0008 * including commercial applications, and to alter it and redistribute it 0009 * freely, subject to the following restrictions: 0010 * 1. The origin of this software must not be misrepresented; you must not 0011 * claim that you wrote the original software. If you use this software 0012 * in a product, an acknowledgment in the product documentation would be 0013 * appreciated but is not required. 0014 * 2. Altered source versions must be plainly marked as such, and must not be 0015 * misrepresented as being the original software. 0016 * 3. This notice may not be removed or altered from any source distribution. 0017 */ 0018 0019 #include <Box2D/Collision/Shapes/b2ChainShape.h> 0020 #include <Box2D/Collision/Shapes/b2EdgeShape.h> 0021 #include <new> 0022 #include <string.h> 0023 0024 b2ChainShape::~b2ChainShape() 0025 { 0026 Clear(); 0027 } 0028 0029 void b2ChainShape::Clear() 0030 { 0031 b2Free(m_vertices); 0032 m_vertices = NULL; 0033 m_count = 0; 0034 } 0035 0036 void b2ChainShape::CreateLoop(const b2Vec2* vertices, int32 count) 0037 { 0038 b2Assert(m_vertices == NULL && m_count == 0); 0039 b2Assert(count >= 3); 0040 for (int32 i = 1; i < count; ++i) 0041 { 0042 b2Vec2 v1 = vertices[i-1]; 0043 b2Vec2 v2 = vertices[i]; 0044 // If the code crashes here, it means your vertices are too close together. 0045 b2Assert(b2DistanceSquared(v1, v2) > b2_linearSlop * b2_linearSlop); 0046 } 0047 0048 m_count = count + 1; 0049 m_vertices = (b2Vec2*)b2Alloc(m_count * sizeof(b2Vec2)); 0050 memcpy(m_vertices, vertices, count * sizeof(b2Vec2)); 0051 m_vertices[count] = m_vertices[0]; 0052 m_prevVertex = m_vertices[m_count - 2]; 0053 m_nextVertex = m_vertices[1]; 0054 m_hasPrevVertex = true; 0055 m_hasNextVertex = true; 0056 } 0057 0058 void b2ChainShape::CreateChain(const b2Vec2* vertices, int32 count) 0059 { 0060 b2Assert(m_vertices == NULL && m_count == 0); 0061 b2Assert(count >= 2); 0062 for (int32 i = 1; i < count; ++i) 0063 { 0064 // If the code crashes here, it means your vertices are too close together. 0065 b2Assert(b2DistanceSquared(vertices[i-1], vertices[i]) > b2_linearSlop * b2_linearSlop); 0066 } 0067 0068 m_count = count; 0069 m_vertices = (b2Vec2*)b2Alloc(count * sizeof(b2Vec2)); 0070 memcpy(m_vertices, vertices, m_count * sizeof(b2Vec2)); 0071 0072 m_hasPrevVertex = false; 0073 m_hasNextVertex = false; 0074 0075 m_prevVertex.SetZero(); 0076 m_nextVertex.SetZero(); 0077 } 0078 0079 void b2ChainShape::SetPrevVertex(const b2Vec2& prevVertex) 0080 { 0081 m_prevVertex = prevVertex; 0082 m_hasPrevVertex = true; 0083 } 0084 0085 void b2ChainShape::SetNextVertex(const b2Vec2& nextVertex) 0086 { 0087 m_nextVertex = nextVertex; 0088 m_hasNextVertex = true; 0089 } 0090 0091 b2Shape* b2ChainShape::Clone(b2BlockAllocator* allocator) const 0092 { 0093 void* mem = allocator->Allocate(sizeof(b2ChainShape)); 0094 b2ChainShape* clone = new (mem) b2ChainShape; 0095 clone->CreateChain(m_vertices, m_count); 0096 clone->m_prevVertex = m_prevVertex; 0097 clone->m_nextVertex = m_nextVertex; 0098 clone->m_hasPrevVertex = m_hasPrevVertex; 0099 clone->m_hasNextVertex = m_hasNextVertex; 0100 return clone; 0101 } 0102 0103 int32 b2ChainShape::GetChildCount() const 0104 { 0105 // edge count = vertex count - 1 0106 return m_count - 1; 0107 } 0108 0109 void b2ChainShape::GetChildEdge(b2EdgeShape* edge, int32 index) const 0110 { 0111 b2Assert(0 <= index && index < m_count - 1); 0112 edge->m_type = b2Shape::e_edge; 0113 edge->m_radius = m_radius; 0114 0115 edge->m_vertex1 = m_vertices[index + 0]; 0116 edge->m_vertex2 = m_vertices[index + 1]; 0117 0118 if (index > 0) 0119 { 0120 edge->m_vertex0 = m_vertices[index - 1]; 0121 edge->m_hasVertex0 = true; 0122 } 0123 else 0124 { 0125 edge->m_vertex0 = m_prevVertex; 0126 edge->m_hasVertex0 = m_hasPrevVertex; 0127 } 0128 0129 if (index < m_count - 2) 0130 { 0131 edge->m_vertex3 = m_vertices[index + 2]; 0132 edge->m_hasVertex3 = true; 0133 } 0134 else 0135 { 0136 edge->m_vertex3 = m_nextVertex; 0137 edge->m_hasVertex3 = m_hasNextVertex; 0138 } 0139 } 0140 0141 bool b2ChainShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const 0142 { 0143 B2_NOT_USED(xf); 0144 B2_NOT_USED(p); 0145 return false; 0146 } 0147 0148 bool b2ChainShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input, 0149 const b2Transform& xf, int32 childIndex) const 0150 { 0151 b2Assert(childIndex < m_count); 0152 0153 b2EdgeShape edgeShape; 0154 0155 int32 i1 = childIndex; 0156 int32 i2 = childIndex + 1; 0157 if (i2 == m_count) 0158 { 0159 i2 = 0; 0160 } 0161 0162 edgeShape.m_vertex1 = m_vertices[i1]; 0163 edgeShape.m_vertex2 = m_vertices[i2]; 0164 0165 return edgeShape.RayCast(output, input, xf, 0); 0166 } 0167 0168 void b2ChainShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const 0169 { 0170 b2Assert(childIndex < m_count); 0171 0172 int32 i1 = childIndex; 0173 int32 i2 = childIndex + 1; 0174 if (i2 == m_count) 0175 { 0176 i2 = 0; 0177 } 0178 0179 b2Vec2 v1 = b2Mul(xf, m_vertices[i1]); 0180 b2Vec2 v2 = b2Mul(xf, m_vertices[i2]); 0181 0182 aabb->lowerBound = b2Min(v1, v2); 0183 aabb->upperBound = b2Max(v1, v2); 0184 } 0185 0186 void b2ChainShape::ComputeMass(b2MassData* massData, float32 density) const 0187 { 0188 B2_NOT_USED(density); 0189 0190 massData->mass = 0.0f; 0191 massData->center.SetZero(); 0192 massData->I = 0.0f; 0193 }